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Abstract. We describe how to model the appearance of an object using
multiple views, learn such a model from training images, and recognize
objects with it. The model uses probability distributions to character-
ize the significance, position, and intrinsic measurements of various dis-
crete features of appearance; it also describes topological relations among
features. The features and their distributions are learned from training
images depicting the modeled object. A matching procedure, combining
qualities of both alignment and graph subisomorphism methods, uses fea-
ture uncertainty information recorded by the model to guide the search
for a match between model and image. Experiments show the method
capable of learning to recognize complex objects in cluttered images,
acquiring models that represent those objects using relatively few views.

1 Introduction

The multiple-view object recognition approach models an object with a series
of views, each describing the object’s appearance over a small range of viewing
conditions. Systems adopting this approach generally assume that all features
of a model view have the same likelihood of being detected and the same po-
sitional uncertainty, perhaps because better models are difficult to obtain [8, p.
182]. Clearly, though, features differ in incidence, localization accuracy, and sta-
bility. A system that learns models from example images can directly measure
these differences. This paper describes how to represent feature uncertainty in
a multiple-view model, learn such models from training images, and recognize
objects with them.

Information about feature uncertainty can help guide the matching process
that underlies recognition. Features whose presence is most strongly correlated
with that of the object can be given priority during matching; features best
localized can contribute most to an estimate of the object’s position; and features
whose positions vary most can be sought over the largest image neighborhoods.
Our matching method, based on both iterative alignment and graph matching,
achieves these goals. We hypothesize initial pairings between model and image
features, use them to estimate an aligning transformation, use the transformation
to evaluate and choose additional pairings, and so on, pairing as many features
as possible. The transformation estimate includes an estimate of its uncertainty



derived from the uncertainties of the paired model and image features. Potential
feature pairings are evaluated using the transformation, its uncertainty, and
topological relations among features so that the least ambiguous pairings are
adopted earliest, constraining later pairings. The method is called probabilistic
alignment to emphasize its use of uncertainty information.

Two processes are involved in learning a multiple-view model from training
images (Fig. 1). First, the training images must be clustered into groups that
correspond to distinct views of the object, with the goal that there be as many
groups as necessary, but no more. Second, each group’s members must be gen-
eralized to form a model view characterizing the most representative features of
that group’s images. Our method couples these two processes in such a way that
clustering decisions consider how well the resulting groups can be generalized,
and how well those generalizations describe the training images. The multiple-
view model produced thus achieves a balance between the number of views it
contains, and the descriptive accuracy of those views.
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Fig. 1. Learning a multiple-view model from training images requires a clustering
of the training images and a generalization of each cluster’s contents.

2 Related Research

2.1 Use of Uncertainty Information in Matching

Iterative alignment has been used with a Kalman filter to estimate transforma-
tions from feature pairings in both 2D-2D matching [1] and 2D-3D matching
[12]. Besides being efficient, this allows feature position uncertainty to deter-
mine transformation uncertainty, which in turn is useful in predicting feature
positions in order to rate additional feature pairings [12]. However, this (partial)
least-squares approach can only represent uncertainty in either image or model



features, not both; total least squares can represent both, but may not be ac-
curate in predicting feature positions from the estimated transformation [22, p.
5]. Most have chosen to represent image feature uncertainty; we have chosen to
emphasize model feature uncertainty, which in our case carries the most useful
information.

Some recognition methods are based on matching attributed graphs in which
nodes and arcs represent features and their relations, and attributes record mea-
surements. PREMIO [6] uses Gaussian distributions characterizing the expected
number of feature and relation matches, and the expected deviation of attributes
from their norms, to define a graph similarity measure that guides a fast, heuris-
tic search for matches; all features of one model view, however, share common
distributions. In view description networks [5], attribute distributions are deter-
mined by regularly sampling idealized features.

Whereas graph matching enforces topological and geometric relations among
groups of features—e.g., ensuring that model line segments sharing a com-
mon junction are paired with image line segments sharing a similar junction—
alignment enforces the viewpoint consistency constraint [13]. By combining these
two approaches, we gain advantages from employing all constraints.

Recognition methods that search transformation space by accumulating votes
may use feature uncertainty to weight votes (e.g., [17], although they assume the
same uncertainty for all features). Methods that avoid tesselating the space [4, 7]
have required the use of bounded error models of feature uncertainty to achieve
their high efficiency. However, in our situation, where models are learned from
positive training examples only, there is no way to determine error bounds; we
use Gaussian error models instead. Empirical evidence [23, ch. 3] supports this
choice, at least for some features.

2.2 Learning Appearance Models

Some approaches model an object as a subspace within a large space of possible
appearances, and use principal components analysis to obtain a concise descrip-
tion of the particular subspace occupied by a given set of training examples
(e.g., [21, 14]). However, applications of this approach have used global appear-
ance representations, such as entire images, and thus they have not supported
recognition of occluded objects.

Connell and Brady [9] have described a system that learns an appearance
model of a 2-D object (or one view of a 3-D object), using structures of localized
features. The system incorporates many interesting ideas. They use graphs to
represent the part/whole and adjacency relations among object regions described
by smoothed local symmetries (ribbon shapes). An attribute of a region, such as
its elongation or curvature, is encoded symbolically by the presence or absence
of additional graph nodes according to a Gray code. A structural learning pro-
cedure forms a model graph from multiple example graphs, most commonly by
deleting any nodes not shared by all graphs (the well-known dropping rule for
generalization). Similarity between two graphs is measured by a purely syntactic



measure: simply by counting the nodes they share. Consequently, this system ac-
cords equal importance to all features, and it uses a somewhat arbitrary metric
for comparing attribute values.

Learning a multiple-view model from real images requires some means of
comparing and clustering appearances. Although several researchers have clus-
tered images rendered from CAD models and thus avoided the feature correspon-
dence problem, only a few have clustered real images. Among them, Gros [11]
measures the similarity of an image pair as the proportion of matching shape
features, whereas Seibert and Waxman [20] use a vector clustering algorithm
with fixed-length vectors encoding global appearance. Our method, in compari-
son, uses a clustering measure based on objective performance criteria (accuracy
and efficiency), and an appearance representation less affected by occlusion.

3 Method

Representations used for images, models, and transformations are described in
Sects. 3.1 and 3.2. A match, comprising a set of feature pairings and an aligning
transformation, is rated by the measure described in 3.3. One component of this
measure estimates the probability that two features match given their respective
position distributions and an aligning transformation; it is described in 3.4; other
components have been described previously [15]. The method of estimating a
transformation from feature pairings is described in 3.6. A matching procedure,
described in 3.5, uses the match quality measure and transformation estimator
to match model features with image features.

The matching procedure is used both to learn a model from training images
and to recognize a modeled object in a scene. The learning procedure is described
in 3.7. Recognition combines the matching procedure with an indexing proce-
dure for selecting likely model views from a model database, and a verification
procedure for deciding whether a match presents sufficient evidence that an ob-
ject is present. Suitable indexing and verification methods have been described
elsewhere (e.g., [2, 19]), and will not be discussed here.

A more complete description of the entire approach may be found in [16].

3.1 Image and Model Representations

An image is represented by a graph with nodes denoting features and arcs de-
noting abstraction and composition relations among them. A feature may, for
example, be a segment of intensity edge, a particular arrangement of such seg-
ments, the response of a corner detector, or a region of uniform color. A typical
image is described by many features of various types, scales, and degrees of
abstraction, some found by low-level detectors, others by grouping.

Formally, an image graph G is a tuple (F, R) where F'is a set of image features
and R is a relation over elements of F'. A feature fi, € F'is a tuple (tx, ax, by, C);
ty, is the feature’s type, by and Cy are the mean and covariance of its image
position, and aj is a vector of descriptive attributes (e.g., the curvature of a
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circular arc, the interior angle of a junction). An element of R, (k,l1,...,1.),
indicates that feature k groups or abstracts features [; through [,,.

An object is modeled by a series of model views. A model view is represented
by a graph similar to an image graph, but one that includes information for
estimating the probability that a feature will be found in various positions and
with various attributes. It describes, for each model feature, a distribution of
where that feature may be expected to be found once the model and image have
been satisfactorily aligned by a transformation.

Formally, a model graph G is a tuple (F, R,m), where F' is a set of model
features, R is a relation over elements of F, and m is the number of training
images used to produce G. A feature f] € Fis a tuple (t’j,mj,Aj, Bj>; t;j is the
feature’s type, m; is the number of training images in which the feature was
observed, and Aj and Bj are the sequences of attribute vectors and positions
drawn from those training images. The mean and covariance matrix of B; are
denoted b; and C;. R is defined similarly to R.

3.2 Coordinate Systems

Feature positions are specified by 2D location, orientation, and scale. Image
features are located in an image coordinate system of pixel rows and columns.
Model features are located in a model coordinate system shared by all features
within a model graph. Two schemes are used:

zy#s The feature’s location is represented by [z y], its orientation by #, and
its scale by s.

zyuv The feature’s location is represented by [z y]. Its orientation and scale
are represented by the orientation and length of the 2D vector [u v].

We will prefer the zyfs scheme for measuring feature positions and the zyuwv
scheme for aligning features in the course of matching a model with an image.
They are related by 6 = tan™!(v/u) and s = vu? + v2. Where necessary, super-
scripts ®¥?% and *¥“ indicate which scheme is in use.

A 2D similarity transformation T is used to align features.> Fortunately, the
xyuv scheme allows T to be estimated from feature pairings by solving a system
of linear equations.* The transformation of image position by = [z yx uk vi]
involving a rotation by 6, a scaling by s;, and a translation by [z y¢] (in that
order), has two linear formulations, both used here:

10w, —yr | |2t
|0y, mp | |y |
T(bk) = 00 P— " = Akbt and
00 Vr Uk Vt

3 There is an analogous formulation using affine transformations with advantages only
in modeling 3D planar objects.

* Ayache and Faugeras [1], among others, have also used this formulation to express
the transformation as a linear operation.
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3.3 Match Quality Measure

A match is a consistent set of pairings between some model and image features,
plus a transformation closely aligning paired features. We seek a match that
maximizes both the number of features paired and the similarity of paired fea-
tures. Our match quality measure quantifying these goals extends that reported
in [15] to include an evaluation of how well the transformation aligns features.

Pairings are represented by E = (e1,es,...), where e; = k if model feature
J matches image feature k, and e; =L if it matches nothing. H denotes the
hypothesis that the modeled view of the object is present in the image. Match
quality is associated with the probability of H given E and 7', which Bayes’
theorem lets us write as

P(E|T,H)P(T | H)

PIH|ET) = P(EAT)

P(H) . (1)

There is no practical way to represent the high-dimensional, joint probability
functions P(E | T,H) and P(E A T) so we approximate them by adopting
simplifying assumptions of feature independence. The joint probabilities are de-
composed into products of low-dimensional, marginal probability functions, one
per feature:

P(c, | T, H) P(T | H)
Ple)  P(D)

P(H|ET)~]] P(H) . (2)
J

The measure is defined using log-probabilities to simplify calculations. Moreover,
all positions of a modeled view within an image are assumed equally likely, so
P(T | H) = P(T). With these simplifications the measure becomes

g(E,T) =logP(H) + > logP(e; | T, H) = Y _logP(e;) .
J J

P(H), the prior probability that the object as modeled is present in the image,
can be estimated from the proportion of training images used to construct the
model. The remaining terms are described using the following notation for ran-
dom events: €; = k, the event that model feature j matches image feature k;
€; =1, the event that it matches nothing; a; = a, the event that it matches a
feature whose attributes are a; and f)j = b, the event that it matches a feature
whose position, in model coordinates, is b.

There are two cases to consider in estimating the conditional probability,
P(e; | T, H), for a model feature j.



1. When j is unmatched, this probability is estimated by considering how often
j was found during training. We use a Bayesian estimator, a uniform prior,
and the m and m; statistics recorded by the model:

mj+1

P =L|T,H)=1-P(g; #L| T, H) 1~ I

(3)

2. When j is matched to image feature k, this probability is estimated by
considering how often j matched an image feature during training, and how
the attributes and position of k compare with those of previously matching
features:

P(é;=k|T,H) ~P(¢; #L| T,H)P(a; = ay | & #L,H)
P(b; =T(by) | & AL, T, H) . (4)

P(é; #1) is estimated as in (3). P(a; = a;) is estimated using the series of
attribute vectors A; recorded with model feature j, and a non-parametric density
estimator described in [15]. Estimation of P(b; = T'(by)), the probability that
model feature j will match an image feature at position by with transformation
T, is described in Sect. 3.4.°

Estimates of the prior probabilities are based, in part, on measurements from
a collection of images typical of those in which the object will be sought. From
this collection we obtain prior probabilities of encountering various types of
features with various attribute values. Prior distributions for feature positions
assume a uniform distribution throughout a bounded region of model coordinate
space.

3.4 Estimating Feature Match Probability

The probability that a model and image feature match depends, in part, on their
positions and on the aligning transformation. This dependency is represented by
the P(b; = T'(bg) | ...) term in (4). To estimate it, we transform the image
feature’s position into model coordinates, and then compare it with the model
feature’s position (Fig. 2). This comparison considers the uncertainties of the
positions and transformation, which are characterized by Gaussian pdfs.

Image feature k’s position is reported by its feature detector as a Gaussian
pdf in zyfs image coordinates with mean b¥¥** and covariance matrix C*¥**. To
allow its transformation into model coordinates, this pdf is re-expressed in zyuv
image coordinates using an approximation adequate for small # and s variances.
The approximating pdf has a mean, by*"", at the same position as bzygs, and a

% For simplicity, our notation does not distinguish probability mass and probability
density. P(¢;) is a mass because é; assumes discrete values, whereas P(&;) and P(b;)
are densities because a; and B]- are continuous. But since (2) divides each conditional
probability mass by a prior probability mass, and each conditional probability density
by a prior probability density, here we can safely neglect the distinction.
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Fig. 2. An aligning transformation maps an image feature’s position to model
coordinates, where it is compared with a model feature’s position to yield one
component of the probability that the image and model features match.

covariance matrix C;¥"" that aligns the Gaussian envelope radially, away from
the [u v] origin:

b V" =[xk yr skcosby spsinby] and

a2 0 0 0
006200
TYuv __ 1 T
G =Ry 0020 R™,
00 0a]
10 0 0
where R = 0L 0 0

00 cosfy, —sinby
00 sinf; cosby

and o7, 02 and o} are the variances in image feature position, scale and orien-
tation estimates.

T is characterized by a Gaussian pdf over [z;y;usv¢] vectors, with mean t and
covariance C; estimated from feature pairings as described in Sect. 3.6. Using it
to transform the image feature position from zyuv image to model coordinates
again requires an approximation. If we would disregard the uncertainty in 7', we
would obtain a Gaussian pdf in model coordinates with mean At and covari-
ance A;CyA}. Alternatively, disregarding the uncertainty in k’s position gives
a Gaussian pdf in model coordinates with mean At and covariance Ay CtAg.
With Gaussian pdfs for both feature position and transformation, however, the
transformed position’s pdf is not of Gaussian form. At best we can approximate
it as such, which we do with a mean and covariance given in zyuv coordinates
by

b /" = Art and



Cil™ = AL CI"™ A} + A CLA} .

Model feature j’s position is also described by a Gaussian pdf in zyuv model
coordinates. Its mean b; and covariance C; are estimated from the series of
position vectors B; recorded by the model.

The desired probability—that j matches k£ according to their positions and
the transformation—is estimated by integrating, over all zyuv model coordinate
positions r, the probability that both the transformed image feature is at r and
the model feature matches something at r:

P(b; =T(by)|...) = /P(fj =r)P(fp =r1)dr .
r

Here 1; and Ty are random variables drawn from the Gaussian distributions

N(bj,C;) and N(bg, Cy¢). It would be costly to evaluate this integral by sam-

pling it at various r, but fortunately the integral can be rewritten as a Gaussian

since it is essentially one component in a convolution of two Gaussians:

P(b; =T(bg) |...) = G(bj — bg,Cj + Crs)

where G(x, C) is a Gaussian with zero mean and covariance C. In this form, the
desired probability is easily computed.

3.5 Matching Procedure

Matches between a model graph and an image graph are identified by a process
that combines iterative alignment and graph matching. First, possible pairings of
higher-level features are ranked according to the contribution each would make
to the match quality measure. The pairing (j, k) receives the rating

9;(k) = maxlogP(¢; = k| T, H) ~ logP(&; = k) , (5)

favoring pairings where j has a high likelihood of matching, 7 and £k have similar
attributes, and the transformation estimate obtained by aligning j and k has
low variance. The maximum over T is easily computed because P(é; =k | T, H)
is a Gaussian in T'.

Alignments are attempted from the highest-ranked pairings. Each estimates a
transformation from the initial pairing, and then proceeds by repeatedly identify-
ing additional consistent pairings, adopting the best, and updating the transfor-
mation estimate with them until the match quality measure cannot be improved
further. Consistency is judged with respect to previously adopted pairings and
the relations recorded by graph arcs. Again, a pairing is rated according to its
match quality measure contribution:

9;(k; B,T) = log P(é; = k | T, H) — log P(&; = ) .

® When B; contains too few samples for a reliable estimate of C;, the estimate that
B; yields is blended with another determined by system parameters. Also, minimum
variances are imposed on C; to overcome situations where B; has zero variance in
some dimension.
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This favors the same qualities as (5), while also favoring pairings aligned closely
by the estimated transformation. To postpone ambiguous choices, highly-ranked
but conflicting pairings of a common feature are downgraded.

As alignments yield matches, the best is retained and its match quality mea-
sure provides a threshold for cutting off subsequent alignments. Alignments are
attempted until a match is found meeting acceptance criteria (e.g., a minimum
fraction of edges matched) or resource limits are reached.

3.6 Estimating Aligning Transformation

From a series of feature pairings, an aligning transformation is estimated by
finding the least-squares solution to a system of linear equations. Each pairing
(4, k) contributes to the system the equations

Uj_lAkt:Uj_lbj-i-é .

A is the matrix representation of image feature k’s mean position, t = [T,y ut v
is the transformation estimate, and b; is model feature j’s mean position. Uj; is
the upper triangular square root of j’s position covariance (i.e., C; = U; U]T); it
weights both sides of the equation so that the residual error € has unit variance.

A recursive estimator solves the system, efficiently updating the transforma-
tion estimate as pairings are adopted. We use the square root information filter
(SRIF) [3] form of the Kalman filter for its numerical stability, and its efficiency
with batched measurements. The SRIF works by updating the square root of
the information matrix, which is the inverse of the estimate’s covariance matrix.
The initial square root, Ry, and state vector, z;, are obtained from the first
pairing (j, k) by

R, =U;' A} and 2z, =U;'b; .

With each subsequent pairing (j, k), the estimate is updated by triangularizing
a matrix composed of the previous estimate and data from the new pairing:
Ri 1 Zi—1 a | Ri oz
-1 -1 -
Uj Ay Uj bj 0 e

When needed, the transformation and its covariance are obtained from the tri-
angular R; by back substitution:

t;i=R;'z; and C,, =R;'R; ' .

3.7 Model Learning Procedure

The learning procedure assembles one or more model graphs from a series of
training images showing various views of an object. To do this, it clusters the
training images into groups and constructs model graphs generalizing the con-
tents of each group (Fig. 1).We shall describe first the clustering procedure, and
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then the generalization procedure, which the clustering procedure invokes re-
peatedly.

We use & to denote the series of training images for one object. During
learning, the object’s model M consists of a series of clusters &; C X', each with
an associated model graph G;. Once learning is complete, only the model graphs
must be retained to support recognition.

Clustering Training Images. An incremental conceptual clustering algorithm
is used to create clusters among the training images. Clustering is incremental
in that, as each training image is acquired, it is assigned to an existing cluster
or used to form a new one. Like other conceptual clustering algorithms (e.g.,
COBWESB [10]), the algorithm uses a global measure of overall clustering quality
to guide clustering decisions. This measure is chosen to promote and balance two
somewhat-conflicting qualities. On one hand, it favors clusterings that result in
simple, concise, and efficient models, while on the other hand, it favors clusterings
whose resulting model graphs accurately characterize (or match) the training
images.

The minimum description length principle [18] is used to quantify and bal-
ance these two qualities. The principle suggests that the learning procedure
choose a model that minimizes the number of symbols needed to encode first
the model and then the training images. It favors simple models as those that
can be encoded concisely, and it favors accurate models as those that allow the
the training images to be encoded concisely once the model has been provided.
The clustering quality measure to be minimized is defined as L(M)+ L(X | M),
where L(M) is the number of bits needed to encode the model M, and L(X | M)
is the number of bits needed to encode the training images X when M is known.

To define L(M) we specify a coding scheme for models that concisely enu-
merates each of a model’s graphs along with its nodes, arcs, attribute vectors
and position vectors. Then L(M) is simply the number of bits needed to encode
M according to this scheme.

To define L(X | M) we draw on the fact that given any probability distribu-
tion P(z), there exists a coding scheme, the most efficient possible, that achieves
essentially L(z) = —log, P(z). Recall that the match quality measure is based
on an estimate of the probability that a match represents a true occurrence of the
modeled object in the image. We use this probability to estimate P(X | G;), the
probability that the appearance represented by image X may occur according
to the appearance distribution represented by model graph G;:

P(X | Gi) = max P(H| B,T) .

This probability can be computed for any given image graph X and model graph
G, using the matching procedure (Sect. 3.5) to maximize P(H | E,T) over
matches (E,T). P(X | G;) is then used to estimate the length of an encoding of

X given G;:

L(X [ G) = min (~log, P(X | G) + Ly (X, )
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The L,(X, E) term is the length of an encoding of unmatched features of X,
which we define using a simple coding scheme comparable to that used for model
graphs. Finally, we define L(X' | M) by assuming that for any X € X; C X, the
best match between X and any G; € M will be that between X and G; (the
model graph obtained by generalizing the group containing X). Then the length
of the encoding of each X € X in terms of the set of model graphs M is the sum
of the lengths of the encodings of each in terms of its respective model graph:

LX|M)=> > LX|G) .

i XeX;

As each training image is acquired it is assigned to an existing cluster or used
to form a new one. Choices among clustering alternatives are made to minimize
the resulting L(M) + L(X | M). When evaluating an alternative, each cluster’s
subset of training images X; is first generalized to form a model graph G; as
described below.

Generalizing Training Images to Form a Model Graph. Within each
cluster, training images are merged to form a single model graph that represents
a generalization of those images. An initial model graph is formed from the first
training image’s graph. That model graph is then matched with each subsequent
training image’s graph and revised after each match according to the match
result. A model feature j that matches an image feature k receives an additional
attribute vector a; and position by, for its series Aj and Bj. Some unmatched
image features are used to extend the model graph, while model features that
remain largely unmatched are eventually pruned. After several training images
have been processed in this way the model graph nears an equilibrium, containing
the most consistent features with representative populations of sample attribute
vectors and positions for each.

4 Experimental Results

The method has been implemented in a system that recognizes 3—D objects
in 2-D intensity images using a basic repertoire of features. The lowest-level
features are straight, circular and elliptical edge segments. Additional features,
representing perceptually-significant groupings, are junctions, pairs and triples
of junctions, pairs of parallel segments, and convex regions. Although this feature
repertoire has proven adequate for recognizing a wide variety of objects, it can
also be readily extended to extend the range of objects handled by the system.

Figs. 3 through 6 present one example of model learning and recognition.
Other examples of objects the system has learned to recognize are shown in
Fig. 7.

The learning procedure was applied to 112 training images of a bunny ac-
quired at 5° intervals over camera elevations of 0° to 25° and azimuths of 0°
to 30° (Fig. 3). The learning procedure clustered these training images to pro-
duce the groups shown in Fig. 4. (Although presenting training images to the
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system in different orders yielded different clusterings, those clusterings were all
qualitatively similar in that each contained approximately the same number of
groups and the same distribution of group sizes.) Each group of training images
was generalized to produce a model graph describing the range of appearances
contained in that group. One such model graph is depicted in Fig. 5; other model
graphs describe other views of the bunny in similar detail. Note that individ-
ual model features differ widely in uncertainty, as indicated by the standard
deviation ellipses shown in Fig. 5.

0° elevation, 90° azimuth 25° elevation, 0° azimuth

Fig.3. Two of 112 training images used to learn an appearance model of the
bunny.

Fig. 6 shows an image in which the bunny is successfully recognized by match-
ing features of the image with those of one of the model graphs. In this case, the
model graph that best matches the image is that derived from group D of the
training images, which is as expected since group D encompasses that aspect of
the bunny visible in the scene.

5 Summary

We have presented a general method for recognizing complex, real-world objects
using appearance models acquired from training images.

Appearance in an image is represented by an attributed graph of discrete
features and their relations, with a typical object described by many features.
Since one object can vary greatly in appearance when viewed under different
conditions, a model is represented by a probability distribution over such graphs.
The range of this distribution is divided among characteristic views, allowing a
simplified representation for each view as a model graph of independent features.
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Fig. 4. Seventeen groups, designated A through Q, were formed from the 112
bunny training images. Contours delineate the approximate scope of the model
views defined by some of the groups. Note, however, that because the model
views are defined probabilistically, their boundaries are actually indefinite.
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Fig.5. Shown here are selected features of the model graph obtained by gen-
eralizing the training images assigned to group D (delineated in Fig. 4). Each
feature is drawn at its mean location. (a) Features denoting edge segments. (b)
Features denoting edge segment junctions. (c) Groups of edge segment junctions.
(d) Groups denoting parallel pairs and closed regions of edge segments. In (b)
through (d), ellipses showing 2 s.d.’s of feature location uncertainty are drawn
for those features found in a majority of training images.

A model feature is described by probability distributions for probabilities
of detection, various internal attribute values, and various image positions. All
three distributions are estimated from samples supplied by training images.

A match quality measure provides a principled means of evaluating a match
between a model and an image. It combines probabilities that are estimated
using the distributions recorded by the model. The measure leads naturally to
an efficient matching procedure called probabilistic alignment. In searching for
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Fig. 6. Bunny test image. Above: Image. Below: Edge segment features of the
image that were matched by those of the model. Additional features, such as
junctions and regions, were also matched, but they are not shown here.

a solution, the procedure can employ constraints arising both from the topology
of the model graph and from the probability distributions describing individual
features.

The model learning procedure has two components. A conceptual clustering
component identifies groups of training images that correspond to characteris-
tic views by maximizing a global measure of clustering quality. That measure
uses the minimum description length principle to combine a simplicity criterion
favoring concise models, with a fit criterion based on the match quality mea-
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sure. A generalizing component merges the images within each group to form a
model graph representing a generalization of that group. It uses the matching
procedure to determine correspondences among the group’s images.

In principle the method can recognize any object by its appearance, given

a sufficient range of training images, sufficient storage for model views, and an
appropriate repertoire of features. In practice, however, highly flexible objects
will require impractical numbers of training images and model views. For such
objects, reducing the complexity of models, learning and recognition remains a
topic for further study.
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Fig. 7. Other examples of objects the system has learned to recognize. Left: One
element drawn from each object’s set of training images. Right: Recognition of
the objects in test images.



