
Measure Locally, Reason Globally:

Occlusion-sensitive Articulated Pose Estimation

Leonid Sigal Michael J. Black

Department of Computer Science, Brown University, Providence, RI 02912

{ls,black}@cs.brown.edu

Abstract

Part-based tree-structured models have been widely used

for 2D articulated human pose-estimation. These ap-

proaches admit efficient inference algorithms while captur-

ing the important kinematic constraints of the human body

as a graphical model. These methods often fail however

when multiple body parts fit the same image region result-

ing in global pose estimates that poorly explain the over-

all image evidence. Attempts to solve this problem have

focused on the use of strong prior models that are lim-

ited to learned activities such as walking. We argue that

the problem actually lies with the image observations and

not with the prior. In particular, image evidence for each

body part is estimated independently of other parts with-

out regard to self-occlusion. To address this we introduce

occlusion-sensitive local likelihoods that approximate the

global image likelihood using per-pixel hidden binary vari-

ables that encode the occlusion relationships between parts.

This occlusion reasoning introduces interactions between

non-adjacent body parts creating loops in the underlying

graphical model. We deal with this using an extension of an

approximate belief propagation algorithm (PAMPAS). The

algorithm recovers the real-valued 2D pose of the body in

the presence of occlusions, does not require strong priors

over body pose and does a quantitatively better job of ex-

plaining image evidence than previous methods.

1. Introduction

Recent approaches to articulated human body detection

and pose estimation exploit part-based tree-structured mod-

els [3, 5, 8, 13, 15, 17] that capture kinematic relations be-

tween body parts. In such models a body part is represented

as a node in a graph and edges between nodes represent the

kinematic constraints between connected parts. These mod-

els are attractive because they allow local estimates of limb

pose to be combined into globally consistent body poses.

While this distributed computation admits efficient infer-

ence methods, the local nature of the inference itself is also

the Achilles heal of these methods. The image evidence

Figure 1. Silly Walks. The detection of 2D body pose in real im-

ages is challenging due to complex background appearance, loose

monochromatic clothing, and the sometimes unexpected nature of

human motion. In this scene, strong, activity-dependent, prior

models of human pose are too restrictive. The result here was

found by our method which makes weak assumptions about body

pose but uses a new occlusion-sensitive image likelihood.

for each part is estimated independently of the other parts

and, without a global measure of the image likelihood of a

body pose, multiple body parts can, and often do, explain

the same image data.

In particular, for 2D body pose estimation, the “wrong”

solutions are often more likely than the “true” solution. Fig-

ure 2 illustrates the problem that results when local image

likelihood measures for each body part do not take into ac-

count the poses of other parts and do not exploit any knowl-

edge of what image evidence is left unexplained. This prob-

lem is not unique to human pose estimation and applies in

other generic object-recognition problems.

Recent attempts to solve the problems illustrated in Fig-

ure 2 have focused on the use of strong prior models of body

pose that rule out unlikely poses [8]. These approaches are

not appropriate for dealing with unexpected or unusual mo-

tions such as those in Figure 1. In particular, they require

that we already know the activity being observed and that

the variation in the pose is within learned limits. Other

computational strategies incrementally explore the space of

body poses but give up the formal probabilistic interpreta-

tion of graphical models [13]. In this paper we argue that

such approaches are fighting the wrong image likelihood
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Figure 2. Fighting the Likelihood. (a) shows the ground truth

body pose while (b) and (c) show common failure modes of pic-

torial structure approaches in which both legs explain the same

image data. With local image likelihoods, the poses in (b) and

(c) are often better interpretations of the scene than the true pose.

This can be seen in the plot where 50 frames of a test sequence

are evaluated. The blue curves illustrate the local pictorial struc-

tures likelihood. The likelihood of the ground truth is solid blue

while the likelihoods for the two alternative poses (both legs front

or both legs back) are shown as dashed lines. The local likelihood

marginally prefers the true pose in only 2 out of 50 frames tested.

With our proposed occlusion-sensitive likelihood (shown in red)

the true pose is always more likely than the alternative poses.

and that the solution lies in the proper formulation of this

likelihood function. A fully global likelihood is computa-

tionally impractical and consequently we develop a princi-

pled approximation to the global likelihood that is sensitive

to local occlusion relationships between parts.

Our contribution is two fold: (1) we introduce a general

framework for developing occlusion-sensitive likelihoods

that attempt to explain as much of the image as possible, and

(2) since occlusion reasoning involves interactions between

non-adjacent body parts which create loops in the graphical

model structure representing the body, we introduce a vari-

ant of approximate belief propagation (BP) that is able to

infer the real-valued pose of the person in 2D.

2. Related Work

Generative, model-based, approaches for recovering 2D

articulated pose can be loosely classified into two cate-

gories. Top-to-bottom approaches treat the body as a “card-

board person” [7] in which the limbs are represented by 2D

patches connected by joints. These patches are connected

in a kinematic tree [1, 2, 4, 11, 14, 18, 20] and the pose

of the person is represented by a high-dimensional state

vector that includes the position and orientation of the root

limb in the global image coordinate frame and the param-

eters of each limb relative to its parent in the tree. The

high-dimensional state space makes exhaustive search for

the body pose difficult. Lee and Cohen [9] address this us-

ing a bottom-up proposal process and inverse kinematics to

explore the parameter space in a data-driven MCMC proce-

dure. Currently their methods appear to be limited to frontal

poses where most body parts are unoccluded.

In contrast, bottom-up approaches address the dimen-

sionality of the state space by representing each part inde-

pendently in the 2D image coordinate frame. In such mod-

els a body part is represented as a node in a graph and edges

in the graph represent kinematic constraints between con-

nected parts. This formulation allows independent search

for the parts which are then combined subject to the kine-

matic constraints. The results are typically imprecise, but

enable automatic initialization. These “Pictorial Structures”

approaches assume the graph of the body is a tree which

makes inference tractable [3, 13, 17].

The pictorial structures approach however has problems

as illustrated in Figure 2 where multiple body parts explain

the same image regions. The problems arise from the as-

sumption that the global image likelihood can be expressed

as a product of individual local terms (one per part), without

regard to occlusion. To deal with this, previous algorithms

have sampled multiple poses from the solution space and

then used an external global likelihood to choose among

the sampled alternatives [3]. Alternatively Ramanan and

Forsyth [13] first find a solution for one side of the body

and then remove the image regions explained by that so-

lution from future consideration. They then solve for the

other side of the body. While this sidesteps the problem it

does not explicitly model the possible occlusion relation-

ships and the algorithmic solution looses the probabilistic

elegance present in the graphical model formulation.

Alternatively one can impose strong global constraints

on the allowed poses that prohibit solutions like those in

Figure 2 (b) and (c) [8]. This may be appropriate when

the activity is known and the range of poses is highly con-

strained; for example, walking poses that can be represented

using a small number of hidden variables [12]. We argue

that these strong priors are invoked to deal with inadequate

image likelihoods. In Figure 2 the local likelihoods prefer

the wrong solutions and hence the prior is fighting with the

likelihood to undo it’s mistakes. Furthermore strong priors

are unable to cope with unusual activities such as Figure 1.

The closest work to ours addresses the problem with the

image likelihoods for 3D articulated hand pose estimation

[21]. They explicitly modeled occlusions in 3D and dealt

with distributed reasoning in graphical models using Non-

parametric Belief Propagation [22]. The approach dealt

with the issue of overcounting image evidence but did not



address the problem of having the model explain as much of

the image evidence as possible locally. They also dealt only

with tracking from a hand initialized pose; here we go fur-

ther to deal with automatic initialization. Our formulation

allows for more general likelihoods, and outlines a compet-

ing inference algorithm that uses conditional distributions

instead of potential functions as constraints between parts.

In summary we propose a method for approximating the

global likelihood using local likelihoods. This allows us to

use a part-based graphical model of the body and perform

inference with a generic BP algorithm. Unlike [3] we deal

with the continuous estimation of part locations, orienta-

tion, foreshortening and scale. Like previous approaches,

for now we assume a known view but multiple views can

be searched simultaneously and it is relatively straightfor-

ward to compare the results to select the best view. Without

strong priors, the method finds solutions that better explain

the image evidence.

3. Modeling the body

The body is represented as a graphical model (Figure 3)

in which nodes in the graph correspond to the rigid body

parts and directed edges to the probabilistic constraints be-

tween parts encoded using conditional distributions. The

pose of the body is Y = {X1, X2, ..., XP }, whereXi ∈ R
5

is a state of an individual articulated part i and P is the total

number of such parts in the object. Each body part is mod-

eled using a trapezoid in 2D, for which the state Xi ∈ R
5

represents (x,y) position, rotation, scale and foreshortening

in the image coordinate frame.

4. Likelihood

To estimate the pose of an object we must be able to

evaluate how well different body configurations explain ob-

served image data. We formalize this using a probabilistic

likelihood function that takes a body pose and the image ev-

idence and returns the likelihood of the pose. The desired

properties of a good likelihood function lie in its robustness

to partial occlusions, camera noise, changing lighting and

the variability of appearance of the body.

4.1. Global vs. Local Image Likelihoods

Given the state of the body Y , we define a global likeli-

hood φ(I|Y ) in terms of some features I observed in an

image. To support distributed modeling of the body we

write this global likelihood as the product of local likelihood

terms φ(I|Y ) ∝
∏

i∈{1..P} φ(I|Xi). Drawing inspiration

from [3] and [23], we define local likelihoods in terms of

the product of individual pixel likelihoods in sub-regions of

the image that are defined by the local state Xi.

Formally, we assume that pixels in an image, I , can be

partitioned into three disjoint sub-sets Ω1(Xi) ∪ Ω2(Xi) ∪
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Figure 3. Representing body as a graph. Figure (a) shows the

representation of the body as a graph with body parts labeled us-

ing the corresponding node numbers; (b) shows the corresponding

tree-based representation of the body, and (c) our extended body

model that contains additional occlusion constraints designated by

edges in blue; (d) shows actual directed graphical model interac-

tions encoded by a single blue edge in (c) between X2 and X4; I

is the image evidence.

Ω3(Xi) = Υ = {1..|I|}; where Ω1(Xi) is the set of pixels

enclosed by part i as define by the state Xi; Ω2(Xi) con-

tains the pixels outside part i that are statistically correlated

with the part i (for example pixels in the border slightly

outside the limb); and Ω3(Xi) ≡ Υ − (Ω1(Xi) ∪ Ω2(Xi))
which corresponds to the set of pixels where we assume no

knowledge of the image statistics based on the pose of part

i. Assuming pixel independence, we write the local likeli-

hood φ(I|Xi) for the part i as a product of individual pixel

probabilities as φ(I|Xi) =
∏

u∈Ω1(Xi)

p1(Iu)
∏

s∈Ω2(Xi)

p2(Is)
∏

r∈Ω3(Xi)

p3(Ir) (1)

for pixels Ij , j ∈ Υ.
The standard pictorial structures silhouette likelihood [3]

can easily be written in this form, by letting I be a silhouette
image obtained by background subtraction and by setting
p1(Iu = 1) = q1, p2(Is = 1) = q2, and p3(Ir = 1) = 0.5
for some constants 0 ≤ qi ≤ 1 and pi(Ij = 0) = 1 −
pi(Ij = 1). For other non binary features such as limb/skin
color we can express p1(Iu) and p2(Is) as a ratio of learned
foreground and background distributions; for example

p1,C(Iu) =
pskin(Iu)

pskin(Iu) + pbkgd(Iu)

p2,C(Is) =
pbkgd(Is)

pskin(Is) + pbkgd(Is)
.



4.2. Occlusionsensitive Local Likelihoods

The above formulation is only valid if the local terms

φ(I|Xi) for i ∈ {1..P} are independent. In absence of

occlusions, this assumption holds and likelihoods factor.

When limbs occlude each other however, the assumption

does not hold and the product of local likelihoods gives a

poor approximation to the global likelihood (see Figure 2).

To allow a similar decomposition (and hence distributed

inference) when occlusions exist, we augment the state,

Xi, of limb i with two sets of binary hidden variables

Vi = {vi,u} and V̂i = {v̂i,u}, where u is a pixel u ∈ Υ. Let

vi,u = 0 if pixel u for the part i is occluded by any other

body part, and 1 otherwise. Intuitively this corresponds to

the “visibility” of the part i at a given pixel u. Notice that

if vi,u = 1 for some pixel u ∈ Ω1(Xi), then we know that

part i at a given pose Xi generated pixel u in the image.

Similarly we let v̂i,u = 0 if at pixel u for part i at Xi is

occluding any other part, and 1 otherwise. Intuitively V̂i en-

codes which pixels in the image could possibly be explained

by other body parts that are further away from the camera.

In particular if vi,s = 1 and v̂i,s = 1 for a pixel slightly out-

side part i, s ∈ Ω2(Xi), then that pixel, s, must have been

generated by a background model (since by definition there

cannot be any other part in front or behind i at s). Intuitively

Vi and V̂i in conjunction allow the likelihood to not only be

sensitive to occlusions [21] but also to reason locally about

globally plausible explanations of the image.

An illustration of these visibility variables is shown in

Figure 4. For example, Fig. 4 (c) indicates that the torso is

occluded by the lower arm (vi,u = 0) and Fig. 4 (g) indi-

cates that the arm is occluding part of the torso (v̂i,u = 0).

Modifying our likelihood, to take into account the hidden

per-pixel binary occlusion variables we have

φ(I|Xi, Vi, V̂i) =
∏

u∈Ω1(Xi)

[p1(Iu)]
vi,u (2)

∏

s∈Ω2(Xi)

[p2(Is)]
vi,sv̂i,s

∏

r∈Ω3(Xi)

[p3(Ir)]
vi,r v̂i,r

Notice that vi,u and v̂i,u are simply used as selectors. If

pixel u ∈ Ω1(Xi) is unoccluded then contribution of pixel

u, p1(Iu), to the likelihood will be considered. Similarly, if

pixel s ∈ Ω2(X1) is both unoccluded and unexplained then

its contribution will be considered as well. Pixels for which

vi,u = 0 and/or v̂i,u = 0 will have constant likelihood 1.

The per-pixel occlusion-sensitive likelihoods are shown

in Figure 4 for the torso (e) and lower arm (h). The local

estimate of the global likelihood is simply the product of

the pixel likelihoods where brighter indicates more likely.

It is important to note that conditioned on the sets of hid-

den variables Vi and V̂i the local likelihoods φ(I|Xi, Vi, V̂i)
are truly independent if Vi and V̂i are consistent across all

i ∈ {1..P}. By consistency here we mean that parts do

(a) (c) (d) (e)

(b) (f) (g) (h)
Figure 4. Occlusion-sensitive likelihood. Two overlapping parts

(torso and lower arm) are shown in (a). The solid regions corre-

spond to Ω1 while the regions outside but enclosed by the line cor-

respond to Ω2. (b) shows the observed silhouette; (c) and (f) show

the state of the hidden variables Vi for the torso and left lower

arm respectively; (d) and (g) show the corresponding states of the

V̂i’s; (e) and (h) shows the per pixel local occlusion-sensitive like-

lihoods with pixel brightness corresponding to high probability.

Notice that in the cases where a part is both occluded and occlud-

ing other parts, both Vi and V̂i will contain non-uniform structure.

not assume mutually occluding states for example (mean-

ing that there may exist only one part i for which vi,u = 1,

for all others vj,u = 0, where j ∈ {1..P}/i). This ensures

that φ(I|Y ) ∝
∏

i∈{1..P} φ(I|Xi, Vi, V̂i) always holds.

5. Modeling Constraints

The body is represented by constraints between the parts

that express traditional kinematic relationships as well as

occlusion relationships between possibly occluding parts.

5.1. Occlusion Constraints

Enforcing the consistency of the hidden occlusion vari-

ables Vi and V̂i requires reasoning that involves all poten-
tially occluding and occluded parts for any given node i. We
can express these occlusion constraints using pairwise con-

ditional distributions ψO
ij(Xj , Vj , V̂j |Xi, Vi, V̂i) between

every pair of potentially occluding parts i and j. We for-
mally encode the consistency of all occlusion relationships
between part i and j using the unnormalized distribution:

ψ
O
ij(Xj , Vj , V̂j |Xi, Vi, V̂i) ∝ (3)

Y

u∈Υ

8

>

>

>

>

<

>

>

>

>

:

0 if Xj occludes Xi, u ∈ Ω1(Xj), vi,u = 1
0 if Xi occludes Xj , u ∈ Ω1(Xi), vj,u = 1
0 if Xj occludes Xi, u ∈ Ω1(Xi), v̂j,u = 1
0 if Xi occludes Xj , u ∈ Ω1(Xj), v̂i,u = 1
1 otherwise

Intuitively this simply enumerates all inconsistent cases

and assigns them 0 probability. The first case for example



can be interpreted as the following: if Xj occludes Xi and

any pixel u is inside the image region of occluding part j,
then vi,u corresponding to the visibility of the occluded part

i at the pixel u must be set to 0.

5.2. Kinematic Constraints

Every pair of connected parts i, j in the body has an as-

sociated set of forward and backward kinematic constraints

modeled as a Mixture of Gaussians, similar to [19] but in

2D. The kinematic conditional function, ψK
ij (Xj |Xi), be-

tween parts i and j with corresponding states Xi and Xj

is

ψK
ij (Xj |Xi) = λ0N(Xj ;µ0,Λ0)+ (4)

(1 − λ0)

Mij∑

m=1

δijmN(Xj ;Fijm(Xi), Gijm(Xi))

where λ0 is a fixed outlier probability, µ0 and Λ0 are the

mean and covariance of the Gaussian outlier process, and

Fijm() and Gijm() are functions that return the mean and

covariance of the m-th mixture component respectively;

δijm ≥ 0 are the weights of the mixture components and∑Mij

m=1 δijm = 1.

The conditional distributions were learned separately for

8-view based models using 3D motion capture data. The

3D body pose was projected into a desired camera view and

the conditionals were learned from the 2D projections of

individual limbs. We used a standard iterative Expectation-

Maximization (EM) algorithm with K-means initialization

for learning the Gaussian mixture model (GMM). All ex-

periments in this paper used Mij = 8 mixture components.

6. Inference

Inference in the standard pictorial structures model in-

volves estimating the location and pose of every body part.

With our occlusion-sensitive model we have the additional

problem of dealing with the hidden occlusion variables.

Given the formulation above, the joint probability for the

graphical model with P body parts, can be written as

p(X1, X2, ..., XP |I) ∝
∑

Vi

∑

V̂i

[
∏

ij

ψK
ij (Xj |Xi) (5)

∏

ij

ψO
ij(Xj , Vj , V̂j |Xi, Vi, V̂i)

∏

j

φ(I|Xj , Vj , V̂j)]

where Xi represents the state of the limb i; ψK
ij (Xj |Xi)

is the kinematic constraint compatibility term between

the connected nodes i and j; ψO
ij(Xj , Vj , V̂j |Xi, Vi, V̂i) is

the occlusion compatibility between potentially occluding

nodes i and j and φ(I|Xi, Vi, V̂i) is the local image like-

lihood. The two summations marginalize over the hidden

occlusion variables in Vi and V̂i.

We solve for the part poses using belief propagation
where the message update equations are:

m
K
ij (Xj) =

Z

Xi

X

Vi

X

V̂i

[ψK
ij (Xj |Xi)

φ(I|Xi, Vi, V̂i)
Y

k∈A/j

m
K
ki(Xi)m

O
ki(Xi, Vi, V̂i)] (6)

m
O
ij(Xj , Vj , V̂j) =

Z

Xi

X

Vi

X

V̂i

[ψO
ij(Xj , Vj , V̂j |Xi, Vi, V̂i)

φ(I|Xi, Vi, V̂i)
Y

k∈A/j

m
K
ki(Xi)m

O
ki(Xi, Vi, V̂i)] (7)

Inferring the state of the 2D body in our graphical

model representation corresponds to estimating the belief

(marginal) at each node in a graph, bi(Xi) =

∑

Vi

∑

V̂i

φ(I|Xi, Vi, V̂i)
∏

k∈A

mK
ki(Xi)m

O
ki(Xi, Vi, V̂i).

We use a form of continuous non-parametric belief prop-

agation (PAMPAS) [6] to deal with this task. The messages

are approximated using a kernel density formed by propa-

gating particles through a conditional density [19]. In all

the experiments we used 100 particles which, when propa-

gated through the conditionals represented by mixtures of 8

Gaussians, resulted in density representations for the mes-

sages with 800 kernels; from products of these messages we

sampled 100 particles. We modify the method to include

an annealing step [2] with each iteration of PAMPAS that

gradually introduces the effects of peaks in our local like-

lihoods; this modification is not essential. For the details

on how the message updates are carried out using stratified

sampling from the products of messages and a static pro-

posal distribution see [19]. The illustration of the inference

using PAMPAS with occlusion-sensitive likelihoods can be

seen in Figure 5.

6.1. Message Updating for Occlusion Messages

It is intractable to sample occlusion variables Vi and V̂i

due to the exponentially large number of possible occlu-

sion mask configurations. Consequently we approximate

the computation of marginals using an analytic procedure

introduced in [21]. Assuming we know depth ordering for

the parts in a given view we compute the approximate mes-

sage mO
ij(Xj , Vj , V̂j) for Vj and V̂j explicitly. To do so, we

must consider two cases: (1) where Xj is occluded by Xi

and (2) where Xj is occluding Xi. We assume that poten-

tially occluding parts have a known and unchanging depth

order to simplify the formulation. In general, we could in-

troduce an additional discrete hidden variable designating

the depth order between parts and marginalize over it as

well which would lead to a more complex inference scheme.



(a) (b)
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Figure 5. Occlusion-sensitive inference. Figure (a) shows the

proposal distributions for the six body parts drawn from ground

truth pose and corrupted by Gaussian noise. Both left and right

calves are initialized intentionally incorrectly on the left calf in

the image; (b) shows the mean of the marginal distribution for

each part after 3 iterations of belief propagation (BP). Figure (c)

shows 100 samples from the marginal distributions after one, two

and three iterations of BP. Notice that we initialize from a local

maximum of the traditional likelihood function, precisely the place

where most algorithms get “stuck”, yet our algorithm is still able

to recover the correct pose.

If Xj is occluded by Xi the message from Xi to Xj

about the state of V̂j is uninformative and can be written

in terms of individual per-pixel hidden binary variables as

mO
ij(v̂j,u = 1) = 1, where u ∈ Υ. The message for

Vj is informative however and can be approximately com-

puted as mO
ij(vj,u = 1) ∝ 1 − p(u ∈ Ω1(Xi)), where

p(u ∈ Ω1(Xi)) is simply the probability of pixel u ∈ Υ
being inside the projection of Xi. Similar expressions can

be derived for the case where Xj is occluding Xi, but are

omitted for conciseness.

We can now approximate the marginal probability of a

pixel u being “visible” for part j, p(vj,u = 1), by taking a

product over all potential occluders,

p(vj,u = 1) ∝
∏

i

mO
ij(vj,u = 1). (8)

Since vj,u is binary, the occlusion probability is simply

p(vj,u = 0) = 1 − p(vj,u = 1). Similarly for p(v̂j,u =
1) ∝

∏
im

O
ij(v̂j,u = 1), where p(v̂j,u = 1) is the marginal

probability of the pixel u not being explained by any other

part i that is behind part j (further away from the camera).

Computation of these marginals amount to “projecting” the

distribution (represented in terms of weighted particles) for

every possible occluder Xi into the image and summing

over the resulting binary masks (with normalization).

We can now re-write the likelihood functions in terms of

the marginal probabilities zj,u ≡ p(vj,u = 1) and ẑj,u ≡
p(v̂j,u = 1),

p(I|Xj , Vj , V̂j) = (9)
∏

u∈Ω1(Xj)

[(1 − zj,u) + zj,up1(Iu)]

∏

s∈Ω2(Xj)

[(1 − zj,sẑj,s) + zj,sẑj,sp2(Is)]

∏

r∈Ω3(Xj)

[(1 − zj,r ẑj,r) + zj,r ẑj,rp3(Ir)] .

This equation downweights the image evidence for the

part j at a pixel u ∈ Ω1(Xj) as the probability of that pixel’s

visibility decreases (occlusion probability increases). Simi-

larly, it also downweights the image evidence at the pixel

s ∈ Ω2(Xj) as the probability of that pixel being ex-

plained by another body part further away from the cam-

era increases. Notice that this likelihood can be imple-

mented efficiently by only considering regions of the im-

age Ω1(Xj) and Ω2(Xj) for a given Xj , and precomputing∏
r∈Υ [(1 − zj,r ẑj,r) + zj,r ẑj,rp3(Ir)].

6.2. Limb Proposals

Plausible poses/states for some or all the body parts are

needed as proposals [19]. There exist a number of efficient

methods for detecting body parts in an image [9, 11, 16].

Here we took a simple approach and constructed a set of

proposals by coarsely discretizing the state space and eval-

uating local part-based likelihood functions at these discrete

locations. For all of the experiments here we discretized the

state space into 5 scales, 5 foreshortenings, 20 vertical and

20 horizontal positions and 8 rotations. We chose the 100
most likely states for each part and used these as a particle

based proposal distribution for belief propagation. It is im-

portant to note that not all parts need to be detected and, in

fact, detecting all the parts is largely impossible due to the

self occlusions. An example of the synthetic proposals for

various parts of the body are shown in Fig. 5 (a). To initial-

ize the search we used proposals for 6 parts: torso, head and

four outermost extremities. All other parts were initialized

with a uniform distribution over the entire state space.

7. Experiments

We learned occlusion-sensitive models for 8 discrete

views of a person including frontal, side and 3/4 views. For

each view we assume the depth ordering of the body parts

is known. In all experiments the likelihood uses a combina-

tion of silhouette and color/intensity information (assuming

independence). For the silhouette likelihood we used the

pictorial structures model and learned p1,S(Iu = 1) = q1
and p2,S(Is = 1) = q2 using the procedure described in [3].

Similar to [3] we assumed that p3,S(Ir = 1) = 0.5. For the
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Figure 6. Quantitative Performance Evaluation. Mean error of

the joint locations for each frame of 50 frame image sequence with

ground truth [19]. For the description of the metric see text.

color/intensity likelihood we learned a kernel density model

for each part and the background.

For frontal views, the lack of self occlusion means that

tree based approaches will usually perform well. Con-

sequently we focus on the more challenging side-views

containing occlusion. We quantitatively compare our ap-

proach (PAMPAS-OS) to leading tree-based methods using

50 frames from the Brown ground truth sequence [19] using

the metric presented by [8] which computes the average dis-

tance error between a set of 15 estimated marker locations

corresponding to the joints.

For comparison we implemented two tree-based meth-

ods: pictorial structures (PS-Tree) [3] and a variant of

our approach that does not model occlusions (PAMPAS-

Tree) by simply removing the occlusion constraints from

our model. Figure 7 shows the mean error for 15 mark-

ers at every frame for the three methods. Following [8] we

deal with the left/right ambiguity by switching the left/right

limbs and reporting the interpretation with a smallest error.

Our occlusion-sensitive inference approach outperforms

pictorial structures by 50% (25% for the implementation

in [8]1). We found that occlusion-reasoning accounts for

a 37% performance gain over the simple PAMPAS-Tree

method. According to the published literature [8] our ap-

proach also outperforms max-product loopy-BP, but does

not do as well as the common-factor model (Factor) pre-

sented in [8]. This is not surprising, since the common-

factor model uses a walking prior learned for this data. Our

approach does not assume a strong prior on the motion, and

hence is not restricted to any given motion type.

Figure 8 illustrates the behavior of PS-Tree, PAMPAS-

Tree and PAMPAS-OS on a few frames of the sequence.

As expected we observed many failures in the pictorial

structures model due to the overlapping parts. PAMPAS-

Tree, not surprisingly had similar modes of failure while

the occlusion-sensitive PAMPAS-OS does a better job of

explaining the image evidence.

In addition to the quantitative sequence we also ran our

model on less structured scenarios from TV and movies for

1Our independent implementation of PS-Tree [3] resulted in somewhat

larger error than reported in [8].

Strong Discrete Mean Std

Prior State Error

PAMPAS-OS No No 10.33 2.25

PAMPAS-Tree No No 16.40 3.67

PS-Tree No Yes 20.84 6.64

PS-Tree [8] No Yes 13.79 3.99

LBP [8] Yes Yes 12.00 3.99

Factor [8] Yes Yes 6.42 1.55

Figure 7. Overall Performance Comparison. Performance of the

occlusion-sensitive inference compared with two tree-based algo-

rithms implemented by us. We also compare to the results reported

by [8] on the same image sequence.

(a)

(b)

(c)

Frame 2 Frame 24 Frame 49
Figure 8. Visual Performance Evaluation. (a) MAP esti-

mates for the tree-based implementation of pictorial structures on

three frames from our test sequence. Performance of occlusion-

insensitive and occlusion-sensitive PAMPAS is shown in (b)

and (c) respectively. The top rows show 100 samples from the

marginal distribution at every node (belief) after 5 iterations of BP,

and bottom rows the weighted mean computed over those samples.

which strong prior models will not work. Figure 9 illus-

trates two representative results. In both cases, camera mo-

tion makes background subtraction difficult. Crude back-

ground subtraction was obtained using homographies esti-

mated between 2 frames sufficiently far apart in time (using

the code from http://www.robots.ox.ac.uk/∼vgg/).

Color likelihoods were defined as in [13].

Our current un-optimized implementation of PAMPAS-



(a)

(b)
Figure 9. Occlusion-sensitive reasoning in movies. Results on

frames from TV/films. Left column shows 100 samples from the

marginal distribution (belief) after 3 iterations of BP, and right col-

umn shows the weighed mean pose.

OS in Matlab takes roughly 5 minutes for message passing,

and 1.5 minutes for belief estimation per frame. The occlu-

sion constraints account for a 43% overhead over PAMPAS-

Tree.

8. Summary and Conclusions

We introduce a novel approach for articulated 2D body

pose estimation that uses occlusion-sensitive local image

likelihoods that approximate the global likelihood by ac-

counting for occlusions and competing explanations of im-

age evidence by multiple parts. We model occlusion rela-

tionships between parts explicitly by introducing two sets

of per-pixel hidden binary variables for each part. The re-

sulting occlusion reasoning involves interactions between

non-adjacent parts which introduces loops in the graphical

model representation of the body. To achieve tractable real-

valued inference in such a graph, we also introduced an

extension to the approximate belief propagation inference

algorithm (PAMPAS) that takes into account, and analyti-

cally marginalizes over, the hidden occlusion variables of

our model.

We quantitatively compare our approach to two state-of-

the-art algorithms using tree-structured kinematic models,

as well as to published results in the literature. The pro-

posed approach performs favorably and solves the problem

of competing models that tend to match multiple body parts

to the same image evidence without the addition of strong

priors. Experimental results illustrate that our model has

pose error at least 25% lower than tree-structured models.

We also show that our approach performs favorably in com-

plex scenarios, where strong assumptions about the kine-

matic motion of the body are not appropriate.
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