To appear in Early Visual Learning, edited by Tomaso Poggio and Shree Nayar.
January 1995

LEARNING OBJECT RECOGNITION
MODELS FROM IMAGES

Arthur R. Pope and David G. Lowe
University of British Columbia

ABSTRACT

To recognize an object in an image one must have an internal model of
how that object may appear. We describe a method for learning such mod-
els from training images. An object is modeled by a probability distribution
describing the range of possible variation in the object’s appearance. This
distribution is organized on two levels. Large variations are handled by
partitioning the training images into clusters that correspond to distinctly
different views of the object. Within each cluster, smaller variations are
represented by distributions that characterize the presence, position, and
measurements of various discrete features of appearance. The learning pro-
cess combines an incremental conceptual clustering algorithm for forming
the clusters with a generalization algorithm for consolidating each cluster’s
training 1mages into a single description. Recognition employs information
about feature positions, numeric measurements, and relations in order to
constrain and speed the search. Preliminary experiments have been con-
ducted with a system that implements some aspects of the method; the
system can learn to recognize a single characteristic view of an object in
the presence of occlusion and clutter.

1 INTRODUCTION

To recognize an object in an image one must have some expectation of how the
object may appear. That expectation is based on an internal model of the object’s
form or appearance. We are investigating how a system might acquire such models
directly from intensity images, and then use those models to recognize the objects
in other images.

The following scenario illustrates how this recognition learning system would
operate. One presents to the system a series of example images that depict a
particular object from various viewpoints. From those examples the system de-
velops a model of the object’s appearance. This training is repeated for each of
the objects the system is to recognize. When given a test image, the system can
then identify and rank apparent instances of the known objects in the image.
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Few object recognition systems have been designed to acquire their models
directly from intensity images. Instead, most systems are simply given models
in the form of manually-produced shape descriptions. During recognition, the
object’s shape description must be combined with a model of the image forma-
tion process in order to determine whether the object might have a particular
appearance. Successful recognition depends on having good models not only of
the objects, but also of the scene illumination, surface reflectance, optical pro-
jection, and the sensor. Because modeling image formation has proven difficult,
most object recognition systems that follow this approach have been restricted to
object models that are relatively simple and coarse.

A system that can learn its models directly from images, on the other hand,
may enjoy important advantages:

e The learning system will avoid the problem of having to estimate the actual
appearance of an object from some idealized model of its shape. Instead,
all of the properties of the object’s appearance needed for recognition will
be learned directly by observation. Eliminating inaccuracies in appearance
estimation should allow recognition to be accomplished more robustly.

e The learning system will acquire new models more conveniently. A new
model will be defined not by measuring and encoding its shape, as with
traditional object recognition systems, but by merely displaying the object
to the system in various poses.

e The learning system could endow a robot with the ability to learn objects as
they are encountered for later recognition. This ability would be important
in a dynamic, unknown environment.

The difficulty of the recognition learning problem is largely due to the fact that
an object’s appearance has a large range of variation. It varies with changes in
camera position and lighting and, if the object is flexible, with changes in shape.
Further variation is due to noise and to differences among individual instances of
the same type of object. Accommodating this variation is a central problem in
the design of a recognition learning system. The scheme used to describe image
content must be stable so that small changes in an appearance induce only small
changes in its description. The scheme used to model an object’s appearance must
describe just what variations are possible. The learning procedure must gener-
alize enough to overcome insignificant variation, but not so much as to confuse
dissimilar objects. And the procedure used to identify modeled objects in images
must tolerate the likely range of mismatch between model and image.

In investigating the recognition learning problem we have concentrated on one
particular version of it: learning to recognize 3-D objects in 2-D intensity images.
Objects are recognized solely by the intensity edges they exhibit (although nothing
about the approach precludes an extension to other properties, such as color and
texture). As for the objects themselves, they may be entirely rigid, possess a small
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number of articulations, or be somewhat flexible. The system is able to learn to
recognize a class of similar objects, accommodating the variation among objects
just as it accommodates the variation among images of a single object.

Our method models an object by a probability distribution that describes the
range of possible variation in the object’s appearance. This probability distribu-
tion is organized on two levels. Large variations are handled by partitioning the
training images into clusters that correspond to distinctly different views or con-
figurations of the object. Within each cluster, smaller variations are represented
by probability distributions characterizing various appearance features. For each
feature we represent the probability of detecting that feature in various positions
with respect to the overall object, and the probability of the feature having vari-
ous values of feature-specific, numeric measurements. A rich, partially-redundant,
and extensible repertoire of features is used to describe appearance.

The learning method combines an incremental conceptual clustering algorithm
for forming the clusters with a generalization algorithm for consolidating each
cluster’s training images into a single description. Recognition, which involves
matching the features of a training image with those of a cluster’s description, can
employ information about feature positions, numeric measurements, and relations
in order to constrain and speed the search for a match. Preliminary experiments
have been conducted with a system that implements some aspects of the method;
that system can learn to recognize a single view of an object among other occluding
and distracting objects.

We have just described the problem being considered, its significance, the
source of its difficulty, and the outline of a solution method. The next section be-
gins a detailed description of the method by discussing the representations used
for images and models. The process of finding a match between a model and an
image is guided by a match quality measure, which is the subject of section 3.
This measure supports both the matching procedure described in section 4, and
the procedure for learning models described in section 5. Section 6 presents ex-
perimental results from a system implemented to test the approach. Section 7
discusses relevant work by others on this and similar problems, and section 8
summarizes the chapter’s main ideas. Sections flagged by t contain technical de-
tails that can be safely skipped on a first reading. More information may be found
in other recent publications [18, 19, 20].

2 REPRESENTATION SCHEMES

2.1 IMAGE REPRESENTATION

We represent an image in terms of discrete properties called features. Each fea-
ture has a particular type, a location within the image, and a vector of numeric
attributes that further characterize it. A feature may, for example, be a segment
of intensity edge, a particular arrangement of such segments, or a region of uni-
form texture or color. Low-level features may be found as responses to feature
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detectors, such as edge or corner detectors; other, higher-level features may be
found by grouping or abstracting the low-level ones. Numerous features of various
types describe a typical image.

What attributes a feature has depends on its type. A junction of two circular
arcs, for example, may have one attribute for the junction’s angle, and another for
the ratio of the two arcs’ radii. Attributes are expressed so that they are invariant
with respect to translation, rotation, and scaling of the feature within the image
(using, for example, scale-normalized measures [23]).

The repertoire of feature types must be sufficient to provide a rich description
of any relevant image. A degree of redundancy is desirable, for it helps to ensure
the completeness of the representation and it contributes stability. Good features
are those that can be detected reliably, and are relatively invariant with respect to
modest changes in viewpoint or lighting. For efficiency in recognition, it is useful
to have some highly-selective features that usually occur only in the presence
of certain objects. In recognizing manufactured objects, for example, features
denoting various geometric arrangements of intensity edges may serve this role
well. Some more commonplace features, such as simple line and curve segments,
should supplement the highly-selective ones so that the overall repertoire can still
describe a wide variety of objects, at least at a basic level. Of course, distinctions
among objects can only be made if the repertoire includes features that express
those distinctions.

Apart from these requirements, the recognition learning method is not partic-
ular about what features are used or what their attributes are. As any feature
is bound to be unreliable in certain situations, the method attempts to compen-
sate for feature shortcomings by learning how reliable various features are for
recognizing each object.

The collection of features found in an image is represented by an image graph.
Graph nodes represent features; directed arcs represent grouping and abstraction
relations among them. Formally, an image graph G is denoted by a tuple (F, R),
where F' is a set of image features and R is a relation over elements of F. An
image feature f; € F is a tuple (tx, ax, by, Ci), where t is the feature’s type, ay
is a vector of attributes describing the feature, by is its measured position, and
Cy is a covariance matrix describing the uncertainty in that position. The domain
of a feature’s attribute vector depends on the feature’s type. Section 2.3, below,
describes how positions such as by are represented. Finally, an element of R is
a tuple (k,l1,...,ln), indicating that image feature k& was found by grouping or
abstracting image features l; through /.

2.2 MODEL REPRESENTATION

A model is organized on two levels in order to fully and accurately describe the
range of possible variation in its object’s appearance. Significant variations in
appearance are handled by subdividing the model into a set of characteristic
views, each independent of the others. Smaller variations are handled within each
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characteristic view by allowing the view to represent a probability distribution
over a range of similar image graphs.

Because this explicitly represents how an object appears from various, discrete
viewpoints, it is called a viewer-centered, or multi-view, representation. To learn
a viewer-centered model, it is not necessary to recover the object’s 3-D structure.
Another common approach is the object-centered representation, which instead
explicitly represents the 3-D geometry of the object. To learn an object-centered
model, however, one has to recover the 3-D location of each feature. Recovery
is difficult because the viewpoint of each training image is unknown, there is
uncertainty in the measurement of each feature’s image location, and there may
be errors in matching features among images.

In our method, each characteristic view describes a range of possible appear-
ances by defining a joint probability distribution over image graphs. Because the
space of image graphs is enormous, however, it is not practical to represent or
learn this distribution in its most general form. Instead, the joint distribution is
approximated by treating its component features as though they were indepen-
dent. This approximation allows the joint distribution to be decomposed into
a product of marginal distributions, thus greatly simplifying the representation,
matching, and learning of models.

One consequence of the simplification is that statistical dependence (associa-
tion or covariance) among model features cannot be accurately represented within
a single characteristic view. An extreme example of such dependence is an object
with two subsets of features such that only one subset appears in any one im-
age. Because of the simplification, this object with its strongly covariant features
would be poorly represented by a single characteristic view. However, where one
characteristic view cannot capture an important statistical dependence, multiple
views can. In this example, two characteristic views, each containing one of the
two subsets of features, could represent perfectly the statistical dependence among
features.

By using a large enough set of characteristic views we can model any object
as accurately as we might wish. For the sake of efficiency, however, we would
prefer to use relatively few views and let each represent a moderate range of
possible appearances. One challenge for our model learning method is to strike
an appropriate balance between the number of characteristic views used and the
accuracy of those views over their respective ranges. This issue will be revisited
when we discuss the model learning procedure in section 5.

A single characteristic view is described by a model graph. Like an image
graph, a model graph has nodes that represent features and arcs that represent
composition and abstraction relations among features. Each node records the
information needed to estimate three probabilities:

e The probability of observing this feature in an image depicting the charac-
teristic view of the object. The node records the number of times the feature
has been identified in training images. A count is also kept of the training
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images used to learn the overall model graph. The probability is estimated
from these two numbers as described in section 3.1.

e Given that this feature is observed, the probability of it having particular
attribute values. This is characterized by a probability distribution over
vectors of attribute values. Little can be assumed about the form of this
distribution because it may depend on many factors: the type of feature,
how its attributes are measured, possible deformations of the object, and
various sources of measurement uncertainty. Thus we use a non-parametric
density estimator that makes relatively few assumptions. To support this
estimator, which is described in section 3.3, the model graph node records
sample attribute vectors acquired from training images.

o Given that this feature is observed, the probability of it having a particular
position. This is characterized by a probability distribution over feature
positions. We approximate this distribution as Gaussian to allow use of
an efficient matching procedure based on least-squares estimation. The pa-
rameters of the distribution are estimated from sample feature positions
acquired from training images.

Formally, a model graph G is denoted by a tuple (F, R, m), where F is a set of
model features, R is a relation over elements of F, and m is the number of training
images used to produce G. A model feature fj € F is a tuple (fj,mj,ﬁj,Bﬁ,
where ¢; is the feature’s type, m; is the number of training images in which
the feature was observed, and A; and Bj are sequences of attribute vectors and
positions drawn from those training images. Finally, an element of R is a tuple
(7,01, .., lm), indicating that model feature j is a grouping or abstraction of model
features [y through [,,.

2.3 COORDINATE SYSTEMS

A feature’s position is expressed in terms of a 2-D, Cartesian coordinate system
by a location, orientation, and scale. Image features are located in an image
coordinate system identified with pixel rows and columns. Model features are
located in a model coordinate system shared by all features within a model graph.
The absolute positions of these coordinate systems are not important as they are
used only to measure features’ relative positions.

Two different schemes are used to describe a feature’s position in either coor-
dinate system:

xyfs The feature’s location is specified by [z y|, its orientation by 6, and its
scale by s.

xyuv The feature’s location is specified by [z y], and its orientation and scale
are represented by the orientation and length of the 2-D vector [u v].
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We will prefer the xyfs scheme for measuring feature positions, and the xyuv
scheme for estimating viewpoint in the course of matching a model with an image.
They are related by 6 = tan (v/u) and s = vVu2 + v2. Where it is not otherwise
clear we will indicate schemes using the superscripts ¥%* and #¥"*,

Part of the task of matching a model with an image is to determine a viewpoint
transformation that brings the image and model features into close correspon-
dence. In our case, this viewpoint transformation is a 2-D similarity transforma-
tion. The zyuv scheme allows such a transformation to be expressed as a linear
operation with the advantage that it can then be estimated from a set of feature
pairings by solving a system of linear equations.

We take the viewpoint transformation, 7, to be from image to model coordi-
nates, and use it to transform the position of an image feature before comparing
it with that of a model feature. The result of applying T to the position by is
denoted T'(by).

A transformation consisting of a rotation by 6, a scaling by s;, and a transla-
tion by [x; ¥, in that order, can be expressed in two ways as a matrix operation.
We will have occasion to use both. In one case, a matrix Ay represents the
position by = [z yx uk vx] being transformed:

), 1 0 @z -y x4
; 0 1 yr g (7
b= | | = — A.b,. 1
k up, 0 0 wup —vg Uy kDt (1)
W;C 0 0 Vi Uk (2

In the other case, a matrix A; represents the rotation and scaling components
of the transformation:

), u —vy 0 0 Tk Tt
; 0 0 Yk y
b= | Y% =] W Ll =Ab . 2
k ul, 0 0 wu —v Uk + 0 tPk + Xt (2)
v}, 0 0 v Vk 0

These linear formulations allow a transformation to be estimated easily from
a set of feature pairings. Given a model feature at b; and an image feature at
by, the transformation aligning the two features can be obtained as the solution
to the system of linear equations b; = T'(by). With additional feature pairings,
the problem of estimating the transformation becomes over-constrained; then the
solution that is optimal in the least-squares sense can be found by least-squares
estimation, as described in section 4.2.

3 MATCH QUALITY MEASURE

Recognition requires finding a consistent set of pairings between some model fea-
tures and some image features, plus a viewpoint transformation that brings the

!Ayache and Faugeras [1], among others, have also used this formulation to express the
transformation as a linear operation.
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paired features into close correspondence. Together, the pairings and transfor-
mation are called a match. The pairings will often be incomplete, with some
image features not explained by the model (perhaps there are other objects in the
scene) and some model features not found in the image (perhaps due to shadows
or occlusion). Nevertheless, the desired match should be a good one that jointly
maximizes both the number of features paired and the resemblance between paired
features. We use a match quality measure to evaluate these qualities.

The match quality measure considers what features are paired, how significant
those features are, how similar their attribute values are, and how well their posi-
tions correspond. Each factor is evaluated according to past matching experience
as recorded by the model. The factors are combined using Bayesian theory to
estimate the probability that a particular match represents a true occurrence of
the object in the image.

A set of pairings is represented by the tuple £ = (eq,eg,...), where e; = k
if model feature j is paired with image feature k, and e; =— if it is not paired.
The hypothesis that the object is present in the image is denoted by H. Match
quality is associated with the probability that this hypothesis is correct given a
set of pairings and a viewpoint transformation. Bayes theorem allows us to write
this probability as:

P(E|T,H)P(T | H)
P(EAT)

P(H | E,T) = P(H). (3)
There is no practical way to represent the high-dimensional, joint probability

distributions P(E | T, H) and P(E A T) in their most general form. Instead, we

approximate them using the feature independence simplification discussed previ-

ously in section 2.2. This reduces equation 3 to a product of marginal probability

distributions.

P(e; | T.H)P(T | H)
P(e;) P(T)

P(H | E,T) ~ H P(H). (4)

The approximation is a perfect one when two independence properties hold:

(a) {e;} is collectively independent given knowledge of 7" and H, and

(b) {e;, T} is collectively independent in the absence of any knowledge of H.

In practice we can expect these properties to hold at least somewhat. Given
that an object is present at a particular pose, features detected at widely separate
locations on the object will be independently affected by occlusion and noise; these
features satisfy property (a). And in a random scene cluttered with unknown
objects, even nearby features may be largely independent because they could
come from any of numerous objects; these features satisfy property (b).

On the other hand, the independence properties fail to the extent that there is
redundancy among features. For example, a feature representing a perceptually-
significant grouping is not independent of the features it groups; in this case,
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equation 4 may overstate the significance of pairing these features because it sep-
arately counts both the individual features and the feature that groups them.
With redundancy uniformly present among all model graphs, however, the re-
sulting bias should have little effect on the outcome of any particular matching
problem. Having adopted the hypothesis that this is so, we use equation 4 as the
basis for our match quality measure.

The measure is defined using log-probabilities to simplify calculations. More-
over, it is assumed that all positions of a modeled object within an image are
equally likely, and thus P(T | H) = P(T'). With these simplifications the match
quality measure becomes

g(E,T) =logP(H)+ > logP(e; | T,H) = Y log P(e;). (5)
J J

P(H) is the prior probability that the object, as modeled, is present in an
image; it can be estimated from the proportion of training images that matched
the model and were used to create it. Estimates of the conditional and prior prob-
abilities of individual feature pairings, P(e; | T, H) and P(e;), will be described
in the next two sections. We will use the following notation for specific random
events within the universe of matching outcomes:

¢; =k model feature j is paired with image feature &
¢; =— model feature j is paired with nothing
a; =a model feature j is paired with a feature whose attributes are a

; = b model feature j is paired with a feature at position b

3.1 CONDITIONAL PROBABILITY OF A FEATURE PAIRING

There are two cases to consider in estimating P(e; | T', H), the conditional prob-
ability of a pairing involving model feature j.

1. When j is not paired, this probability is estimated by considering how often j
failed to be paired with an image feature during training. We use a Bayesian
estimator with a uniform prior, and the /m and m; statistics recorded by the
model:

mj+ 1
P(é; =—| T.H) = 1= P(¢; #—| T.H) m 1 = "0 (6)

2. When j is paired with image feature k, this probability is estimated by
considering how often j was paired with image features during training, and
how the attributes and position of k compare with those of the training
features:

P(é;=k|T, H)

P(¢; #— Naj=ap Ab; =T(by) | T, H)
P(ej #=| T.H) P(aj = ay | & #—. H)
P(bj =T(by) | é #-. T, H). (7)
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P(é; #—| ...) is estimated as shown in equation 6. P(a; = a; | ...) is
estimated using the series of attribute vectors A; recorded with model fea-
ture j, and a non-parametric density estimator described in section 3.3.
P(b; = T(by) | ...), the probability that model feature j is paired with an
image feature at position by under viewpoint transformation 7', is estimated

as described in section 3.4, below.?

3.2 PRIOR PROBABILITY OF A FEATURE PAIRING

Estimates of the prior probabilities, P(e;), are based on measurements of a large
collection of images typical of those in which the object will be sought. This milieu
collection is used to estimate “background” probability distributions that charac-
terize features found independently of whether any particular object is present.
In other words, these distributions describe what can be expected in the absence
of any knowledge of H or T. By an analysis similar to that underlying estimates
of the conditional probabilities, we obtain estimates for two cases of e;.

1. The probability of j remaining unpaired regardless of H and T is
P(¢; =—) = 1 - P(¢; #-).

The latter term is estimated from the frequency with which features of j’s
type, f]-, occur in the milieu collection.

2. The probability of j being paired with k regardless of H and T is

P(é] = k) = P(é] #*— A éj =ar A E)j = T(bk))
~ P(e; #-)P(aj = ax | ¢; #-)
P(b; =T(by) | & #-). (8)
P(a; = aj | ...) is estimated using samples of attribute vectors drawn from
the milieu collection, and the density estimator described in section 3.3.
P(b; =T(by | ...) is a constant estimated by assuming a uniform distribu-

tion of features throughout a bounded region of model coordinate space.

3.3 PROBABILITY DISTRIBUTION OVER FEATURE ATTRIBUTES T

One component of the match quality measure is the probability that a feature may
have a particular attribute vector. To help us estimate this probability, we have
samples of attribute vectors that have been acquired by observing the feature in
training images. The estimation problem is therefore of the following form: given

2For simplicity, our notation does not distinguish between probability mass and probability
density. P(é;) is a mass because é; assumes discrete values, whereas P(&;) and P(b;) are densities
because a; and Bj are continuous. But since equation 4 divides each conditional probability
mass by a prior probability mass, and each conditional probability density by a prior probability

density, here we can safely neglect the distinction.
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Figure 1: Ezample of a locally-adaptive probability density estimate for attribute
vectors. The spikes denote the samples from which the density estimate was com-
puted.

a sequence of d-dimensional observation vectors {x; : 1 <1i < n} drawn at random
from an unknown distribution, estimate the probability that another vector drawn
from that same distribution would have the value x.

This could be solved by assuming that the distribution has some parameterized
form (e.g., normal), and then estimating its parameters from the observations x;.
However, the attribute vector distributions could be complex as they depend not
only on sensor noise and measurement errors, but also on systematic variations
in object shape, lighting, and pose. Hence we use a non-parametric estimation
method [28]. In its simplest, form, this method estimates probability density by
summing contributions from a series of overlapping kernels. The density at x is

fo = SR o)

where h is a constant smoothing factor, and K is a kernel function. We use the
Epanechnikov kernel because it has finite support and can be computed quickly.
Its definition is

given by

11 —xTx) ifxTx
K(X):{ 5Cq (d+2)(1 ) if <1 (10)

0 otherwise

where ¢4 is the volume of a d-dimensional sphere of unit radius. The smoothing
factor h appearing in equation 9 strikes a balance between the smoothness of the
estimated distribution and its fidelity to the observations x;.

We can adjust h using a locally-adaptive method: with f as a first density esti-
mator, we create a second estimator, fa, whose smoothing factor varies according
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Figure 2: An image feature’s position is transformed from image coordinates (left)
to model coordinates (right) according to an estimate of the viewpoint transforma-
tion (center). A model feature’s position is estimated in model coordinates (right).
Uncertainty in the positions and the transformation are characterized by Gaussian
distributions. Owerlap of the two distributions in model coordinates corresponds
to the probability that the two features match given the viewpoint transformation
and their respective positions.

to the first estimator’s density estimate:

falx) = #ZA;%C};?) , (11)
where \; = (f(jl)> 2 and v = (H f(xz)> ’ .

The various A; incorporate the first density estimates at the points x;, and v is a
normalizing factor. This adaptive estimator smoothes more in low-density regions
than in high-density ones. Thus a sparse outlier is thoroughly smoothed while a
central peak is accurately represented in the estimate (see figure 1).

3.4 PROBABILITY DISTRIBUTION OVER FEATURE POSITIONS J[

Another component of the match quality measure is the probability that a model
feature is paired with an image feature given the positions of the two features
and a viewpoint transformation that somewhat aligns them. This position- and
transformation-dependent portion of the match quality measure is represented by
P(Bj = T(bg) | ¢ #—,T,H) in equation 7. To estimate it, we use the view-
point transformation to map the image feature’s position into model coordinates,
where we compare it with the model position (see figure 2). The positions and
transformation are characterized by Gaussian probability density functions (pdfs),

allowing the comparison to take into account the uncertainty in each.



Figure 3: The Gaussian distribution of an image feature’s position in xyls coordi-
nates (left) is approximated by a Gaussian distribution in xyuv coordinates (right),
with the parameters of the approximating distribution determined as shown.

Image feature k’s position is conveniently characterized by a Gaussian pdf in
xyfs image coordinates. Its mean is the feature’s position, b‘zyas, as measured
in the image. However, because our system’s feature detectors and grouping
processes do not supply uncertainty estimates for individual features, we define
the covariance matrix for this pdf using system parameters:

o2 0 0 0
2
wos | 0 0 0 0
Ck = 0 0 (CSI_Z)Q 0 (12)
0 0 0 o2

S

The parameters o;, gy, and o are our estimates of the standard deviations in
measurements of location, orientation, and scale. The orientation variance in-
cludes a factor based on the feature scale, s;, because the orientation of a large
feature can usually be measured more accurately than that of a small one.

This Gaussian pdf is then re-expressed in zyuv image coordinates so that the
viewpoint transformation can be applied as a linear operation. Unfortunately,
a pdf that is Gaussian in zyfs coordinates is not necessarily Gaussian in ryuv
coordinates. Nevertheless, in this case a good approximating Gaussian can be
obtained in zyuv coordinates because the 6 and s variances are small. The ap-
proximation places the xyuv mean at the same position as the zyfs mean, and
aligns the Gaussian envelope radially, away from the [uv] origin (see figure 3). Its
mean and covariance matrix are

bﬁlsyuv — [xk Yk s;CCOSH]C SkSinek] (13)
o} 0 0 0
0 o2 0 0
TYyuv [ T
and G = R| 0 | RT, (14)
0 0 0 of
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1 0 0 0

0 1 0 0
where R = 0 0 cosf, —sinf

0 0 sinfp coséy

The viewpoint transformation is characterized by a Gaussian pdf over [,y uv¢]
vectors with mean t and covariance C;. (In the course of matching a model with
an image, t and C; are estimated as described in section 4.2, below.) We trans-
form the image feature’s position from zyuv image coordinates to xyuv model
coordinates using the viewpoint transformation. If we would disregard the uncer-
tainty in the transformation estimate, we would obtain a Gaussian pdf in model
coordinates with mean At and covariance AtCkA;F. On the other hand, dis-
regarding the uncertainty in the image feature position produces a Gaussian pdf
in model coordinates with mean At and covariance AkCtAE. With Gaussian
uncertainty in both the image feature position and the transformation, however,
the pdf in model coordinates cannot be characterized as Gaussian. At best we
can approximate it as Gaussian, which we do with a mean and covariance given
in zyuv coordinates by

b = At (15)
and C;, ~ ACLAL + A,C/A}. (16)

The position of model feature j is also characterized by a Gaussian pdf in
xyuv model coordinates. Its mean b; and covariance C; are estimated from the
series of position vectors B; recorded by the model.3

We can now estimate the probability that j is paired with k£ according to their
position pdfs in zyuv model coordinates. The estimate is obtained by integrating
over all positions r the probability that both the image feature is at r and the
model feature matches something at r:

P(b; = T(by) | 6 #—. T, H) ~ /rp(fj — 1) P(ig = r) dr. (17)

Here r ranges over xyuv model coordinates while r; and r;; are random variables
drawn from the Gaussian distributions N(b;, C;) and N(by, Ci). It would be
costly to evaluate this integral by sampling at various r. Fortunately, however,
the integral can be rewritten as a Gaussian in b; — by, as can be seen from the
fact that it is essentially a convolution of two Gaussians. Thus it is equivalent to

where G(x, C) is a Gaussian with zero mean and covariance C. In this form, the
desired probability estimate is easily computed.

®Two practical considerations enter into the estimation of C;. First, when B; contains too
few samples for a reliable estimate of C;, the estimate that B; yields is blended with another
determined by system parameters. Second, minimum variances are imposed on C; in case some
dimension of B; has zero variance.
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4 MATCHING PROCEDURE

Both recognition and learning require that we find a match between a model graph
and an image graph—one that maximizes the match quality measure defined in
section 3. It does not seem possible to find an optimal match through anything less
than exhaustive search. In practice, however, good matches can be found quickly
by iterative alignment [1, 13, 15]. This process hypothesizes some initial pairings
between model and image features, uses those pairings to estimate the viewpoint
transformation, uses the transformation estimate to evaluate and choose addi-
tional pairings, refines the transformation estimate using the additional pairings,
and so on until as many features a possible have been matched.

In our version of the iterative alignment method, we explicitly represent the
uncertainty in the position of each feature and the resulting uncertainty in the
transformation estimate. Thus features that are well-localized contribute most
to the transformation estimate, and those whose positions vary most are sought
over the largest image neighborhoods. This version of iterative alignment is called
probabilistic alignment to emphasize its basis in probability theory. It uses feature
uncertainty information that has been acquired from training images and recorded
in the model.

4.1 PROBABILISTIC ALIGNMENT

To choose the initial pairings, possible pairings of higher-level features are rated
according to the contribution each would make to the match quality measure.
The pairing (j, k) receives the rating

gi(k) = m}ixlog P(é;j=k|T,H)—logP(é; = k). (19)

This rating favors pairings in which the model feature has a high likelihood of
matching, the two features have similar attribute values, and the resulting trans-
formation estimate’s variance would be small. Moreover, because the component
of P(é; = k | T, H) that depends on T is Gaussian, its maximum over 7" can be
computed readily.

A search is begun from each of the several highest-ranked pairings. It starts by
estimating a viewpoint transformation from the initial pairing, and proceeds by
repeatedly identifying additional consistent pairings, adopting the best pairings,
and using those to update the transformation estimate. (A method of computing
the viewpoint transformation is described in section 4.2, below.) During this
search, possible pairings are rated according to the contribution each would make
to the match quality measure. Provided it is consistent with pairings adopted so
far, the pairing (j, k) receives the rating

g;(k:T) = log P(¢; = k | T, H) — log P(é; = k) (20)
This rating considers the same criteria as the initial ratings (equation 19), while

also favoring pairings whose feature positions correspond closely according to the
transformation estimate.
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For efficiency, a priority queue is used to manage pairing choices during a
search. Each pairing is placed on the queue as it is rated so that, once all pairings
have been evaluated, the queue contains a few dozen of the best pairings. Queued
pairings that conflict are considered ambiguous; they are downrated so that they
will be postponed in favor of less ambiguous pairings. Finally, the highest-ranked
pairings are adopted and used to update the transformation estimate. Backtrack-
ing is performed when ambiguity forces a choice among conflicting pairings, and
a search branch is terminated when no additional pairings can be identified to
improve the match quality measure.

From several starting hypotheses and the various search branches that result
from backtracking, we obtain a number of consistent matches. As they are found
only the best is retained, and its match quality measure provides a threshold for
pruning subsequent search branches.

Note that the match quality measure provides an estimate of the (logarithm
of the) probability that the match represents a true instance of the object in the
image. One way to judge recognition, then, is to require that this probability
exceeds some specified threshold. Setting the threshold to the ratio of costs of
Type IT and Type I decision errors produces recognition decisions that minimize
the expected error cost.

4.2 ESTIMATING THE VIEWPOINT TRANSFORMATION +

The matching procedure requires that we estimate a viewpoint transformation
from one or more feature pairings, with the desired estimate being that which
maximizes the match quality measure for the given pairings. Fortunately, this is
a linear, least-squares estimation problem for which good algorithms exist.

The estimation problem is formulated as follows. Each pairing (j, k) of model
and image features is related by the transformation t and a residual error é:

A t= bj 4+ e. (21)

Here, Ay is the matrix representation of image feature k’s mean position (see
equation 1), t is the transformation estimate vector [z;y;u;v;], and b; is the vector
representation of model feature j’'s mean position. The residual € is assumed to
have a Gaussian distribution whose covariance C; can be estimated from the
series of position vectors, Bj, recorded by the model. We can rewrite this relation
so that the residual has unit variance by multiplying both sides by the upper
triangular square root of C; (a process called whitening).

U 'At=U;"b;+&, where C; =U; U] and & ~ N(0,I). (22)

A series of feature pairings gives us a series of such relations. From them, a lin-
ear, least-squares estimator determines both the transformation t that minimizes
the sum of the residual errors, and its covariance C;.

During a match search, feature pairings are adopted sequentially. We need
to refine the transformation estimate with each new pairing or group of pairings
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adopted so that an improved estimate can then be used to identify additional
pairings. Thus a recursive estimator is used.

The square root information filter (SRIF) [3] is a recursive estimator well suited
for this problem. Compared to the Kalman filter it is numerically more stable
and faster for batched measurements; it also has the nice property of computing
the total residual error as a side effect. As its name implies, the SRIF works by
updating the square root of the information matrix, which is the inverse of the
estimate’s covariance matrix. The initial square root Ry and state vector z; are
obtained from the first pairing (j, k) of model and image features:

R =U;'Aj; and z; =U; " b;. (23)

Then, with each subsequent pairing (j, k), the estimate is updated by triangular-
izing a matrix composed of the previous estimate and data from the new pairing:

[ R, Zi—1 ]A R, Zi]
— .

24
U7'A, Uj'b; 0 e 24

When estimates of the viewpoint transformation and its covariance are needed,
they can be obtained by

ti=R;'z; and C;, = R;'R; . (25)

7

This requires only back substitution since R; is triangular. The SRIF also makes

the total residual error available as e;e!, which conveniently corresponds to the

~ 70
logP(b; = T(by) | é; #—.T, H) component of our match quality measure. Thus,
following each update of the transformation estimate, the match quality measure
for the new transformation can be computed easily; there is no need to re-evaluate

equation 18 for the new transformation and each previous feature pairing.

5 LEARNING PROCEDURE

The learning procedure assembles one or more model graphs from a series of
training images showing various views of an object. Two tasks are required:

clustering The learning procedure must divide the training images into clus-
ters, each destined to form one characteristic view.

generalizing For each cluster, it must construct a model graph summarizing
the members of that cluster. The model graph represents a gen-
eralization of the cluster’s contents.

Since clustering decisions ought to consider how well the resulting clusters can be
generalized, the two tasks are closely related. Each will be discussed separately,
however, in the following two sections.

We use X to denote the series of training images for one object. During
learning, the object’s model M consists of a series of clusters X; C X', each with
an associated model graph G;. Once learning is complete, only the model graphs
must be retained to support recognition.
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5.1 CLUSTERING TRAINING IMAGES INTO CHARACTERISTIC VIEWS?*

An incremental conceptual clustering algorithm is used to create clusters among
the training images. Clustering is incremental in that, as each training image is
acquired, it is assigned to an existing cluster or used to form a new one. Like other
conceptual clustering algorithms (e.g., COBWEB [11]), the algorithm uses a global
measure of overall clustering quality to guide clustering decisions. This measure is
chosen to promote and balance two somewhat-conflicting qualities. On one hand,
it favors clusterings that result in simple, concise, and efficient models, while
on the other hand, it favors clusterings whose resulting model graphs accurately
characterize (or match) the training images.

Maximum a posterior (MAP) estimation provides a nice framework for com-
bining these two qualities. It suggests that the learning procedure choose a model
M that maximizes the posterior probability P(M | X’). By Bayes’s theorem, this
is equivalent to maximizing the product P(M)P(X | M). The prior distribution
P(M) can be designed to favor simple models, while the conditional distribution
P(X | M) can be designed to favor models that characterize the training images
accurately.

e Prior distribution. We apply the minimum description length (MDL) prin-
ciple [22] to define a prior distribution favoring simple models. Briefly, the
MDL principle provides a method of constructing a prior probability distri-
bution over a family of statistical models by relating the probability of each
to the length of its description as written in some minimal-length encod-
ing scheme. To encode a model, we concisely enumerate its model graphs,
nodes, arcs, attribute vectors, and position vectors, using a fixed number of
bits for each component. With L(M) denoting the length of M’s encoding,
the prior probability of M is given by log P(M) = —L(M).

e Conditional distribution. We use the match quality measure to define a
conditional distribution favoring accurate models. Recall that the measure
is based on an estimate of the probability that the match represents a true
occurrence of the modeled object in the image. For this match probability
to be high, the model must accurately depict how the object appears in the
image. Thus, to rate the accuracy of a model, we combine match probability
estimates for each of the model’s training images:

P | M) =TT I] maxP( | E.7:X.Gy), (26)
i Xex, '

where P(H | E,T;X,G;) is defined by equation 4. The maximum over
matches (F,T) is found by the matching procedure described in section 4.

*At the time of writing, the clustering method described here had not yet been validated
experimentally.
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As each training image is acquired it is assigned to an existing cluster or used
to form a new one. Choices among clustering alternatives are made to maximize
the resulting P(M | X'). When evaluating an alternative, each cluster’s subset
of training images A} is first generalized to form a model graph M; as described
below.

5.2 GENERALIZING TRAINING IMAGES TO FORM A MODEL GRAPH

Within each cluster, training images are merged to form a single model graph
that represents a generalization of those images. An initial model graph is formed
from the first training image’s graph. That model graph is then matched with
each subsequent training image’s graph and revised after each match according
to the match result. A model feature j that matches an image feature k receives
an additional attribute vector a; and position by for its series flj and Bj. Some
unmatched image features are used to extend the model graph, while model fea-
tures that remain largely unmatched are eventually pruned. After several training
images have been processed in this way the model graph nears an equilibrium,
containing the most consistent features with representative populations of sample
attribute vectors and positions for each.

6 EXPERIMENTAL RESULTS

A system that learns a single, characteristic view has been implemented using
facilities of the Vista computer vision environment [21]; implementation of the
clustering procedure needed to learn multiple views is in progress. The system
recognizes 3-D objects in 2-D intensity images, employing a repertoire of features
designed to describe the appearance of manufactured objects. Straight and circu-
lar segments of intensity edges are the lowest-level features. These are augmented
by features representing various perceptually-significant groupings, including junc-
tions, pairs and triples of junctions, pairs of parallel segments, chains of such pairs,
and convex regions. Features that are rotationally symmetric, such as straight
lines, are simply represented by multiple graph nodes, one per orientation.

Experiments with this system have produced encouraging results. For exam-
ple, figure 4 shows a model of a characteristic view of a stool learned from nine
training images acquired over a 20-degree range of viewpoint. Figure 5 shows
the result of matching that model with a cluttered test image. The match search
begins with a pairing of junctions (shown with a bold x in figure 5) that is
rated highly by equation 19 primarily due to the image feature’s attribute values.
Matching proceeds with a pairing of parallel arcs (also shown in bold) that is
favored in part due to the model feature’s low positional uncertainty (apparent in
figure 4(d)).

We are studying the models produced to gain further insight. As evident
from the model depiction in figure 4 and from the histogram in figure 6, the
stool model records significant differences in the positional uncertainty of various
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() (d)

Figure 4: Nine training images spanning 20 degrees of viewing angle, from (a)
to (b), yield a single characteristic view model. Among model features, those
denoting straight and circular segments of intensity edge are shown in (c); those

denoting pairs of parallel segments are shown in (d). Ellipses depict two standard
deviations of feature location uncertainty.
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' 0 100

Figure 5: A cluttered test image (a) in which the partially-occluded stool is rec-
ognized (b). Model features representing segments of intensity edge are shown
projected into the image according to the final viewpoint transformation estimate.
See the text for further explanation.
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Image Model  Features Paired Match Quality

Bottle A Bottle A 43 / 109 60.7
Bottle A Bottle B 20 / 56 6.7
Bottle B Bottle A 27 / 109 -2.8
Bottle B Bottle B 27 / 56 20.7

Table 1: Results of matching each subimage of figure 7 with each bottle model.
Features Paired is the proportion of model features paired. Match Quality is the
value of the match quality measure, g(E,T). Adapted from [19].

features. Some differences are due to shifts in the relative positions of features with
changing viewpoint—the seat and post remain fixed, for example, while the legs
shift in various directions. Others are due to inherent differences in the accuracy
of localizing various types of features—for example, a right-angle junction might
be better localized than an oblique or acute one. Differences would be even greater
for a flexible object.

Additional experiments have sought to determine whether the method can
generalize across objects of similar appearance while still differentiating them on
the basis of small distinctions. In one experiment, models were created for bottles
A and B, shown in figure 7, using six training images of each. Each model was then
matched with two subimages from figure 7: one containing the identical object,
the other containing its counterpart. Table 1 summarizes the results. Each model
matches its identical object best, meaning that the two objects are successfully
distinguished; however each model also matches its counterpart to a lesser degree,
meaning that each model successfully generalizes to match other objects of similar
appearance.

In this case the specificity of the two models is due, in part, to differences in
attribute value distributions. For example, each model includes a feature for its
bottle’s lower left corner and one attribute of that feature records the ratio of the
corner’s two sides. Since the two bottles have different height-to-width ratios, this
feature is among those that help to differentiate the bottles. Figure 8 shows how
the pdfs estimated for this attribute differ between the two models.

7 RELATED RESEARCH ON LEARNING TO RECOGNIZE OBJECTS

This section surveys other efforts to build systems that learn to recognize objects.
The survey is organized according to the role that learning plays in these sys-
tems. A final section summarizes efforts to establish theoretical bounds on the
learnability of object recognition.
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Figure 8: Comparison of three attribute value distributions. Those labeled Bottle
A and Bottle B are from model features corresponding to the lower left corners
of bottles A and B. Spikes represent the two populations of sample values from
which these distributions are estimated. The distribution labeled Milieu averages
all corners from numerous images. From [19].

7.1 LEARNING APPEARANCE PRIMITIVES

An object recognition system may learn new types of shape or appearance prim-
itives to use in describing objects. Typically this is done by clustering existing
primitives or groups of them, and then associating new primitives with the clusters
that have been found. New primitives thus represent particular configurations or
abstractions of existing ones. The new configurations may improve the represen-
tation’s descriptive power, and the new abstractions may allow more appropriate
generalizations.

Segen [24] has demonstrated this approach with a system that learns a repre-
sentation for 2-D contours. The system’s lowest-level primitives are distinguished
points, such as curvature extrema, found on contours in training images. Nearby
points are paired, each pair is characterized by a vector of measurements, the mea-
surement vectors are clustered, and a new primitive is invented for each cluster of
significant size. Consequently, each new primitive describes a commonly observed
configuration of two distinguished points. The induction process is repeated with
these new primitives to generate higher-level primitives describing groups of four,
eight, and more distinguished points. Weng et al.’s Cresceptron system [31] is
analogous in that it induces a hierarchy of primitives within a pre-programmed
framework. Since these primitives are essentially templates, invariance to transla-
tion, rotation, and scaling in the image must be provided by prior segmentation or
by an attentional mechanism. We would expect both these method to be sensitive
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to clutter in the training images and to parameters of the clustering algorithm.

Delanoy, Verly, and Dudgeon [7] and Fichera et al. [10] have described ob-
ject recognition systems that induce fuzzy predicates from training images. Their
systems represent models as logical formulae, and, therefore, the systems need ap-
propriate predicates. These are invented by clustering measurements of low-level
primitives that have been recovered from training images. Turk and Pentland [29]
and Murase and Nayar [17] have induced features using principle component anal-
ysis. They compute the several most significant eigenvectors, or principle compo-
nents, of the set of training images. Since these few eigenvectors span much of the
subspace containing the training images, they can be used to concisely describe
those images and others like them. However, as this is a global representation, it
may have difficulty with matching cluttered images.

7.2 LEARNING AN APPEARANCE CLASSIFIER

The object recognition task can be characterized, in part, as a classification prob-
lem: instances represented as vectors, sets, or structures must be classified into
categories corresponding to various objects. A wealth of techniques has been de-
veloped for classifying, and for inducing classifiers from training examples. For the
purposes of object recognition, the important considerations distinguishing these
techniques include the expressiveness and complexity of the input representation
(e.g., vectors are easier to classify than structures), the generality of the categories
learned, the ability to cope with noisy features, the number of training examples
needed, and the sensitivity to the order in which examples are presented.

Jain and Hoffman [14] describe a system that learns rules for classifying ob-
jects in range images. The instances classified by their system are sets of shape
primitives with associated measurements. The classifier applies a series of rules,
each contributing evidence for or against various classifications. Each rule applies
to a particular type of shape primitive and a particular range of measurements
for that primitive. These rules are learned from training images by extracting
primitives from the images, clustering them according to their measurements,
and associating rules with the clusters that derive primarily from a single object.
Because this system does not learn constraints governing the relative positions
of the shape primitives, it appears to have a very limited ability to distinguish
among objects that have different arrangements of similar features.

Neural networks, including radial basis function networks, have been used as
trainable classifiers for object recognition (e.g., [4]). In this role, the network ap-
proximates a function that maps a vector of feature measurements to an object
identifier, or to a vector of graded yes/no responses, one per object. For this
approach to succeed the function must be smooth; furthermore, as with any clas-
sifier, the object categories must be shaped appropriately in feature space (e.g.,
Gaussian radial basis functions are best suited for representing hyperellipsoids).
Nearest neighbor classifiers, which make fewer assumptions, are also commonly
used. Rare are comparative evaluations of how various classifier/feature space
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combinations perform on object recognition problems (such as [5]). The most
difficult aspect of this approach seems to be deriving appropriate feature vectors
from cluttered images.

7.3 LEARNING A STRUCTURAL MODEL

A structural model explicitly represents both shape primitives and their spatial re-
lationships. Its structure is thus analogous to that of the modeled object, and it is
often represented as a graph or, equivalently, as a series of predicates. In general,
a structural model is learned from training images by first obtaining structural
descriptions from each image, and then inducing a generalization covering those
descriptions. Connell and Brady [6] have described a system that learns structural
models for recognizing 2-D objects in intensity images. The system incorporates
many interesting ideas. They use graphs to represent the part/whole and ad-
jacency relations among object regions described by smoothed local symmetries
(ribbon shapes). An attribute of a region, such as its elongation or curvature, is
encoded symbolically by the presence or absence of additional graph nodes accord-
ing to a Gray code. A structural learning procedure forms a model graph from
multiple example graphs, most commonly by deleting any nodes not shared by all
graphs (the well-known dropping rule for generalization). Similarity between two
graphs is measured by a purely syntactic measure: simply by counting the nodes
they share. Consequently, this system accords equal importance to all features,
and it uses a somewhat arbitrary metric for comparing attribute values.

The approaches described below involve more powerful models that represent
probability distributions over graphs. A Markov or independence condition is
assumed so that the high-order, joint probability distribution can be approximated
by a product of low-order distributions, one per node or arc. The probability of a
particular graph instance is then defined according to a partial match between that
instance and the model. In these respects, the approaches resemble our own for
learning characteristic views. Our approach differs in that it uses feature positions
as well as attributes and relations to support an efficient matching procedure based
on iterative alignment.

Wong and You [32] represent a model as a random graph in which nodes
represent shape primitives, arcs and hyperarcs represent relations among them,
and both have attribute values characterized by discrete probability distributions.
An attributed graph (i.e., a random graph’s outcome) is treated as just a spe-
cial case of random graph. An entropy measure is defined on random graphs,
and the distance between two random graphs is defined as the increment in en-
tropy that would result from merging the two (the minimal increment over all
possible mergings). A random graph is synthesized from examples by repeatedly
merging the two nearest graphs. This learning method seems to have been demon-
strated only with 2-D recognition problems and clean, synthetic images. However,
McArthur [16] has extended the random graph formalism to allow continuous at-
tributes, and he has used it to learn 3-D, object-centered models from images
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with known viewpoints. In comparison, our formalism incorporates continuous
attributes more easily using likelihoods rather than entropies, and our learning
method does not require knowledge of viewpoint or feature correspondences.

In Segen’s system [24] for recognizing 2-D shapes, a graph node represents a
relation among shape primitives, which are oriented point features (see page 23).
But instead of specifying a particular relation, a node in the model graph specifies
a probability distribution over possible relations. For example, relations involving
two features may include one that holds when the features are oriented away from
each other, and another that holds when they are oriented in the same direction;
a model node may specify that the first relation holds with probability 0.5, and
the second, with probability 0.3. When a graph instance is matched with the
model, the instance’s probability can be computed by assessing the probability
of each instance node according to the distribution of its corresponding model
node. Recognition involves finding the most probable match. A model is learned
incrementally from instances by matching it with each one successively; following
each match the probabilities recorded in matching model nodes are adjusted and
any unmatched instance nodes are added to the model. Whereas Segen’s system
reduces all measurements to global categories found by clustering, our method
retains numeric measurements as attribute and position distributions that are
learned individually for each model feature. Consequently, we expect better per-
formance in discrimination and generalization.

7.4 LEARNING A SET OF CHARACTERISTIC VIEWS

In learning a model that is to be represented as a set of characteristic views,
part of the task is to choose those views. One can cluster the training images (a
form of unsupervised learning) to create one characteristic view from each clus-
ter. While several researchers have done this with images rendered from CAD
models, thus avoiding the feature correspondence problem, Gros [12] and Seibert
and Waxman [25] have clustered real images. Gros measures the similarity of
an image pair as the proportion of matching shape primitives, whereas Seibert
and Waxman use a vector clustering algorithm with fixed-length vectors encoding
global appearance. Our method, in comparison, uses a clustering measure based
on objective performance goals (accuracy and efficiency), and an appearance rep-
resentation less affected by occlusion.

7.5 LEARNING A RECOGNITION STRATEGY

Draper [8] has considered how a system equipped with a variety of special-purpose
representations and algorithms might learn strategies for employing those tech-
niques to recognize specific objects. A typical recognition task would be to locate
a tree by fitting a parabola to the top of its crown. For this task, an appropriate
strategy is to segment the image, extract regions that are colored and textured
like foliage, group these into larger regions, smooth region boundaries, and fit
parabolas to the boundaries. A human supplies training examples by pointing
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out the desired parabolas in a series of images. The system then evaluates vari-
ous strategy choices (e.g., whether to smooth region boundaries) and parameter
choices (e.g., the degree of smoothing) for cost and effectiveness. From these eval-
uations it constructs a strategy, including alternatives, for performing the task
on new images. By learning what order to try alternative recognition methods,
Draper’s system differs from those that just select a single set of features useful
for recognition. Difficulty remains in limiting the search among strategies and
parameters to achieve acceptable performance.

7.6 THEORETICAL LEARNABILITY

There have been some efforts to identify theoretical limits on what can be learned
from images. These efforts are based on the analogy that learning to recognize an
object from images is like learning a concept from examples. Valiant [30] has pro-
vided a useful definition for characterizing the class of concepts that can be learned
by a particular algorithm: Informally, a class is probably approximately correct
(PAC) learnable by an algorithm if, with high probability, the algorithm learns a
concept that correctly classifies a high proportion of examples using polynomially
bounded resources (and, consequently, number of training examples); the bound
is a polynomial of both the accuracy and some natural parameter of the concept
class (e.g., vector length for concepts defined on a vector space). Significantly, the
algorithm has no prior knowledge about the distribution of examples.

Shvayster [27] has shown that some classes of concepts defined on binary im-
ages are not PAC-learnable from positive examples by any algorithm. For ex-
ample, suppose a template is said to match an image when every black pixel in
the template corresponds to a black pixel in the image (though not necessarily
vice versa). Then the concept consisting of all instances not matching some un-
known template is not PAC-learnable. Shvayster speculates that some nonlearn-
able concepts may become learnable, however, if some prior knowledge about the
distribution of examples is available.

Edelman [9] has argued that Shvayster’s negative result is not applicable to
object recognition because it uses an instance representation, the binary image,
that is inappropriate. If instead instances are represented by vectors of point
feature locations, Edelman shows, then recognition of an object can be learned
from a polynomial number of positive examples. He concludes that model learning
may be practical, provided an appropriate representation is chosen.

8 SUMMARY

We have presented a method for recognizing objects using models acquired from
training images. Appearance in an image is represented by an attributed graph
of discrete features and their relations, with a typical object described by many
features. Since one object can vary greatly in appearance when viewed under
different conditions, a model is represented by a probability distribution over
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such graphs. The range of this distribution is divided among characteristic views,
allowing a simplified representation for each view as a model graph of independent
features.

A model feature is described by probability distributions for probabilities of
detection, various internal attribute values, and various image positions. All three
distributions are estimated from samples supplied by training images.

A match quality measure provides a principled means of evaluating a match
between a model and an image. It combines probabilities that are estimated
using the distributions recorded by the model. The measure leads naturally to
an efficient matching procedure called probabilistic alignment. In searching for
a solution, the procedure can employ constraints arising both from the topology
of the model graph and from the probability distributions describing individual
features.

The model learning procedure has two components. A conceptual clustering
component determines clusters of training images that correspond to characteristic
views by maximizing a global measure of cluster quality. That measure combines
a simplicity criterion based on the minimum description length principle with a fit
criterion based on the match quality measure. A generalizing component merges
the images within each cluster to form a model graph representing a generalization
of that cluster. It uses the matching procedure to determine correspondences
among the cluster’s images.

An important aspect of the recognition learning problem this work has not
addressed is how a database of acquired model graphs should be organized and
accessed. Possibilities include organizing the model graphs hierarchically [2, 26],
or using selected high-level features and their attributes to index the collection of
model graphs. This issue is presently beyond the scope of our own work, however.
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alignment (recognition by)
iterative, 15
probabilistic, 15-16, 28

characteristic view, 4, 26
classification, 24-25

clustering, 3, 17-19, 23, 24, 26, 28
coordinate system, 6-7

density estimation, 10—12

feature, 3-5, 27
attributes of, 3, 6, 10, 25
dependence among features, 5, 8-9

learning new features, 23-24
positions of, 6, 12-14, 19

generalization, 17, 19, 22, 25, 26, 28
image graph, 4

learnability (theoretical), 27
least-squares estimation, 17

match (between image and model), 7
match quality measure, 7-9, 15, 18, 28
matching procedure, 15-17

milieu collection, 10

minimum description length principle, 18, 28

model
appearance model, 3—6
database of models, 28
model graph, 5—6, 17-19, 25-27
multi-view representation, 5
object-centered representation, 5
structural model, see model graph
viewer-centered representation, 5

neural network, 24
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object recognition
alignment method, see alignment (recognition by)
learning models for, 1-28
learning strategy for, 26-27

PAC learnable, 27
primitive, see features
probability density estimation, 10-12

radial basis function, 24
square-root information filter, 17

viewpoint transformation, 7, 12, 14-15
estimation of, 16—17



