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Abstract

Despite significant progress in object categorization, in
recent years, a number of important challenges remain;
mainly, ability to learn from limited labeled data and ability
to recognize object classes within large, potentially open,
set of labels. Zero-shot learning is one way of addressing
these challenges, but it has only been shown to work with
limited sized class vocabularies and typically requires sep-
aration between supervised and unsupervised classes, al-
lowing former to inform the latter but not vice versa. We
propose the notion of semi-supervised vocabulary-informed
learning to alleviate the above mentioned challenges and
address problems of supervised, zero-shot and open set
recognition using a unified framework. Specifically, we pro-
pose a maximum margin framework for semantic manifold-
based recognition that incorporates distance constraints
from (both supervised and unsupervised) vocabulary atoms,
ensuring that labeled samples are projected closest to their
correct prototypes, in the embedding space, than to others.
We show that resulting model shows improvements in super-
vised, zero-shot, and large open set recognition, with up to
310K class vocabulary on AwA and ImageNet datasets.

1. Introduction

Object recognition, and more specifically object catego-
rization, has seen unprecedented advances in recent years
with development of convolutional neural networks (CNNs)
[23]. However, most successful recognition models, to
date, are formulated as supervised learning problems, in
many cases requiring hundreds, if not thousands, labeled in-
stances to learn a given concept class [10]. This exuberant
need for large labeled datasets has limited recognition mod-
els to domains with 100’s to few 1000’s of classes. Humans,
on the other hand, are able to distinguish beyond 30, 000 ba-
sic level categories [5]. What is more impressive, is the fact
that humans can learn from few examples, by effectively
leveraging information from other object category classes,
and even recognize objects without ever seeing them (e.g.,
by reading about them on the Internet). This ability has
spawned research in few-shot and zero-shot learning.

Figure 1. Illustration of the semantic embeddings learned (left)
using support vector regression (SVR) and (right) using the pro-
posed semi-supervised vocabulary-informed (SS-Voc) approach.
In both cases, t-SNE visualization is used to illustrate samples
from 4 source/auxiliary classes (denoted by ×) and 2 target/zero-
shot classed (denoted by ◦) from the ImageNet dataset. Decision
boundaries, illustrated by dashed lines, are drawn by hand for vi-
sualization. Note, that (i) large margin constraints in SS-Voc, both
among the source/target classes and the external vocabulary atoms
(denoted by arrows and words), and (ii) fine-tuning of the seman-
tic word space, lead to a better embedding with more compact and
separated classes (e.g., see truck and car or unicycle and tricycle).

Zero-shot learning (ZSL) has now been widely stud-
ied in a variety of research areas including neural decod-
ing by fMRI images [31], character recognition [26], face
verification [24], object recognition [25], and video un-
derstanding [17, 45]. Typically, zero-shot learning ap-
proaches aim to recognize instances from the unseen or
unknown testing target categories by transferring informa-
tion, through intermediate-level semantic representations,
from known observed source (or auxiliary) categories for
which many labeled instances exist. In other words, super-
vised classes/instances, are used as context for recognition
of classes that contain no visual instances at training time,
but that can be put in some correspondence with supervised
classes/instances. As such, a general experimental setting
of ZSL is that the classes in target and source (auxiliary)



dataset are disjoint and typically the learning is done on the
source dataset and then information is transferred to the tar-
get dataset, with performance measured on the latter.

This setting has a few important drawbacks: (1) it as-
sumes that target classes cannot be mis-classified as source
classes and vice versa; this greatly and unrealistically sim-
plifies the problem; (2) the target label set is often relatively
small, between ten [25] and several thousand unknown la-
bels [14], compared to at least 30, 000 entry level categories
that humans can distinguish; (3) large amounts of data in the
source (auxiliary) classes are required, which is problematic
as it has been shown that most object classes have only few
instances (long-tailed distribution of objects in the world
[40]); and (4) the vast open set vocabulary from semantic
knowledge, defined as part of ZSL [31], is not leveraged in
any way to inform the learning or source class recognition.

A few works recently looked at resolving (1) through
class-incremental learning [38, 39] which is designed to dis-
tinguish between seen (source) and unseen (target) classes
at the testing time and apply an appropriate model – super-
vised for the former and ZSL for the latter. However, (2)–
(4) remain largely unresolved. In particular, while (2) and
(3) are artifacts of the ZSL setting, (4) is more fundamen-
tal. For example, consider learning about a car by looking
at image instances in Fig.1. Not knowing that other mo-
tor vehicles exist in the world, one may be tempted to call
anything that has 4-wheels a car. As a result the zero-shot
class truck may have large overlap with the car class (see
Fig.1 [SVR]). However, imagine knowing that there also
exist many other motor vehicles (trucks, mini-vans, etc).
Even without having visually seen such objects, the very
basic knowledge that they exist in the world and are closely
related to a car should, in principal, alter the criterion for
recognizing instance as a car (making the recognition cri-
terion stricter in this case). Encoding this in our [SS-Voc]
model results in better separation among classes.

To tackle the limitations of ZSL and towards the goal of
generic open set recognition, we propose the idea of semi-
supervised vocabulary-informed learning. Specifically, as-
suming we have few labeled training instances and a large
open set vocabulary/semantic dictionary (along with textual
sources from which statistical semantic relations among vo-
cabulary atoms can be learned), the task of semi-supervised
vocabulary-informed learning is to learn a model that uti-
lizes semantic dictionary to help train better classifiers for
observed (source) classes and unobserved (target) classes in
supervised, zero-shot and open set image recognition set-
tings. Different from standard semi-supervised learning, we
do not assume unlabeled data is available, to help train clas-
sifier, and only vocabulary over the target classes is known.

Contributions: Our main contribution is to propose a novel
paradigm for potentially open set image recognition: semi-
supervised vocabulary-informed learning (SS-Voc), which

is capable of utilizing vocabulary over unsupervised items,
during training, to improve recognition. A unified maxi-
mum margin framework is used to encode this idea in prac-
tice. Particularly, classification is done through nearest-
neighbor distance to class prototypes in the semantic em-
bedding space, and we encode a set of constraints ensur-
ing that labeled images project into semantic space such
that they end up closer to the correct class prototypes than
to incorrect ones (whether those prototypes are part of the
source or target classes). We show that word embedding
(word2vec) can be used effectively to initialize the se-
mantic space. Experimentally, we illustrate that through
this paradigm: we can achieve competitive supervised (on
source classes) and ZSL (on target classes) performance, as
well as open set image recognition performance with large
number of unobserved vocabulary entities (up to 300, 000);
effective learning with few samples is also illustrated.

2. Related Work
One-shot Learning: While most of machine learning-
based object recognition algorithms require large amount
of training data, one-shot learning [12] aims to learn ob-
ject classifiers from one, or only few examples. To com-
pensate for the lack of training instances and enable one-
shot learning, knowledge much be transferred from other
sources, for example, by sharing features [3], semantic at-
tributes [17, 25, 34, 35], or contextual information [41].
However, none of previous works had used the open set vo-
cabulary to help learn the object classifiers.

Zero-shot Learning: ZSL aims to recognize novel classes
with no training instance by transferring knowledge from
source classes. ZSL was first explored with use of attribute-
based semantic representations [11, 15, 17, 18, 24, 32]. This
required pre-defined attribute vector prototypes for each
class, which is costly for a large-scale dataset. Recently,
semantic word vectors were proposed as a way to embed
any class name without human annotation effort; they can
therefore serve as an alternative semantic representation
[2, 14, 19, 30] for ZSL. Semantic word vectors are learned
from large-scale text corpus by language models, such as
word2vec [29], or GloVec [33]. However, most of previ-
ous work only use word vectors as semantic representations
in ZSL setting, but have neither (1) utilized semantic word
vectors explicitly for learning better classifiers; nor (2) for
extending ZSL setting towards open set image recognition.
A notable exception is [30] which aims to recognize 21K
zero-shot classes given a modest vocabulary of 1K source
classes; we explore vocabularies that are up to an order of
the magnitude larger – 310K.

Open-set Recognition: The term “open set recognition”
was initially defined in [37, 38] and formalized in [4, 36]
which mainly aims at identifying whether an image belongs



to a seen or unseen classes. It is also known as class-
incremental learning. However, none of them can further
identify classes for unseen instances. An exception is [30]
which augments zero-shot (unseen) class labels with source
(seen) labels in some of their experimental settings. Simi-
larly, we define the open set image recognition as the prob-
lems of recognizing the class name of an image from a po-
tentially very large open set vocabulary (including, but not
limited to source and target labels). Note that methods like
[37, 38] are orthogonal but potentially useful here – it is
still worth identifying seen or unseen instances to be rec-
ognized with different label sets as shown in experiments.
Conceptually similar, but different in formulation and task,
open-vocabulary object retrieval [20] focused on retrieving
objects using natural language open-vocabulary queries.

Visual-semantic Embedding: Mapping between visual
features and semantic entities has been explored in two
ways: (1) directly learning the embedding by regressing
from visual features to the semantic space using Support
Vector Regressors (SVR) [11, 25] or neural network [39];
(2) projecting visual features and semantic entities into a
common new space, such as SJE [2], WSABIE [44], ALE
[1], DeViSE [14], and CCA [16, 18]. In contrast, our model
trains a better visual-semantic embedding from only few
training instances with the help of large amount of open set
vocabulary items (using a maximum margin strategy). Our
formulation is inspired by the unified semantic embedding
model of [21], however, unlike [21], our formulation is built
on word vector representation, contains a data term, and in-
corporates constraints to unlabeled vocabulary prototypes.

3. Vocabulary-informed Learning
Assume a labeled source datasetDs = {xi, zi}Ns

i=1 ofNs
samples, where xi ∈ Rp is the image feature representation
of image i and zi ∈ Ws is a class label taken from a set
of English words or phrases W; consequently, |Ws| is the
number of source classes. Further, suppose another set of
class labels for target classesWt, such thatWs ∩Wt = ∅,
for which no labeled samples are available. We note that
potentially |Wt| >> |Ws|. Given a new test image feature
vector x∗ the goal is then to learn a function z∗ = f(x∗),
using all available information, that predicts a class label
z∗. Note that the form of the problem changes drastically
depending on which label set assumed for z∗: Supervised
learning: z∗ ∈ Ws; Zero-shot learning: z∗ ∈ Wt; Open set
recognition: z∗ ∈ {Ws,Wt} or, more generally, z∗ ∈ W .
We posit that a single unified f(x∗) can be learned for all
three cases. We formalize the definition of semi-supervised
vocabulary-informed learning (SS-Voc) as follows:

Definition 3.1. Semi-supervised Vocabulary-informed
Learning (SS-Voc): is a learning setting that makes use
of complete vocabulary data (W) during training. Unlike

a more traditional ZSL that typically makes use of the
vocabulary (e.g., semantic embedding) at test time, SS-Voc
utilizes exactly the same data during training. Notably,
SS-Voc requires no additional annotations or semantic
knowledge; it simply shifts the burden from testing to
training, leveraging the vocabulary to learn a better model.

The vocabularyW can come from a semantic embedding
space learned by word2vec [29] or GloVec [33] on large-
scale corpus; each vocabulary entity w ∈ W is represented
as a distributed semantic vector u ∈ Rd. Semantics of em-
bedding space help with knowledge transfer among classes,
and allow ZSL and open set image recognition. Note that
such semantic embedding spaces are equivalent to the “se-
mantic knowledge base” for ZSL defined in [31] and hence
make it appropriate to use SS-Voc in ZSL setting.

Assuming we can learn a mapping g : Rp → Rd, from
image features to this semantic space, recognition can be
carried out using simple nearest neighbor distance, e.g.,
f(x∗) = car if g(x∗) is closer to ucar than to any other
word vector; uj in this context can be interpreted as the
prototype of the class j. Thus the core question is then how
to learn the mapping g(x) and what form of inference is
optimal in the semantic space. For learning we propose dis-
criminative maximum margin criterion that ensures that la-
beled samples xi project closer to their corresponding class
prototypes uzi than to any other prototype ui in the open
set vocabulary i ∈ W \ zi.

3.1. Learning Embedding

Our maximum margin vocabulary-informed embedding
learns the mapping g(x) : Rp → Rd, from low-level
features x to the semantic word space by utilizing maxi-
mum margin strategy. Specifically, consider g(x) = WTx,
where1 W ⊆ Rp×d. Ideally we want to estimate W such
that uzi =WTxi for all labeled instances in Ds (we would
obviously want this to hold for instances belonging to unob-
served classes as well, but we cannot enforce this explicitly
in the optimization as we have no labeled samples for them).

Data Term: The easiest way to enforce the above objective
is to minimize Euclidian distance between sample projec-
tions and appropriate prototypes in the embedding space2:

D (xi,uzi) =‖WTxi − uzi ‖22 . (1)

We need to minimize this term with respect to each instance
(xi,uzi), where zi is the class label of instance xi inDs. To
prevent overfitting, we further regularize the solution:

L (xi,uzi) = D (xi,uzi) + λ ‖W ‖2F , (2)

where ‖ · ‖F indicates the Frobenius Norm. Solution to the
Eq.(2) can be obtained through ridge regression.

1Generalizing to a kernel version is straightforward, see [43].
2Eq.(1) is also called data embedding [21] / compatibility function [2].



Nevertheless, to make the embedding more comparable
to support vector regression (SVR), we employ the maximal
margin strategy – ε−insensitive smooth SVR (ε−SSVR)
[27] to replace the least square term in Eq.(2). That is,

L (xi,uzi) = Lε (xi,uzi) + λ ‖W ‖2F , (3)

where Lε (xi,uzi) = 1T | ξ |2ε ; λ is regularization coef-
ficient. (|ξ|ε)j = max

{
0, |WT

?jxi − (uzi)j | − ε
}

, |ξ|ε ∈
Rd, and ()j indicates the j-th value of corresponding vector.
W?j is the j-th column of W . The conventional ε−SVR
is formulated as a constrained minimization problem, i.e.,
convex quadratic programming problem, while ε−SSVR
employs quadratic smoothing [47] to make Eq.(3) differ-
entiable everywhere, and thus ε−SSVR can be solved as an
unconstrained minimization problem directly3.

Pairwise Term: Data term above only ensures that labelled
samples project close to their correct prototypes. However,
since it is doing so for many samples and over a number of
classes, it is unlikely that all the data constraints can be sat-
isfied exactly. Specifically, consider the following case, if
uzi is in the part of the semantic space where no other enti-
ties live (i.e., distance from uzi to any other prototype in the
embedding space is large), then projecting xi further away
from uzi is asymptomatic, i.e., will not result in misclassifi-
cation. However, if the uzi is close to other prototypes then
minor error in regression may result in misclassification.

To embed this intuition into our learning, we enforce
more discriminative constraints in the learned semantic em-
bedding space. Specifically, the distance of D (xi,uzi)
should not only be as close as possible, but should also be
smaller than the distance D (xi,ua), ∀a 6= zi. Formally,
we define the vocabulary pairwise maximal margin term 4:

MV (xi,uzi) =
1

2

AV∑
a=1

[
C +

1

2
D (xi,uzi)−

1

2
D (xi,ua)

]2
+

(4)
where a ∈ Wt is selected from the open vocabulary; C is
the margin gap constant. Here, [·]2+ indicates the quadrat-
ically smooth hinge loss [47] which is convex and has the
gradient at every point. To speedup computation, we use
the closest AV target prototypes to each source/auxiliary
prototype uzi in the semantic space. We also define similar
constraints for the source prototype pairs:

MS (xi,uzi) =
1

2

BS∑
b=1

[
C +

1

2
D (xi,uzi)−

1

2
D (xi,ub)

]2
+

(5)
3We found Eq.(2) and Eq.(3) have similar results, on average, but for-

mulation in Eq.(3) is more stable and has lower variance.
4Crammer and Singer loss [42, 8] is the upper bound of Eq (4) and (5)

which we use to tolerate variants of uzi (e.g. ’pigs’ Vs. ’pig’ in Fig. 2)
and thus are better for our tasks.

where b ∈ Ws is selected from source/auxiliary dataset
vocabulary. This term enforces that D (xi,uzi) should be
smaller than the distance D (xi,ub), ∀b 6= zi. To facil-
itate the computation, we similarly use closest BS proto-
types that are closest to each prototype uzi in the source
classes. Our complete pairwise maximum margin term is:

M (xi,uzi) =MV (xi,uzi) +MS (xi,uzi) . (6)

We note that the form of rank hinge loss in Eq.(4) and Eq.(5)
is similar to DeViSE [14], but DeViSE only considers loss
with respect to source/auxiliary data and prototypes.

Vocabulary-informed Embedding: The complete com-
bined objective can now be written as:

W = argmin
W

nT∑
i=1

(αLε (xi,uyi) +

(1− α)M (xi,uzi)) + λ ‖W ‖2F , (7)

where α ∈ [0, 1] is ratio coefficient of two terms. One prac-
tical advantage is that the objective function in Eq.(7) is an
unconstrained minimization problem which is differentiable
and can be solved with L-BFGS. W is initialized with all
zeros and converges in 10− 20 iterations.

Fine-tuning Word Vector Space: Above formulation
works well assuming semantic space is well laid out and
linear mapping is sufficient. However, we posit that word
vector space itself is not necessarily optimal for visual dis-
crimination. Consider the following case: two visually sim-
ilar categories may appear far away in the semantic space.
In such a case, it would be difficult to learn a linear mapping
that matches instances with category prototypes properly.
Inspired by this intuition, which has also been expressed
in natural language models [6], we propose to fine-tune the
word vector representation for better visual discriminability.

One can potentially fine-tune the representation by opti-
mizing ui directly, in an alternating optimization (e.g., as in
[21]). However, this is only possible for source/auxiliary
class prototypes and would break regularities in the se-
mantic space, reducing ability to transfer knowledge from
source/auxilary to target classes. Alternatively, we propose
optimizing a global warping, V , on the word vector space:

{W,V } = argmin
W,V

nT∑
i=1

(αLε (xi,uyiV ) +

(1− α)M (xi,uziV )) + λ ‖W ‖2F +µ ‖ V ‖2F , (8)

where µ is regularization coefficient. Eq.(8) can still be
solved using L-BFGS and V is initialized using an identity
matrix. The algorithm first updatesW and then V ; typically
the step of updating V can converge within 10 iterations and
the corresponding class prototypes used for final classifica-
tion are updated to be uziV .



3.2. Maximum Margin Embedding Recognition

Once embedding model is learned, recognition in the se-
mantic space can be done in a variety of ways. We explore
a simple alternative to classify the testing instance x?,

z∗ = argmin
i
‖Wx∗ − φ (ui, V,W,x∗) ‖22 . (9)

Nearest Neighbor (NN) classifier directly measures the dis-
tance between predicted semantic vectors with the proto-
types in semantic space, i.e., φ (ui, V,W,x∗) = uiV . We
further employ the k-nearest neighbors (KNN) of testing in-
stances to average the predictions, i.e., φ (·) is averaging the
KNN instances of predicted semantic vectors.5

4. Experiments

Datasets. We conduct our experiments on Animals with At-
tributes (AwA) dataset, and ImageNet 2012/2010 dataset.
AwA consists of 50 classes of animals (30, 475 images in
total). In [25] standard split into 40 source/auxiliary classes
(|Ws| = 40) and 10 target/test classes (|Wt| = 10) is
introduced. We follow this split for supervised and zero-
shot learning. We use OverFeat features (downloaded from
[19]) on AwA to make the results more easily compara-
ble to state-of-the-art. ImageNet 2012/2010 dataset is a
large-scale dataset. We use 1000 (|Ws| = 1000) classes
of ILSVRC 2012 as the source/auxiliary classes and 360
(|Wt| = 360) classes of ILSVRC 2010 that are not used
in ILSVRC 2012 as target data. We use pre-trained VGG-
19 model [7] to extract deep features for ImageNet. On
both dataset, we use few instances from source dataset to
mimic human performance of learning from few examples
and ability to generalize.

Recognition tasks. We consider three different settings in
a variety of experiments (in each experiment we carefully
denote which setting is used):

SUPERVISED recognition, where learning is on source
classes and we assume test instances come from same
classes withWs as recognition vocabulary;

ZERO-SHOT recognition, where learning is on source
classes and we assume test instances coming from tar-
get dataset withWt as recognition vocabulary;

OPEN-SET recognition, where we use entirely open vocab-
ulary with |W| ≈ 310K and use test images from both
source and target splits.

Competitors. We compare the following models,

5This strategy is known as Rocchio algorithm in information retrieval.
Rocchio algorithm is a method for relevance feedback by using more rel-
evant instances to update the query instances for better recall and possibly
precision in vector space (Chap 14 in [28]). It was first suggested for use
on ZSL in [17]; more sophisticated algorithms [16, 34] are also possible.

SVM: SVM classifier trained directly on the training in-
stances of source data, without the use of semantic em-
bedding. This is the standard (SUPERVISED) learning
setting and the learned classifier can only predict the
labels in testing data of source classes.

SVR-Map: SVR is used to learn W and the recognition is
done in the resulting semantic manifold. This corre-
sponds to only using Eq.(3) to learn W .

DeVise, ConSE, AMP: To compare with state-of-the-art
large-scale zero-shot learning approaches we imple-
ment DeViSE [14] and ConSE [30]6. ConSE uses
a multi-class logistic regression classifier for predict-
ing class probabilities of source instances; and the pa-
rameter T (number of top-T nearest embeddings for a
given instance) was selected from {1, 10, 100, 1000}
that gives the best results. ConSE method in super-
vised setting works the same as SVR. We use the AMP
code provided on the author webpage [19].

SS-Voc: We test three different variants of our method.

closed is a variant of our maximum margin leaning
of W with the vocabulary-informed constraints
only from known classes (i.e., closed setWs).

W corresponds to our full model with maximum mar-
gin constraints coming from bothWs andWt (or
W). We compute W using Eq.(7), but without
optimizing V .

full further fine-tunes the word vector space by also
optimizing V using Eq.(8).

Open set vocabulary. We use google word2vec to learn the
open set vocabulary set from a large text corpus of around 7
billion words: UMBC WebBase (3 billion words), the latest
Wikipedia articles (3 billion words) and other web docu-
ments (1 billion words). Some rare (low frequency) words
and high frequency stopping words were pruned in the vo-
cabulary set: we remove words with the frequency < 300
or> 10million times. The result is a vocabulary of around
310K words/phrases with openness ≈ 1, which is defined
as openness = 1−

√
(2× |Ws|) / (|W|). [38].

Computational and parameters selection and scalability.
All experiments are repeated 10 times, to avoid noise due to
small training set size, and we report an average across all
runs. For all the experiments, the mean accuracy is reported,
i.e., the mean of the diagonal of the confusion matrix on the
prediction of testing data. We fix the parameters µ and λ
as 0.01 and α = 0.6 in our experiments when only few
training instances are available for AwA (5 instances per
class) and ImageNet (3 instances per class). Varying values
of λ, µ and α leads to < 1% variances on AwA and <
0.2% variances on ImageNet dataset; but the experimental
conclusions still hold. Cross-validation is conducted when

6Code for [14] and [30] is not publicly available.



Testing Classes SS-Voc
Aux Targ. Total Vocab Chance SVM SVR closed W full

SUPERVISED X 40 40 2.5 52.1 51.4/57.1 52.9/58.2 53.6/58.6 53.9/59.1

ZERO-SHOT X 10 10 10 - 52.1/58.0 58.6/60.3 59.5/68.4 61.1/68.9

Table 1. Classification accuracy (%) on AwA dataset for SUPERVISED and ZERO-SHOT settings for 100/1000-dim word2vec representation.

more training instances are available. AV and BS are set to
5 to balance computational cost and efficiency of pairwise
constraints.

To solve Eq.(8) at a scale, one can use Stochastic Gra-
dient Descent (SGD) which makes great progress initially,
but often is slow when approaches a solution. In contrast,
the L-BFGS method mentioned above can achieve steady
convergence at the cost of computing the full objective and
gradient at each iteration. L-BFGS can usually achieve bet-
ter results than SGD with good initialization, however, is
computationally expensive. To leverage benefits of both of
these methods, we utilize a hybrid method to solve Eq.(8)
in large-scale datasets: the solver is initialized with few in-
stances to approximate the gradients using SGD first, then
gradually more instances are used and switch to L-BFGS
is made with iterations. This solver is motivated by Fried-
lander et al. [13], who theoretically analyzed and proved
the convergence for the hybrid optimization methods. In
practice, we use L-BFGS and the Hybrid algorithms for
AwA and ImageNet respectively. The hybrid algorithm can
save between 20 ∼ 50% training time as compared with
L-BFGS.

4.1. Experimental results on AwA dataset

We report AwA experimental results in Tab. 1, which
uses 100/1000-dimensional word2vec representation (i.e.,
d = 100/1000). We highlight the following observa-
tions: (1) SS-Voc variants have better classification accu-
racy than SVM and SVR. This validates the effectiveness
of our model. Particularly, the results of our SS-Voc:full
are 1.8/2% and 9/10.9% higher than those of SVR/SVM
on supervised and zero-shot recognition respectively. Note
that though the results of SVM/SVR are good for supervised
recognition tasks (52.1 and 51.4/57.1 respectively), we can
further improve them, which we attribute to the more dis-
criminative classification boundary informed by the vocab-
ulary. (2) SS-Voc:W significantly, by up to 8.1%, improves
zero-shot recognition results of SS-Voc:closed. This val-
idates the importance of information from open vocabu-
lary. (3) SS-Voc benefits more from open set vocabulary
as compared to word vector space fine-tuneing. The results
of supervised and zero-shot recognition of SS-Voc:full are
1/0.9% and 2.5/8.6% higher than those of SS-Voc:closed.

Comparing to state-of-the-art on ZSL: We compare our
results with the state-of-the-art ZSL results on AwA dataset
in Tab. 2. We compare SS-Voc:full trained with all source
instances, 800 (20 instances / class), and 200 instances (5 in-

Methods S. Sp Features Acc.
SS-Voc:full W CNNOverFeat 78.3

800 instances W CNNOverFeat 74.4
200 instances W CNNOverFeat 68.9

Akata et al. [2] A+W CNNGoogleLeNet 73.9
TMV-BLP [16] A+W CNNOverFeat 69.9

AMP (SR+SE) [19] A+W CNNOverFeat 66.0
DAP [25] A CNNVGG19 57.5
PST[34] A+W CNNOverFeat 54.1
DAP [25] A CNNOverFeat 53.2
DS [35] W/A CNNOverFeat 52.7

Jayaraman et al. [22] A low-level 48.7
Yu et al. [46] A low-level 48.3

IAP [25] A CNNOverFeat 44.5
HEX [9] A CNNDECAF 44.2

AHLE [1] A low-level 43.5
Table 2. Zero-shot comparison on AwA. We compare the
state-of-the-art ZSL results using different semantic spaces (S.
Sp) including word vector (W) and attribute (A). 1000 dimension
word2vec dictionary is used for SS-Voc. (Chance-level =10%).
Different types of CNN and hand-crafted low-level feature are
used by different methods. Except SS-Voc (200/800), all instances
of source data (24295 images) are used for training. As a general
reference, the classification accuracy on ImageNet: CNNDECAF <
CNNOverFeat < CNNVGG19 < CNNGoogleLeNet.

stances / class). Our model achieves 78.3% accuracy, which
is remarkably higher than all previous methods. This is par-
ticularly impressive taking into account the fact that we use
only a semantic space and no additional attribute represen-
tations that many other competitor methods utilize. Fur-
ther, our results with 800 training instances, a small frac-
tion of the 24, 295 instances used to train all other meth-
ods, already outperform all other approaches. We argue that
much of our success and improvement comes from a more
discriminative information obtained using an open set vo-
cabulary and corresponding large margin constraints, rather
than from the features, since our method improved 25.1%
as compared with DAP [25] which uses the same Over-
Feat features. Note, our SS-Voc:full result is 4.4% higher
than the closest competitor [2]; this improvement is statis-
tically significant. Comparing with our work, [2] did not
only use more powerful visual features (GoogLeNet Vs.
OverFeat), but also employed more semantic embeddings
(attributes, GloVe7 and WordNet-derived similarity embed-
dings as compared to our word2vec).

7GloVe[33] can be taken as an improved version of word2vec.



Large-scale open set recognition: Here we focus on
OPEN-SET310K setting with the large vocabulary of approx-
imately 310K entities; as such the chance performance of
the task is much much lower. In addition, to study the ef-
fect of performance as a function of the open vocabulary
set, we also conduct two additional experiments with dif-
ferent label sets: (1) OPEN-SET1K−NN : the 1000 labels
from nearest neighbor set of ground-truth class prototypes
are selected from the complete dictionary of 310K labels.
This corresponds to an open set fine grained recognition; (2)
OPEN-SET1K−RND: 1000 label names randomly sampled
from 310K set. The results are shown in Fig. 2. Also note
that we did not fine-tune the word vector space (i.e., V is an
Identity matrix) on OPEN-SET310K setting since Eq (8) can
optimize a better visual discriminability only on a relative
small subset as compared with the 310K vocabulary. While
our OPEN-SET variants do not assume that test data comes
from either source/auxiliary domain or target domain, we
split the two cases to mimic SUPERVISED and ZERO-SHOT
scenarios for easier analysis.

On SUPERVISED-like setting, Fig. 2 (left), our accuracy
is better than that of SVR-Map on all the three different
label sets and at all hit rates. The better results are largely
due to the better embedding matrix W learned by enforcing
maximum margins between training class name and open
set vocabulary on source training data.

On ZERO SHOT-like setting, our method still has a no-
table advantage over that of SVR-Map method on Top-k
(k > 5) accuracy, again thanks to the better embedding
W learned by Eq. (7). However, we notice that our top-1
accuracy on ZERO SHOT-like setting is lower than SVR-
Map method. We find that our method tends to label some
instances from target data with their nearest classes from
within source label set. For example, “humpback whale”
from testing data is more likely to be labeled as “blue
whale”. However, when considering Top-k (k > 5) ac-
curacy, our method still has advantages over baselines.

4.2. Experimental results on ImageNet dataset

We further validate our findings on large-scale ImageNet
2012/2010 dataset; 1000-dimensional word2vec represen-
tation is used here since this dataset has larger number of
classes than AwA. We highlight that our results are still bet-
ter than those of two baselines – SVR-Map and SVM on
(SUPERVISED) and (ZERO-SHOT) settings respectively as
shown in Tab. 3. The open set image recognition results
are shown in Fig. 4. On both SUPERVISED-like and ZERO-
SHOT-like settings, clearly our framework still has advan-
tages over the baseline which directly matches the nearest
neighbors from the vocabulary by using predicted semantic
word vectors of each testing instance.

We note that SUPERVISED SVM results (34.61%) on Im-
ageNet are lower than 63.30% reported in [7], despite us-

Testing Classes
AwA Dataset Aux. Targ. Total Vocab

OPEN-SET1K−NN 40 / 10 1000?

OPEN-SET1K−RND (left) (right) 40 / 10 1000†

OPEN-SET310K 40 / 10 310K
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Figure 2. Open set recognition results on AwA dataset:
Openness=0.9839. Chance=3.2e− 4%. Ground truth label is ex-
tended for its variants. For example, we count a correct label if a
’pig’ image is labeled as ’pigs’. ?,†:different 1000 label settings.

ing the same features. This is because only few, 3 sam-
ples per class, are used to train our models to mimic human
performance of learning from few examples and illustrate
ability of our model to learn with little data. However, our
semi-supervised vocabulary-informed learning can improve
the recognition accuracy on all settings. On open set im-
age recognition, the performance has dropped from 37.12%
(SUPERVISED) and 8.92% (ZERO-SHOT) to around 9% and
1% respectively (Fig. 4). This drop is caused by the intrinsic
difficulty of the open set image recognition task (≈ 300×
increase in vocabulary) on a large-scale dataset. However,
our performance is still better than the SVR-Map baseline
which in turn significantly better than the chance-level.

We also evaluated our model with larger number of train-
ing instances (> 3 per class). We observe that for standard
supervised learning setting, the improvements achieved us-
ing vocabulary-informed learning tend to somewhat dimin-
ish as the number of training instances substantially grows.
With large number of training instances, the mapping be-
tween low-level image features and semantic words, g(x),
becomes better behaved and effect of additional constraints,
due to the open-vocabulary, becomes less pronounced.

Comparing to state-of-the-art on ZSL. We compare
our results to several state-of-the-art large-scale zero-shot
recognition models. Our results, SS-Voc:full, are better
than those of ConSE, DeViSE and AMP on both T-1 and
T-5 metrics with a very significant margin (improvement
over best competitor, ConSE, is 3.43 percentage points or
nearly 62% with 3, 000 training samples). Poor results of
DeViSE with 3, 000 training instances are largely due to the
inefficient learning of visual-semantic embedding matrix.
AMP algorithm also relies on the embedding matrix from
DeViSE, which explains similar poor performance of AMP



−20

0

20

40

60

80

100
−100 −80 −60 −40 −20 0 20 40 60 80 100

SVR-Map

−120 −100 −80 −60 −40 −20 0 20 40 60 80
−100

−50

0

50

100

150

SS-Voc:full

 

 
persian cat

hippopotamus

leopard

humpback whale

seal

chimpanzee

rat

giant panda

pig

raccoon
−50

0

50

100

−100 −80 −60 −40 −20 0 20 40 60 80 100

SS-Voc: closed

SS-Voc:full :  persian_cat,  siamese_cat,  hamster,  weasel,  rabbit,  monkey,  zebra, owl, anthropomorphized, cat
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SVR-Map: hamster, squirrel, rabbit, raccoon, kitten, siamese_cat, stuffed_toy, persian_cat, ladybug, puppy

Figure 3. t-SNE visualization of AwA 10 testing classes. Please refer to Supplementary material for larger figure.
Testing Classes SS-Voc

Aux Targ. Total Vocab Chance SVM SVR closed W full
SUPERVISED X 1000 1000 0.1 33.8 25.6 34.2 36.3 37.1
ZERO-SHOT X 360 360 0.278 - 4.1 8.0 8.2 8.9

Table 3. The classification accuracy (%) of ImageNet 2012/2010 dataset on SUPERVISED and ZERO-SHOT settings.

Testing Classes
ImageNet Data Aux. Targ. Total Vocab

OPEN-SET310K (left) (right) 1000 / 360 310K
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Figure 4. Open set recognition results on ImageNet 2012/2010
dataset: Openness=0.9839. Chance=3.2e − 4%. We use the
synsets of each class— a set of synonymous (word or prhase)
terms as the ground truth names for each instance.

with 3, 000 training instances. In contrast, our SS-Voc:full
can leverage discriminative information from open vocabu-
lary and max-margin constraints, which helps improve per-
formance. For DeViSE with all ImageNet instances, we
confirm the observation in [30] that results of ConSE are
much better than those of DeViSE. Our results are a further
significant improved from ConSE.

4.3. Qualitative results of open set image recognition

t-SNE visualization of AwA 10 target testing classes is
shown in Fig. 3. We compare our SS-Voc:full with SS-
Voc:closed and SVR. We note that (1) the distributions of
10 classes obtained using SS-Voc are more centered and
more separable than those of SVR (e.g., rat, persian cat
and pig), due to the data and pairwise maximum margin
terms that help improve the generalization of g (x) learned;
(2) the distribution of different classes obtained using the
full model SS-Voc:full are also more separable than those
of SS-Voc:closed, e.g., rat, persian cat and raccoon. This
can be attributed to the addition of the open-vocabulary-
informed constraints during learning of g (x), which further
improves generalization. For example, we show an open

Methods S. Sp Feat. T-1 T-5

SS-Voc:full W CNNOverFeat 8.9/9.5 14.9/16.8
ConSE [30] W CNNOverFeat 5.5/7.8 13.1/15.5
DeViSE [14] W CNNOverFeat 3.7/5.2 11.8/12.8
AMP [19] W CNNOverFeat 3.5/6.1 10.5/13.1

Chance – – 2.78e-3 –
Table 4. ImageNet comparison to state-of-the-art on ZSL: We
compare the results of using 3, 000/all training instances for all
methods; T-1 (top 1) and T-5 (top 5) classification in % is reported.

set recognition example image of “persian cat”, which is
wrongly classified as a “hamster” by SS-Voc:closed.

Partial illustration of the embeddings learned for the Im-
ageNet2012/2010 dataset are illustrated in Figure 1, where
4 source/auxiliary and 2 target/zero-shot classes are shown.
Again better separation among classes is largely attributed
to open-set max-margin constraints introduced in our SS-
Voc:full model. Additional examples of miss-classified in-
stances are available in the supplemental material.

5. Conclusion and Future Work
This paper introduces the problem of semi-supervised

vocabulary-informed learning, by utilizing open set seman-
tic vocabulary to help train better classifiers for observed
and unobserved classes in supervised learning, ZSL and
open set image recognition settings. We formulate semi-
supervised vocabulary-informed learning in the maximum
margin framework. Extensive experimental results illus-
trate the efficacy of such learning paradigm. Strikingly, it
achieves competitive performance with only few training
instances and is relatively robust to large open set vocab-
ulary of up to 310, 000 class labels.

We rely on word2vec to transfer information between
observed and unobserved classes. In future, other linguistic
or visual semantic embeddings could be explored instead,
or in combination, as part of vocabulary-informed learning.
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