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Abstract
We have previously developed a mobile robot system

which uses scale invariant visual landmarks to localize
and simultaneously build a 3D map of the environment
In this paper, we look at global localization, also known
as the kidnapped robot problem, where the robot local-
izes itself globally, without any prior location estimate.
This is achieved by matching distinctive landmarks in
the current frame to a database map. A Hough Trans-
form approach and a RANSAC approach for global
localization are compared, showing that RANSAC is
much more efficient. Moreover, robust global localiza-
tion can be achieved by matching a small sub-map of
the local region built from multiple frames.

1 Introduction
Accurate localization is a prerequisite for building

a good map, and having an accurate map is essential
for good localization. Therefore, Simultaneous Local-
ization And Mapping (SLAM) is a critical underlying
factor for successful mobile robot navigation.

Many early successful approaches [1] utilize artifi-
cial landmarks to achieve SLAM, and do not function
properly in beacon-free environments. Vision-based
approaches using natural landmarks in unmodified en-
vironments are highly desirable for many applications.

There are two types of localization: local and global.
Local techniques aim at compensating odometry er-
rors. They require that the initial location of the robot
is approximately known and they typically cannot re-
cover if they lose track of the robot’s position.

Global techniques can localize a robot without any
prior knowledge about its position, i.e., they can han-
dle the kidnapped robot problem, in which a robot
is kidnapped and carried to some unknown location.
Global localization techniques are more powerful than
local ones and can cope with situations in which the
robot is likely to experience serious positioning errors.

Markov localization was employed by various teams
with success [10, 14]. For example, the Deutsches Mu-
seum Bonn tour-guide robot RHINO [2] utilizes a met-
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ric version of this approach with laser sensors. How-
ever, it needs to be supplied with a manually derived
map, and cannot learn maps from scratch.

Unlike RHINO, the latest museum tour-guide robot
MINERVA [15] learns its map and uses camera mosaics
of the ceiling in addition to the laser scan occupancy
map. It uses the EM algorithm to learn the occupancy
map and the Markov localization with filter techniques
for global localization.

The Monte Carlo Localization method based on
the CONDENSATION algorithm was proposed in [4].
This vision-based Bayesian filtering method uses a
sampling-based density representation and can repre-
sent multi-modal probability distributions. Given a vi-
sual map of the ceiling obtained by mosaicing, it local-
izes the robot globally using a scalar brightness mea-
surement. [8] proposed some modifications for better
efficiency in large symmetric environments.

Since the sensor information (sonar, laser or bright-
ness measurements) only provides very low feature
specificity, these methods are probabilistic and require
the robot to move around, while the probabilities grad-
ually converge towards one localized peak.

Learning natural visual features for pose estimation
is proposed in [13]. Landmark matching is achieved us-
ing principal components analysis and a tracked land-
mark is a set of image thumbnails detected in the learn-
ing phase, for each grid position in pose space.

Using a panoramic image-based model for robot lo-
calization is proposed in [3]. A panoramic model is
constructed with depth and 3D planarity information.
The matching is based on the planar patches.

We have proposed a vision-based SLAM algo-
rithm [12] by tracking SIFT (Scale Invariant Feature
Transform) landmarks and building a 3D map simul-
taneously on our mobile robot equipped with Triclops,
a trinocular stereo system.

In this paper, we consider global localization as a
recognition problem, by matching the distinctive SIFT
features detected in the current frame to the pre-built
SIFT database map. A Hough Transform approach
and a RANSAC approach are described and compared.
Moreover, we consider global localization using fea-
tures from multiple frames.



Figure 1: SIFT stereo matching result, where horizon-
tal and vertical lines indicate the horizontal and verti-
cal disparities respectively.

2 Mobile Robot Localization
Our vision-based mobile robot localization and map-

ping system uses SIFT visual landmarks in unmodified
environments. By keeping the SIFT landmarks in a
database, we track the landmarks over time and build
a 3D map of the environment, and use these 3D land-
marks for localization at the same time.
2.1 SIFT Stereo

SIFT was developed by Lowe [9] for image feature
generation in object recognition applications. The fea-
tures are invariant to image translation, scaling, rota-
tion, and partially invariant to illumination changes
and affine or 3D projection. Previous approaches to
feature detection, such as the widely used Harris cor-
ner detector [6], are sensitive to the scale of an image
and therefore are not suitable for building a map that
can be matched from a range of robot positions.

SIFT keys are selected at maxima and minima of a
difference of Gaussian function applied in scale space.
At each feature location, an orientation is selected by
determining the peak of a histogram of local image
gradient orientations. A subpixel image location, scale
and orientation are associated with each SIFT feature.

In our Triclops system, we have three images at each
frame. In addition to the epipolar constraint and dis-
parity constraint, we also employ the SIFT scale and
orientation constraints for matching the right and left
images. These resulting matches are then matched
with the top image similarly. We can then compute
the 3D world coordinates relative to the robot for each
feature. They can subsequently serve as landmarks for
map building and tracking. Figure 1 shows the SIFT
stereo results for an image of resolution 320x240.
2.2 SLAM

To build a map, we need to know how the robot has
moved between frames in order to put the landmarks
together coherently. The robot odometry can only give
a rough estimate and it is prone to error such as drift-
ing, slipping, etc. To find matches in the second view,
the odometry allows us to predict the region to search
for each match more efficiently.

Once the SIFT features are matched, we can use
the matches in a least-squares procedure to compute
a more accurate camera ego-motion and hence better
localization. This will also help adjust the 3D coordi-
nates of the SIFT landmarks for map building.

We build a 3D map when the robot moves around
in our lab environment. Figure 2 shows the bird’s eye
view of the map after 435 frames and there are 2783
SIFT landmarks in the database. The system cur-
rently runs at 2Hz on a Pentium III 700MHz processor.
Readers are referred to [12] for further details.

2.3 Global Localization
Global localization is similar to a recognition prob-

lem where the robot tries to match the current view
to a previously built map. The SIFT features used
here were originally designed for object recognition
purposes, therefore these visual landmarks are very
suitable for global localization.

Apart from the scale and orientation, the local im-
age region is described in a manner invariant to var-
ious image transformations [9] and we obtain enough
measurements for high specificity. Robustness to local
geometric distortion can be obtained by representing
the local image region with multiple images represent-
ing local image gradients at a number of orientations.

We use 4 orientations, each sampled over a 2x2 grid
of locations. The total number of samples in each SIFT
local characteristic vector is 4 × 2 × 2 or 16 elements.
This vector size is sufficiently discriminating for this
application and can be increased if necessary. Using
this local image vector metric, we can simply compute
the Euclidean distance between the vectors of two fea-
tures to check how well they match.

We consider matching a set of SIFT landmarks to
the database, using the distinctive visual information
to localize a robot globally from the current view.
Both the geometric and photometric information of
the landmarks are utilized to facilitate matching.

We will describe two algorithms developed for global
localization next, namely the Hough Transform ap-
proach and the RANSAC approach, followed by a com-
parison of the two approaches.

3 Hough Transform Approach
Given a set of current SIFT features and a set of

SIFT landmarks in the database, we search for the
robot position that would have brought the largest
number of landmarks into close alignment, treating
global localization as a search problem.

The Hough Transform [7] with a three-dimensional
discretized search space (X, Z, θ) is used, where X
is the sideways translation, Z is the forward trans-
lation and θ is the orientation. The algorithm is as
follows [11]:
• For each SIFT feature in the current frame, find

the set of N potential SIFT landmarks in the



database that match, using the local image vector
and the height as the preliminary constraints.

• For each of the potential matches, compute all the
possible poses and vote the corresponding Hough
bins. As robot pose cannot be uniquely deter-
mined from just one match, multiple bins are
voted, covering an arc of robot poses at the es-
timated distance from the landmark.

• Vote also the neighbouring bins within the uncer-
tainty region based on the landmark covariance.

• Select the top K bins and carry out least-squares
minimization with outlier removal to obtain pose
estimates. Select the one with maximum number
of matches and lowest least-squares error. This
corresponds to a robot pose which can best match
the most features to the database.

4 RANSAC Approach
Global localization is performed by finding the robot

pose supported by the most landmarks. This can
be formulated as a hypothesis testing problem, where
multiple pose hypotheses are considered and the best
one corresponds to the pose which can match the most
features in the current frame to the database.

RANSAC [5] has been used in many applications for
model fitting, hypothesis testing and outlier removal.
We employ RANSAC for global localization to test the
pose hypotheses and find the inlier landmarks.
4.1 Tentative Matches

Firstly, we create a list of tentative matches from the
features in the current frame to the landmarks in the
database. For each feature in the current frame, we
find the landmark in the database which is closest in
terms of the local image vector and has similar height.
4.2 Computing the Alignment

Next, we randomly select 2 tentative matches
from the list and compute the alignment parameters
(X, Z, θ) from them. Two tentative matches are re-
quired in this case, since for each match, we can obtain
2 equations with 3 unknowns:

X = Xi −X ′
i cos θ − Z ′i sin θ (1)

Z = Zi − Z ′i cos θ −X ′
i sin θ (2)

where (Xi, Yi, Zi) is the landmark position in the
database and (X ′

i, Y
′
i , Z ′i) is the feature position in the

current frame in camera coordinates.
Therefore, we need two matches, i and j. By equat-

ing the equations, we have:

A cos θ + B sin θ = C (3)

B cos θ −A sin θ = D (4)

where A = X ′
i − X ′

j , B = Z ′i − Z ′j , C = Xi − Xj ,
D = Zi − Zj . If the two tentative matches are cor-
rect, the distance between two landmarks should be

invariant for the Euclidean transformation, so the fol-
lowing constraint is applied to each sample selection:
A2 + B2 ≈ C2 + D2. This efficiently eliminates many
samples containing wrong matches from further con-
sideration.

Solving Equations 3 and 4, we obtain:

θ = tan−1 BC −AD

AC + BD

and substituting this into Equations 1 and 2 gives an
alignment.
4.3 Seeking Support

Now we check all the tentative matches which sup-
port this particular pose (X, Z, θ).

Firstly, we compute the landmark position for each
match k relative to this pose:

Xp = (Xk −X) cos θ − (Zk − Z) sin θ

Yp = Yk

Zp = (Xk −X) sin θ + (Zk − Z) cos θ

and then compute the image position (rp, cp) and dis-
parity dp for this landmark at this pose.

Match k supports this pose if (rp, cp) and dp are close
to the measured image position (rm, cm) and disparity
dm for the feature in the current frame, i.e., |rp−rm| <
∆r and |cp − cm| < ∆c and |dp − dm| < ∆d (currently
∆r = 5, ∆c = 5, ∆d = 2).
4.4 Hypothesis with Most Support

This random selection, alignment computation and
support seeking process is repeated m times. The pose
with most support is our hypothesis. We then proceed
with least-squares minimization for the inliers which
support this hypothesis and obtain a better estimate
for the final pose.

The probability of a good sample τ for RANSAC [5]
is given by:

τ = 1− (1− (1− ε)p)m (5)

where ε is the contamination ratio (ratio of false
matches to total matches), p is the sample size and
m is the number of samples required.

In this case, p = 2 as two matches are required to
compute the alignment. The contamination ratio de-
pends on how distinctive the features are, the database
size as well as the environment. We will compare the
effect of various contamination ratios in Section 6.

5 Experimental Results
Using the database map built earlier covering a 10m

by 10m area, we test the robot at various positions.
Both approaches give similarly good results. The fol-
lowing pose results (X,Z, θ) are obtained using the
RANSAC approach with m = 50, where X and Z are
in cm and θ is in degrees:



(a) (b)

(c) (d)
Figure 2: Global localization results with RANSAC.
The vee indicates the robot field of view. (a) Case L1.
(b) Case L3. (c) Case L5. (d) Case L8.

Case Measured Pose Estimated Pose Match

L1 (-10,120,-60) (-13.3,127.6,-60.5) 35
L2 (50,210,-25) (54.3,208.9,-25.6) 17
L3 (-15,130,-140) (-16.0,134.9,-140.5) 32
L4 (-80,60,-150) (-75.7,68.8,-148.6) 23
L5 (-100,0,130) (-105.0,7.6,130.9) 50
L6 (30,-70,40) (31.3,-64.9,38.5) 11
L7 (-170,20,-125) (-175.2,21.8,-124.4) 52
L8 (-210,0,-50) (-207.6,8.3,-49.0) 18

Measured pose is the approximate ground truth
measured manually. The average Euclidean transla-
tion error is 7cm and the average rotation error is
around 1◦ for these 8 cases. These errors could be
further reduced by using higher image resolution but
they are sufficient for our navigation requirement.

We currently set a minimum of 10 matches for a re-
liable estimation. Figure 2 shows some of these results
visually, indicating the robot location and orientation
relative to the database map.

Global localization fails when the robot is facing
some landmarks which were previously viewed from
very different directions during map building. There-
fore, extensive landmarks all over the environment
should be observed from multiple views during map
building, to obtain a richer database map.

6 RANSAC versus Hough Transform
We would like to compare the computational effi-

ciency of these two approaches of global localization.
The following run-time results are based on a Pentium
III 700MHz processor.

6.1 Hough Transform
In this approach, we have a 3-D Hough space for

(X, Z, θ) where q, n and l are the number of bins for
X, Z and θ respectively. For each of the potential
matches, we need to vote in l bins since there are mul-
tiple robot poses that could have observed this land-
mark. The main computation includes computing the
poses to vote and finding the peaks in the Hough space.

The pose computation time for one potential match
for all features in the current frame at all orientations
is t1. As we find the best N matches for each feature,
the pose computation takes Nt1.

It takes t2 to find the highest peak in the Hough
space, which is proportional to the map dimension.
Optimally, we can maintain a heap to avoid going
through the Hough bins repeatedly. Then, at each
of the K times, it will take only logarithmic time to
retrieve the next peak instead of linear time. For now,
we just simply going through the bins K times, so the
time required is Kt2. There is some overhead of t3 as
well and the total time taken is Nt1 + Kt2 + t3.

For our experiment, the discretization used is
(10cm,10cm,2◦) with a Hough space of q n l bins (cur-
rently q = 100, n = 100, l = 180), t2 = 0.05. With
K = 10, N = 5, t1 = 0.025, t3 = 0.1, the total time
taken in this case is around 0.725 second.
6.2 RANSAC

For the RANSAC approach, the computational cost
is affected greatly by how many times we need to
sample, which depends on the contamination ratio, to
achieve a certain probability of a good sample.

With p = 2 and ε = 1− c/f where f is the number
of features in the current frame and c is the number of
correct matches, we can re-write Equation 5 as:

m1 =
log(1− τ)

log(1− c2/f2)
≈ −f2

c2
log(1− τ) (6)

using Taylor’s expansion as approximation.
For each random selection, we need to check the sup-

port from all the f tentative matches, as the tentative
matches are obtained by considering each feature in
the current frame one by one. The time required is
(ft + t4) where ft is the time to check for support from
f tentative matches and t4 is a fixed overhead.

Therefore, the total cost is (ft + t4)m1 + t5 where
t5 is the time to create the list of tentative matches,
which depends on the number of features in the current
frame and the database size.

In our case, ft = 1.4 × 10−5, t4 = 10−5, t5 = 0.02,
the total time is therefore (1.4×10−5+10−5)m1+0.02.
Assuming a contamination ratio of 0.70, to achieve
99% probability of a good sample, m1 is 50 and the
time is around 0.02 second. RANSAC is much more
efficient than the Hough Transform.

For larger values of the contamination ratio, a larger
m1 is required to maintain the probability of getting



a good sample. The following table shows the number
of samples and the time required for various contam-
ination ratios. We can see that the required time is
still quite short even when the contamination is high.

Contamination Samples Time (sec)
0.70 50 0.021
0.90 460 0.031
0.95 1840 0.064
0.98 11500 0.296

6.3 Discussion
With highly distinctive SIFT features, either the

Hough Transform or the RANSAC approach will give
a good estimate, with the RANSAC approach being
more efficient. The computational cost increases lin-
early with the database size for both approaches.

When non-specific features are used, we need to
consider all the possible matches between the current
frame and the database landmarks. Therefore, using
SIFT features is much more efficient as good matches
found based on the SIFT distinctiveness facilitate the
process considerably.

Moreover, when using less specific features, global
localization is more difficult to achieve by just using
information from one frame, because multiple possible
robot poses may not be reliably differentiated. For
sonar data in [14] and brightness measurements in [4],
stochastic localization methods are required to localize
the robot gradually while it moves around.

7 Map Alignment
Instead of using only the current frame for global

localization, we now build a small sub-map of a lo-
cal region from multiple frames and then align this
sub-map to the database map. This approach is more
robust for scenarios where the robot is facing a scene
with very few SIFT landmarks.

To align two maps, we employ an algorithm very
similar to the global localization algorithm above. Ei-
ther the Hough Transform approach or the RANSAC
approach can apply, but we consider RANSAC here
due to its efficiency.

The process is the same as in global localization,
except that during the support seeking stage we now
use the world positions of the landmarks to check for
support, instead of the image coordinates.

In this experiment, when the robot wants to localize
itself globally, it rotates a little bit, from -15 degrees
to 15 degrees and builds a sub-map of this local region
using information from multiple frames.

Figure 3 shows the various sub-maps built at several
test positions. There are 411 landmarks, 207 land-
marks, 383 landmarks and 270 landmarks in the sub-
maps respectively. There are significantly more land-
marks than in just one frame, typically around 70.

Map alignment using RANSAC is then carried out
between these sub-maps and the database map, we
obtain the following results (Xcm, Zcm, θ◦):

(a) (b)

(c) (d)
Figure 3: Sub-maps built at test positions. (a) Case
M1. (b) Case M2. (c) Case M3. (d) Case M4.

Case Measured Pose Estimated Pose Match

M1 (-110,30,-90) (-104.8,30.5,-92.2) 191
M2 (-270,100,-45) (-259.7,101.8,-43.5) 32
M3 (-130,100,-150) (-125.9,90.3,-146.9) 143
M4 (60,310,-65) (56.9,312.8,-63.5) 44

We can see that very good alignments are obtained
with many matches in all cases. These global local-
ization results are shown visually in Figure 4. If only
the current frame is used for global localization here,
there are insufficient matches in cases M2 and M4 for
a reliable estimation.

8 Conclusion
In our previous work [12], we have built a database

map with distinctive SIFT landmarks. We have devel-
oped a Hough Transform approach for global localiza-
tion in [11]. In this paper, we proposed a RANSAC
approach for matching SIFT features in the current
frame to the database efficiently, to localize globally.
We have demonstrated that the robot can globally lo-
calize itself well using SIFT features, even from just
the current frame.

The contribution of this work includes the use of
distinctive visual 3D landmarks for mobile robot lo-
calization, which has primarily been tackled in the
past using 2D maps obtained from laser or sonar sen-
sors. Moreover, the comparison of the commonly-used
Hough Transform with RANSAC shows the greatly
improved efficiency of RANSAC when matching dis-
tinctive features. Building sub-maps and then using
them for global localization provides more robustness.

These algorithms have been implemented on our
mobile robot, who won the first prize in the AAAI
Hors d’Oeuvres competition 2001. The robots need
to serve appetizers to people and return to the home
base for refill when the food on the tray runs out. Our
robot can estimate where it is and find its way home.



(a) (b)

(c) (d)
Figure 4: Global localization by map alignment. The
vee indicates the robot field of view. (a) Case M1. (b)
Case M2. (c) Case M3. (d) Case M4.

When global localization with the current frame is
not certain due to the lack of features, the robot should
rotate or move around. Therefore, it builds a small
sub-map of the local region to match to the database
for more robustness.

When the robot is in an area not in the database
map or if the area has changed substantially from the
original map, it will not be able to localize globally.
The new region should be mapped and integrated with
the existing map.

Maps can now be re-used as the robot knows where
it is, it can continue to improve and augment the pre-
vious map. Using the same database map, multiple
robots can localize themselves individually with refer-
ence to the same coordinate frame based on the vi-
sual landmarks they are looking at. Knowing the rel-
ative positions of the robots from each other is crucial
for multi-robot collaboration, such as navigation, map
building and other higher-level tasks.

A comprehensive database map is important for
global localization. We are currently investigating
some mobile robot exploration strategies to build a
good map for the environment, where the robot would
observe objects from various viewpoints. Moreover,
experiments in larger environments are required to
evaluate the scalability of the system.
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