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Abstract
We propose a weakly-supervised approach that takes

image-sentence pairs as input and learns to visually ground
(i.e., localize) arbitrary linguistic phrases, in the form of
spatial attention masks. Specifically, the model is trained
with images and their associated image-level captions,
without any explicit region-to-phrase correspondence an-
notations. To this end, we introduce an end-to-end model
which learns visual groundings of phrases with two types of
carefully designed loss functions. In addition to the stan-
dard discriminative loss, which enforces that attended im-
age regions and phrases are consistently encoded, we pro-
pose a novel structural loss which makes use of the parse
tree structures induced by the sentences. In particular,
we ensure complementarity among the attention masks that
correspond to sibling noun phrases, and compositionality
of attention masks among the children and parent phrases,
as defined by the sentence parse tree. We validate the effec-
tiveness of our approach on the Microsoft COCO and Visual
Genome datasets.

1. Introduction
Visual recognition research has made tremendous strides

in recent years, achieving unprecedented performance in
various tasks including image classification [15, 26, 38], ob-
ject detection [13, 36], semantic segmentation [14, 28], and
image captioning [5, 22, 51]. However, traditional super-
vised frameworks for these tasks often rely on large datasets
with expensive bounding box or pixel-level segmentation
annotations. As the field pushes toward solving larger-scale
and more complex problems, obtaining massive annotated
datasets is becoming a critical bottleneck.

Weakly-supervised approaches that learn from image-
level supervision have been proposed to alleviate the need
for expensive and unwieldy annotation. Most previous
work use category tags to train models that can localize
objects without any bounding box or segmentation anno-
tations [6, 12, 21, 22, 31, 33, 40, 41, 43, 48]. While great
progress has been made, learning from a list of category tags
ignores the rich semantics and structure in natural language
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Figure 1. We propose to localize phrases in images, by exploit-
ing linguistic structure. For example, from the phrase “a man
that is cutting sandwich”, we can infer that “a man” and “sand-
wich” should be exclusive to each other spatially. At the same
time, they should jointly occupy the spatial extent of “a man that is
cutting sandwich”. We enforce these structural constraints as part
of a novel deep network architecture for weakly-supervised visual
grounding of phrases.

that we humans use to describe visual data. For example,
in Fig. 1, a tag-based description would simply list {man,
sandwich, table} whereas a natural language description
might say “a man that is cutting sandwich on a table”. Im-
portantly, the natural language description provides struc-
ture, which can benefit a weakly-supervised learning algo-
rithm. For instance, the description implies that “a man”
and “sandwich” occupy spatially-distinct regions in the im-
age, and that a visual grounding (localization) of the entire
sentence should be the union of the groundings of “a man”
and “sandwich on a table”. By exploiting these constraints
and regularities that are shared between linguistic and vi-
sual data, localization in the challenging weakly-supervised
setting can be facilitated.

In this paper, we propose a weakly-supervised visual lo-
calization approach that learns from image-level descrip-
tions (i.e., without any region-to-phrase correspondence an-
notations). In particular, we aim to create spatial attention
masks that produce localizations at the pixel-level. Our key
idea is to utilize the rich structure in a natural language de-
scription by transforming it into a hierarchical parse tree
of phrases (see Fig. 2). In this way, we can extract two
types of linguistic structural constraints for visual ground-
ing: (1) compositionality of attention masks among chil-
dren and their parent phrases (e.g., the mask of “a hand
with a donut” should be the union mask of “a hand” and
“with a donut”), and (2) complementarity among the atten-
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Figure 2. An illustration of the concept. We exploit structures
present in natural language to provide regularities and constraints
for grounding free-form language on images. Note that we do not
use any ground-truth masks during training.

tion masks between sibling phrases (mask of “a grey cat”
should be spatially-disjoint with that of “starring at a hand
with a donut”). Furthermore, the parse tree representation
augments the total amount of supervision and enables learn-
ing from linguistic descriptions at various levels, i.e., from
words, to phrases, and eventually to the full sentence, for
the same image.

Our model is an end-to-end deep neural network that
consists of a language encoder, a visual encoder, a semantic
projection module, and loss modules. The language/visual
encoder process input phrases/images into vector represen-
tations, which are then projected into a common semantic
space by the semantic projection module. In addition to the
discriminative loss which directly enforces the annotated
image-phrase pairs to be close to each other in semantic
space, we propose a novel structural loss which enforces the
linguistic structural constraints to be satisfied when gener-
ating localized attention masks in the images. Given a test
image, our model can generate an attention mask for any
arbitrary phrase without needing access to the structures of
the linguistic input (e.g., it can localize single word inputs).

Our work is most related to [37], which learns to localize
textural phrases in a weakly-supervised setting, and [22],
which learns to align text to regions for image captioning.
However, unlike our approach, these methods do not ex-
plicitly exploit the hierarchical structure in the language de-
scription, and instead treat it simply as a sequence of words.
Furthermore, their visual localizations are in the form of
bounding boxes, which are insufficient for representing ob-
jects with irregular shapes. Finally, our work is also related
to approaches in image captioning [30, 51] and visual ques-
tion answering [8, 54]. While these tasks require localiza-
tion as a sub-task to be successful, the end goal itself is not
localization. Thus, these approaches do not leverage any
structural localization constraints as we do.

Contributions. To our knowledge, we are the first to
leverage the hierarchical structure of natural language de-
scriptions for weakly-supervised visual localization. We de-
sign a novel deep network with a new structural loss, which
makes use of the parse tree structures induced by the de-
scriptions. The structural loss is combined with a discrim-
inative loss, which enforces that attended image regions

and phrases are consistently encoded, to produce pixel-level
spatial attention masks. We demonstrate the effectiveness of
our approach through localization experiments on the Mi-
crosoft COCO and Visual Genome datasets [25, 27].

2. Related work

Weakly-supervised learning with categorical labels/tags.
Weakly-supervised visual learning approaches focus on
learning granular detectors given only coarse annotations.
This is an extremely useful paradigm since granular annota-
tions (e.g., bounding boxes, segmentations) are much more
costly compared to coarse image-level annotations.

Most previous weakly-supervised approaches work with
categorical labels/tags. For example, weakly-supervised de-
tection methods aim to train object/attribute detectors with
only image-level labels (e.g., whether an object/attribute ex-
ists in the image or not) instead of bounding boxes [7, 10,
32, 43, 3, 47, 49, 39]. Despite being a much harder prob-
lem, there are also previous efforts in weakly-supervised
semantic segmentation, which requires per-pixel predic-
tions [33, 34, 50]. Although these methods have demon-
strated promising results, the type of annotation used is not
very “natural”. Referring back to Fig. 2, it would be some-
what unnatural for someone to tag the image with all de-
picted objects – e.g., “cat, hand, donut”. Instead, it would
be much more natural to tag it with a descriptive sentence,
similar to what one would expect in a social media post.
Assuming this is the case, paring down a sentence to a set
of object tags seems to be sub-optimal as the process loses
valuable linguistic structure present in the original sen-
tence. Unlike these two lines of work, we perform weakly-
supervised learning with sentence-level supervision.

Vision and language. The interplay of vision and lan-
guage has been studied extensively in recent years, partly
because research in both vision and language has matured
and has made tremendous progress with the help of deep
learning. Given the natural connection between language
and vision (e.g., visual language grounding) it is no surprise
that multimodal learning that considers both carries signifi-
cant promise.

Image captioning [5, 11, 20, 22, 24, 30, 51] has received
a great amount of attention in the past two years. Most mod-
els adopt an encoder-decoder architecture, in which the en-
coder encodes information from the image (usually using a
CNN) into a hidden state and the decoder then decodes it
into a sequence of word tokens (a sentence). The decoder
often takes a form of an RNN (e.g., LSTM) and is condi-
tioned on previously generated word tokens. Visual ques-
tion answering (VQA) [2, 8, 29] is another popular problem
in this space. In VQA, the encoder, in addition to the im-
age, takes a question (often encoded by an RNN) and the
decoder decodes the answer.



In both image captioning and VQA, localization of rel-
evant regions helps in generating captions/answers, which
motivates many recent models to incorporate attention
mechanisms to focus on the relevant spatial regions as
part of the decoding process [29, 22, 51, 8, 30]. How-
ever, since localization is not the final goal, most of these
models are either not optimized for it explicitly or simply
take off-the-shelf strongly-supervised object detectors for
localization. In contrast, our goal is to perform weakly-
supervised localization directly, and we propose a novel
structural loss to facilitate this task. Other than captioning
and VQA, there are also works trying to localize phrases in
images [35, 45, 37, 46, 45, 18, 17]. However, most existing
work use strong supervision as the ground-truth correspon-
dence between phrases and image regions, which is costly
to acquire at scale. While Rohrbach et al. [37] work with
weakly-annotated image-phrase pairs, they treat the phrase
input as a sequence of tokens, whereas our approach explic-
itly makes use of the structure present in the sentence input.

Structure from language. We note that we are not the
first to utilize linguistic structure for a vision task. In [46],
the authors propose to model “partial match coreference”
relations between phrases. However, the approach requires
strong supervision and produces bounding boxes instead
of per-pixel predictions. In the VQA approach of [1], the
network structure is dynamically constructed using a ques-
tion; however, it does not directly aim at localization. To
our knowledge, we are the first to leverage the hierarchi-
cal structure in natural language descriptions for weakly-
supervised visual localization.

3. Approach
Our goal is to train a model that takes as input a set

of weakly-annotated image-sentence pairs (without any ex-
plicit region-to-phrase correspondence annotations), and
learns to visually ground (i.e., localize) arbitrary linguistic
phrases in the form of pixel-level spatial attention masks.
The key idea is to transfer the linguistic structure to the im-
age domain as constraints to guide the model to produce
more accurate localizations. To this end, we propose a novel
end-to-end deep network that encodes both the association
of phrases and images (with a discriminative loss), as well
as the structure of the phrases (with a structural loss).

3.1. Transforming a sentence into a parse tree

Given an image and its associated sentence description,
we first transform the sentence into a parse tree with an off-
the-shelf NLP parser [42], as shown in Fig. 2. In most cases,
the structure in the parse tree can also be well-represented
in the image (e.g., in Fig. 2, “A grey cat” and “a hand with
a donut” should be exclusive to each other according to
the linguistic structure, which is also true in the visual do-

main). We therefore transfer this structure to its correspond-
ing image when visually grounding different nodes in the
tree. In order to ensure that a node corresponds to a region
in the image, we only consider nodes that contain at least
one noun. This removes meaningless/ambiguous nodes like
“with”, “and”, “on it”, or “in it”.

3.2. Network architecture

The proposed architecture for grounding phrases in an
image is shown in Fig. 3. There are four parts to the archi-
tecture: visual encoder, language encoder, semantic embed-
ding sub-network, and the loss functions.

The visual encoder and language encoder are responsi-
ble for encoding the raw input of images and phrases, re-
spectively, into semantic representations. The semantic em-
bedding sub-network projects the representations from both
modalities to a common semantic space in which the visual
and language data are directly comparable (i.e., enabling
one to compute an image-phrase similarity). In addition
to embedding an entire image into the semantic space, the
semantic embedding sub-network also projects individual
image regions into the common semantic space. To extract
these regions a spatial attention mask over the image is com-
puted. Finally, the image-phrase matching scores and atten-
tion masks are fed into the discriminative and structural loss
modules, respectively, to optimize the network for learning
semantics and localization.

In testing, the network takes a phrase as input, and out-
puts a corresponding attention mask to localize the phrase.

Visual encoding. We use a convolutional neural network
(CNN) to encode the visual content in an image. Specif-
ically, we adopt the VGG-16 network [38] (denoted as
VGG), for its high performance and moderate computa-
tional cost. For our use, we remove the fully-connected
layers and only keep the convolutional layers (conv1 1
through conv5 3), so that we can preserve spatial infor-
mation for localization. We initialize the network weights
by pre-training on ImageNet [9].

Language encoding. We use a recurrent neural network
(RNN) to encode the text descriptions. The network is able
to take as input both short phrases like “A man” as well as
long ones like “A man riding on the top of an elephant”.
To better model long phrases, we adopt LSTM cells [16] in
a two-layer RNN, with a Dropout module [44] inserted in
between to prevent over-fitting. For a phrase with tokens
{W1,W2, ...,WT }, its representation is computed as the
RNN hidden vector at time step T . We pre-train the weights
of our language encoder on a combined set of Google’s Bil-
lion Words [4] dataset and COCO captions in the training
(train2014) set with the next word prediction task.

Joint semantic embedding. We next describe how to
project the visual and language representations into a com-
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Figure 3. Our architecture consists of 4 submodules: visual encoder, language encoder, semantic embedding module, and loss functions.
We adopt the convolutional layers of the VGG network as the visual encoder. For the language encoder, we use a two-layer LSTM
network. The output of the language encoder directly lives in the semantic space, whereas the output of the visual encoder is projected
into the semantic space by the semantic embedding module, which is a two-layer-perceptron with Dropout inserted in between the layers.
Alongside projecting the visual feature of the full image, the semantic embedding module is also responsible for projecting the feature in
each spatial location, to the embedding space: in this case, the output of the visual encoder bypasses average pooling and is directly fed
into the embedding module. The embedding modules used for these two purposes share their weights. After projection, both the full image
feature and the spatial feature are matched against the language codes, to generate a matching score and an attention mask, respectively.
The matching score is used to compute the discriminative loss while the structural constraints are enforced onto the attention mask.

mon semantic embedding space. We directly take the out-
put of the language encoder as the language code in the
semantic space. For the output of the visual encoder, i.e.,
conv5 3 map of VGG, we apply the semantic embedding
sub-network to obtain the visual code in the semantic space.

Since we want our network to learn to localize the rele-
vant image regions for a given phrase (recall we only have
image-level phrase annotations), we feed the conv5 3 fea-
ture map into a global average-pooling layer instead of a
max-pooling layer, which is used in the standard VGG net-
work. As argued in [53], average-pooling better preserves
location information since it is forced to localize in order
to maximize its response over the relevant image regions.
A 2-layer-perceptron (fully-connected network) follows the
average-pooled feature to compute a vector representation
for the image. In order to match the scales of the language
and visual codes, we add a batch normalization layer [19]
at the end of the semantic embedding sub-network.

Generating spatial attention masks. In addition to pro-
jecting the conv5 3 feature map into a visual code, the
semantic embedding sub-network also serves to produce a
spatial attention mask for each textual phrase. The attention
mask is used both to enforce the structural loss constraints
during learning (described in Sec. 3.3.1) as well as to pro-
duce localizations during testing. Specifically, we pass in-
dividual features at each spatial position of the conv5 3
feature map through the network. The resulting attention
mask shows how well the visual feature at each spatial lo-
cation matches the input textual phrase.

3.3. Loss for weakly-supervised visual grounding

Finally, we introduce the loss functions that we use to in-
duce visual grounding in a weakly-supervised setting. Our

architecture is trained end-to-end with two loss terms:

L = Lstruct + Ldisc. (1)

The structural loss Lstruct enforces structure encoded in
the text phrases to be satisfied by their respective visual at-
tention masks. The discriminative loss Ldisc enforces pos-
itive/negative image-phrase pairs to be close/far from each
other in the semantic embedding space.

3.3.1 Structural loss

We propose to exploit the rich hierarchical structure from
the language input to help disambiguate the visual ground-
ing of phrases. Unlike existing work that either treat the
sentence descriptions as a list of nouns (e.g., [7, 10, 32, 43])
or use the entire sentence itself as-is (e.g., [11, 22, 37]),
we leverage the structure in the descriptions to learn visual
groundings on images.

Specifically, we exploit two types of structural con-
straints present in the parse tree: parent-child (PC) and
sibling-sibling (SIB) constraints. The PC (or inclusive) con-
straint enforces the attention mask of any node in the tree to
match the union of the attention masks of all of its children
nodes. For example, the attention mask of “a hand with a
donut” should encapsulate the masks of both “a hand” and
“with a donut” as shown in Fig. 2. The SIB (or exclusive)
constraint enforces the attention masks of siblings to be ex-
clusive to each other (for example, “A grey cat” and “star-
ring at a hand with a donut” in Fig. 2).

More formally, the structural loss is defined as Lstruct =
λPCLPC + λSIBLSIB , where λPC and λSIB are weights



to balance the PC and SIB loss terms, and

LPC =
1

|P |
∑
k∈P

||Ak − max
l∈child(k)

Al||2, (2)

LSIB = − 1

|S|
∑
m∈S

∑
pixels∈A

Wm · log
maxnAm,n∑

nAm,n
, (3)

where A is the attention mask generated for a given phrase.
P denotes the set of valid parent nodes, child(k) returns all
children nodes of parent node k, S is the set of all siblings,
n indexes each node in sibling set m (i.e., nodes that are
sibling to each other), max and log are computed per-pixel,
and (·) is element-wise multiplication.
LPC tries to bring the attention mask of a parent node

and the union mask of all its children nodes to be close to
one another, while LSIB introduces competition such that
the attention masks of sibling nodes are exclusive for ev-
ery pixel. Wm is the average per-pixel attention over sib-
ling set m: 1

n

∑
nAm,n. Its purpose is to enforce stronger

exclusivity among sibling attention masks that have high-
values in the same pixels. Without this term, the exclusivity
is enforced on every pixel equally regardless of whether it is
relevant to the current sibling set. This can be problematic
when all siblings produce low values for a given pixel (im-
plying that the pixel is irrelevant to the current sibling set),
since it will try to undesirably inflate the value for one of
the sibling masks. Empirically, we find this to be the case.

Note that even though we only explicitly enforce the
PC constraint between a parent and its immediate chil-
dren, transitivity ensures that the constraints are carried
out through all descendents. Also, since we only con-
sider a node if it contains at least one noun, each node in
a sibling pair (e.g., NounPhrase-VerbPhrase, NounPhrase-
PrepositionalPhrase, or VerbPhrase-PrepositionalPhrase)
is guaranteed to have its own “object-of-interest”.

3.3.2 Discriminative loss

This loss function is used to match the corresponding
image-phrase pairs. Given an input image Ii and a set
of corresponding phrases (both positive and negative ones)
{P 1

i , P
2
i , ..., P

n
i }, we compute the discriminative loss as:

Ldisc = −Y j
i · Sigmoid(φV (Ii) · φL(P

j
i )), (4)

where Y j
i ∈ {−1, 1} is the indicator variable denoting

whether P j
i is a negative/positive match to Ii, and φV (I)

and φL(P ) denote the visual and language code, respec-
tively. The positive phrases are those in the parse tree as-
sociated with the input image Ii, while the negative phrases
are randomly sampled from those in the parse tree associ-
ated with any other image. This loss tries to bring the visual
and language codes for the positive image-phrase pair to
be as close as possible, while separating the codes in the

negative pair as much as possible. We measure the affinity
between the codes with a dot-product in the semantic em-
bedding space.

4. Results
Datasets. We conduct experiments on Visual
Genome [25] and MS COCO [27] datasets. First, we
evaluate on the Visual Genome dataset, which provides
caption annotations for image regions. Since the image
regions are annotated with bounding boxes, we use the
“pointing game” [52] to evaluate the capability of our
model to visually ground phrases in images. However,
since the pointing game evaluation only cares about the
maximum point and does not evaluate the full extent of the
attention masks produced by our model, we further evaluate
our model against the ground-truth category segmentation
masks on COCO. For this, we treat category labels as
free-form phrases to feed into our language encoder.

Baselines. We compare to a number of baselines: Token
is a model that treats the natural language input as a list of
object tags during training – we only take all the leaf nodes
with noun POS tags in the parse tree to train the model. This
baseline is meant to represent existing weakly-supervised
learning methods that only learn from a list of category la-
bels. Disc-only is a variant of our model that only has the
discriminative loss (without the structural loss). PC and SIB
are each also trained with the discriminative loss but only
with either the parent-child constraint (Eq. 2) or the sibling
constraint (Eq. 3). Ours is our full model with all loss terms.

Implementation details. We pre-train the visual (CNN)
encoder on ImageNet classification, and pre-train the lan-
guage (RNN) encoder using the language modeling (next
word prediction) task on the combined set of Google Bil-
lion Words and COCO captions. For pre-training, we use
the Adam [23] solver since it is has been demonstrated to
be more robust to sparse updates, which are common in
language tasks. We use SGD with a mini-batch size of 8
images and their associated phrases. In each batch, the pos-
itive samples are images and their corresponding phrases,
whereas negative samples are formed by taking an image
and sample phrases that do not correspond to the image. We
find that fixing the language encoder after pre-training is im-
portant to avoid a degenerate solution in which all phrases
collapse to almost the same encoding. For the weights in
Lstruct, we set λPC = 0.01 and λSIB = 0.0001 based on
qualitative examples (see supp. materials for details on the
impact of λPC and λSIB).

4.1. Training on MS COCO

MS COCO is a large dataset designed for object detec-
tion, instance segmentation, and image captioning. We use
the train2014 and val2014 sets, which contain 82,783
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Figure 4. We show qualitative “pointing game” results on Visual Genome. We compare with the baseline model trained without structural
constraints (Disc-only). In each image pair, the left is our result and the right is the baseline’s result. The ground-truth bounding box
is annotated with a white solid line, whereas the maximum point of our prediction is denoted with a cyan dot. The ground-truth phrase
associated with each image is shown on top of each image. The last column shows difficult examples containing small or infrequent objects.

and 40,504 images, respectively, for training and validation.
We train all variants of our model using images and associ-
ated image-level captions on the training set. We take the
trained models and evaluate their localization accuracy us-
ing the “pointing game” metric and semantic segmentation.

4.2. Pointing game on Visual Genome

Visual Genome [25] is a recent effort to provide rich an-
notations on a subset of 328,000 images from MS COCO
(it also annotates images from the Flickr30k dataset [35],
which we do not use). To test the capability of our model
in localizing phrases, we evaluate on the MS COCO valida-
tion set using the region-phrase annotations (i.e., one phrase
corresponding to a bounding box in an image) provided by
Visual Genome.

Since our approach outputs per-pixel predictions (via
the attention mask) instead of bounding boxes, we can-
not directly evaluate against the bounding box annotations.
This is also why we cannot directly compare with the work
of [37], which outputs bounding boxes rather than segmen-
tation masks. We therefore instead use the pointing game
evaluation metric [52]: For each phrase provided in the an-
notation, we pass the phrase, together with the image to
which it associates, through our model and obtain the at-
tention mask on the image. We then compute the maximum
point on the attention mask, and check whether it falls inside
the ground-truth bounding box. If yes, it is counted as a Hit;
otherwise, it is a Miss. The final accuracy is #Hit

#Hit+#Miss .
Table 1 shows the results. The model trained with tokens

(Token) does not perform as well as the model trained using
phrases (Disc-only), which demonstrates the value of using
natural language for image localization. The parent-child
constraint (PC) further improves performance over (Disc-
only), which demonstrates the effectiveness of the parent-
child constraint. While the sibling constraint (SIB) per-
forms almost the same as Disc-only, when combined with
the parent-child constraint, it produces a large boost in per-
formance (Ours, our full model), which suggests that the

Random Disc-only Token PC SIB Ours
Accuracy 0.115 0.230 0.222 0.236 0.231 0.244

Table 1. Localization accuracy as measured by the “pointing
game” [52] on Visual Genome. Our model outperforms all base-
lines, including variants of our method that lack one or more loss
terms. See text for details.

constraints are complementary. Finally, we also add an ex-
tra baseline called Random as a sanity check. For every test
image, we select 100 random points and compute the prob-
ability of the randomly sampled point falling inside the box.
This baseline clearly performs the worst.

Fig. 4 shows qualitative example predictions on the Vi-
sual Genome dataset. Overall, our model generates quite
accurate masks. For example, for “the train is on the bridge”
our model accurately pinpoints the train and the bridge
whereas the Disc-only baseline produces high responses
on many irrelevant pixels. A similar thing happens for “a
person driving a boat”. Furthermore, in some cases, even
though the maximum point of the baseline attention mask
falls within the ground-truth bounding box, we can clearly
see that the generated mask is not as clean as that of our
model; e.g., for “a child is wearing a black protective hel-
met” and “man on a red motorcycle”, the baseline model
tends to generate leaky masks compared with our results.
This is likely because the baseline model does not have
any constraints to exploit other than the discriminative loss,
whereas our model explicitly enforces structural priors onto
the generated attention masks.

Finally, in the first two rows of Fig. 6, we show different
visual groundings corresponding to different input phrases
produced by our model for the same input image. For exam-
ple, in the first image, our model generates entirely different
groundings for “the clock tower is tall” and “buildings by
the street”. This result demonstrates that our model learns
to focus on the right concepts instead of simply computing
a language-independent saliency map.
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Figure 5. Segmentation results on the MS COCO segmentation task. In each image pair, we show the results of our model on the left and
that of the Disc-only baseline on the right. The category label is shown on top of each image pair. The last column shows difficult examples
containing small or infrequent objects. See text for details.

IOU@0.3 IOU@0.4 IOU@0.5 Avg mAP
Disc-only 0.302 0.199 0.110 0.203

PC 0.327 0.213 0.118 0.219
SIB 0.316 0.203 0.114 0.211

Token 0.334 0.240 0.138 0.238
Ours 0.347 0.246 0.159 0.251

Table 2. Segmentation mAP on MS COCO across all 80 cate-
gories. Our model produces more accurate segmentations com-
pared to alternate weakly-supervised baselines.

4.3. Semantic segmentation on MS COCO

Since the “pointing game” only evaluates on the maxi-
mum prediction point, we next evaluate the full extent of
our attention masks through a segmentation task. For this,
we use the MS COCO segmentation annotations [27]. Note
that only category labels are provided (e.g., “cat”) for eval-
uating segmentation on MS COCO. In this case, it makes
more sense to evaluate our model on semantic segmentation
rather than instance segmentation, since our model will only
take a single category label as the language input. We there-
fore merge instances of the same category into one ground-
truth semantic segmentation mask, and evaluate on the vali-
dation set (the test set evaluates only instance segmentation
and requires submission to a private server).

In order to perform semantic segmentation, we con-
vert our continuous-valued attention masks to binary fore-
ground/background predictions. For this, we simply bi-
narize it with a threshold, which is set to be the medium
value in the predicted attention mask range (i.e., θ =
1
2 (max(A) − min(A)). We compute the resulting seg-
mented region’s prediction score as the average per-pixel
attention score within the region. Finally, we compute the
intersection-over-union (IOU) metric for the predicted fore-
ground region against the ground-truth foreground mask.

Table 2 shows the segmentation results, in term of mean
Average Precision (mAP) over all 80 MS COCO categories
at different IOU thresholds. Both PC and SIB provide con-

sistent improvement over Disc-only across different IOU
thresholds. This demonstrates that both structural con-
straints effectively transfer their respective structure from
the language domain to the visual domain. Moreover, with
our full model Ours, which combines both PC and SIB,
mAP is boosted even further. This again shows the com-
plementarity of the parent-child and sibling constraints. In-
terestingly, the model trained only with noun tokens (To-
ken) performs quite well, outperforming both Disc-only and
PC/SIB. This is mainly because for this category seman-
tic segmentation task, the language input is only nouns,
and this can favor a model that is also trained using only
the noun tokens. Despite this, our full model still outper-
forms the Token baseline and achieves the best performance
among all methods. Further, we want to highlight that our
model is much more general, as compared to the Token
baseline; it can localize regions beyond simple objects or
noun tokens (e.g., we can localize adjective-noun or even
more complex referring phrases).

We show example segmentation results in Fig. 5. One
can easily see the improvements brought by the structural
constraints. First, our model localizes more accurately (e.g.,
for “dog” and “frisbee”), just like it does on the Visual
Genome dataset. Second, we again observe the prominent
behavior of our model that it tends to generate much cleaner
attention masks compared to the Disc-only baseline (e.g.,
“person”, “cat”, “boat”, “stop sign”). By explicitly encod-
ing the linguistic structural constraints on the visual atten-
tion masks, our model is able to obtain more accurate local-
izations. The last column shows typical failure cases with
small or infrequent objects in the image.

Finally, similar to what we showed on the Visual
Genome dataset, the last two rows of Fig. 6 show differ-
ent groundings generated by our model for the same im-
age, given different category labels as language inputs. Our
model is able to detect different objects in the same image.
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Figure 6. Here we show for the same image, visual groundings generated with different language inputs. The first two rows are visual
grounding results on Visual Genome, with different phrases as language input. The last two rows are visual grounding results on MS
COCO, with category labels as language input. In both cases, our model generates very different visual groundings corresponding to
different language input, and correctly focuses on the relevant objects-of-interest.

4.4. Discussion of failure cases

While we have shown promising results for this very dif-
ficult task of weakly-supervised visual phrase grounding,
there are still a few sources of difficulties for our model.

First, the parse trees produced by the NLP parser can be
wrong, which will make the resulting structural constraints
insensible. Empirically, we observe parse tree errors in
roughly 20% of the images. Another cause of failure is due
to the language representation, in that the hidden vectors
computed for an entire sentence might not correctly focus
on the relevant objects (i.e., entities having corresponding
image regions) in the sentence. The third difficulty is that
our task is fundamentally weakly-supervised, which in it-
self limits how well one can do (particularly with respect to
full supervision) with limited training data. We hypothesis
that with a much larger weakly-annotated dataset, we could
expect a performance boost on this challenging task.

5. Conclusion
We presented a weakly-supervised approach that takes

image-level captions, without any explicit region-to-phrase
correspondence annotations, and learns to localize arbitrary
linguistic phrases in images. We designed a novel end-to-
end deep network with two new structural loss constraints:
a parent-child inclusivity constraint and a sibling-sibling ex-
clusivity constraint. Together, these constraints transfer the
structure present in natural language to the visual domain so
that the network can learn to produce more accurate visual
localizations. Our experiments on the Microsoft COCO and
Visual Genome datasets demonstrate that our approach pro-
duces more accurate localizations compared to several base-
lines that either do not consider any structure or consider
only one of the constraints in isolation.
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