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ABSTRACT

A computer vision system has been developed for real-time motion tracking of 3-D

objects, including those with variable internal parameters. This system provides

for the integrated treatment of matching and measurement errors that arise dur-

ing motion tracking. These two sources of error have very di�erent distributions

and are best handled by separate computational mechanisms. These errors can

be treated in an integrated way by using the computation of variance in predicted

feature measurements to determine the probability of correctness for each potential

matching feature. In return, a best-�rst search procedure uses these probabilities

to �nd consistent sets of matches, which eliminates the need to treat outliers dur-

ing the analysis of measurement errors. The most reliable initial matches are used

to reduce the parameter variance on further iterations, minimizing the amount of

search required for matching more ambiguous features. These methods allow for

much larger frame-to-frame motions than most previous approaches. The result-

ing system can robustly track models with many degrees of freedom while running

on relatively inexpensive hardware. These same techniques can be used to speed

veri�cation during model-based recognition.
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Introduction

With recent improvements in model-based vision algorithms and computer hard-

ware performance, it will soon be possible to build low-cost, high-reliability systems

for model-based motion tracking. Such systems can be expected to open up a wide

range of applications in robotics by providing machines with real-time information

about their environment. This paper describes a number of techniques for e�ciently

matching parameterized 3-D models to image features. The matching methods are

robust with respect to missing and ambiguous features as well as measurement

errors. The initial application is in a system for real-time motion tracking of articu-

lated 3-D objects. With the future addition of an indexing component, these same

techniques can be used as a component of general model-based recognition as well

as motion tracking.

There are two types of errors that must be accounted for during the recognition

process: matching errors and measurement errors. Each type of error has very

di�erent characteristics and is best handled by separate computational mechanisms.

In the past, most model-based vision systems have been designed to minimize the

inuence of one of these classes of error, but there has been little work on methods

for simultaneously accounting for both. This paper describes some methods for the

integrated treatment of matching and measurement errors. In particular, allowance

for matching errors improves the estimation for unknown model parameters by

removing outliers, while accurate computation of variance in measurements can be

used to limit the amount of search during matching.

Matching errors occur due to the mislabeling of image features that allows

incorrect image features to be brought into correspondence with model features. As

correct and incorrect matches are typically independent features of the scene, the

location of an incorrect match does not provide any useful information regarding the

location of the correct match. The standard method for handling matching errors

in model-based vision is to perform a search, in which di�erent combinations of

potential matches are individually evaluated for consistency (Brooks 1981; Grimson

& Lozano-P�erez 1987). The drawback of this approach is its computational cost,

which grows exponentially as larger subsets of features are considered. However, this

cost can be minimized through the probabilistic selection of the matches that are

most likely to be correct. As reliable veri�cation of an overdetermined interpretation

allows the search to terminate when a correct set of matches is found, the average

search time is minimized by performing the search in decreasing order of probability

of correctness.

Measurements of the locations of correctly matched features have a very dif-

ferent distribution of errors. These errors are most easily modeled as having a

Gaussian distribution, which can be represented with a mean and variance. The

individual feature errors can be used to compute the variances and covariances for

all model parameters. The residual of the data �tting can be used to evaluate the

consistency of matches. The optimal estimation of model parameters from initial

matches provides information for the probabilistic evaluation of the correctness of

later matches, thereby minimizing matching errors as well as measurement errors.
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Previous approaches

Most previous work on model-based motion tracking has assumed that velocity or

acceleration is slow relative to the frequency of image acquisition, allowing each

feature to be tracked according to its spatiotemporal continuity. When the location

of features in each new frame can be accurately predicted from previous frames,

there is little or no ambiguity in matching. By using the averaging properties of

overdetermined systems, it is possible to tolerate occasional incorrect matches as

long as the errors are limited in size by a small search window, so such systems

can achieve reliable performance for frame-to-frame motion of up to several pixels.

One of the earliest systems for 3-D model-based motion tracking was reported by

Gennery (1982), which tracked Sobel edges within a 5-pixel range of predicted

edges. The prediction included velocity extrapolation and �ltering. In separate

work, Gennery (1981) also examined the probabilistic evaluation of feature matches

to a model. Verghese et al. (1988; 1990) describe a system for real-time tracking of

rigid 3-D objects, based on the assumption that features are spatiotemporally dense

(i.e., move less then one pixel from frame to frame). Bray (1990) has developed a

system that individually tracks each image edge over short distances and uses the

motion of these individual edges to solve for combined object motion. Perhaps the

most dramatic demonstration of the approach of using spatiotemporal continuity

is the work of Dickmanns & Graefe (1988) on the use of Kalman �ltering as a

framework for the real-time control of vehicles and aircraft from moving image

sequences. He has demonstrated the ability to drive a van on normal roads at

speeds up to 100 km/hour by tracking the road boundaries with sets of correlation-

type feature detectors. Another example of the application of Kalman �ltering to

motion tracking is described by Wu et al. (1989).

The system described in this paper incorporates a search process to allow for the

possibility of errors in feature matching, in addition to using detailed propagation

of error bounds in feature measurements. The iterative matching procedure allows

the most reliable matches to improve the probability of correctly matching other

features. These methods allow the range of motion from frame to frame to be greatly

increased without loss of reliability and with only modest increases in computation.

As such, it draws on work in model-based recognition (Lowe 1985, 1987), which

can be seen as the limiting condition when there are no bounds on motion from

frame to frame. The major di�erence is that tracking begins its search from a

predicted location while recognition requires a more powerful indexing method to

generate matching hypotheses from image features in any location. Previous work

on matching for recognition has placed much less emphasis on the propagation

of parameter variance estimates during model veri�cation. Each task can bene�t

from both matching techniques, so there will no doubt be an eventual merging of

systems for recognition and tracking. Thompson & Mundy (1988) describe the use

of motion prediction to constrain a di�erent type of recognition algorithm, based

on the clustering of vertex matches in an a�ne transform space. An approach to

motion tracking using a Hough transform space around the current object position

is described by Stephens (1990).
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Modeling of measurement errors

The search process to be described later is used to eliminate incorrect matches

(outliers) from the solution set. Therefore, it is reasonable to base the quantitative

parameter solving on the assumption of normally distributed measurement errors.

The parameters that must be solved for include the orientation and position of each

object as well as the position of any articulated object components.

A number of previous motion tracking systems have used a Kalman �lter to

smooth these parameter estimates over time across a number of image frames.

This is appropriate in applications such as aeronautics, where it is possible to put

precise limits on the range of accelerations that can be expected. However, in

typical robotics applications there are few useful limits on expected accelerations

(e.g., when objects are bumped or collide), so that the smoothing performed by

the Kalman �lter would be either misleading or ine�ective. For example, velocity

smoothing would cause an object dropped on a table to \bounce" into the table

before recovering. Given the overconstrained information usually available from

each image frame, it is possible to replace the Kalman �lter with a more e�cient

form of velocity prediction and stabilization with prior variances. The stabilization

is important during early stages of matching when only a few features are a part of

the solution, and it is useful for estimating the initial probability of correctness for

each potential feature match.

To perform a least-squares �t to the data for the non-linear unknown param-

eters, we use the Gauss-Newton method augmented by stabilization with prior

variances. Each iteration of the Gauss-Newton method solves the following matrix

equation:
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�

where x is the unknown vector of corrections to be made to each parameter, e is

the vector of errors between matched image features and model predictions, and

J is the Jacobian matrix of errors with respect to parameters. W is a diagonal

weighting matrix used to stabilize the solution, in which each weight is inversely

proportional to the prior standard deviation, �
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Since W is a diagonal matrix, W

T

W is also diagonal but with each element on

the diagonal squared. This means that stabilization can be accomplished by �rst
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forming J

T

J and then adding small numbers to the diagonal. This method almost

always converges to the accuracy limits of the data within one or two iterations

for the motion tracking problem, as the initial parameter estimates are quite good.

Full details on the development of the above solution and stabilization methods

have been given in an earlier paper (Lowe 1991).

If the number of error measurements derived from the data, m, is greater than

the number of parameters, n, we can estimate the variance, �

2

, in the data from

the size of the residual:

�

2

=

kJx� ek

2

m� n

If � is much greater than the standard deviation of the measurement errors in the

data, then it is likely that the system contains at least one incorrect match so we

abandon this branch of the search tree. Otherwise, this branch continues to be

explored and new matches are attempted until no more can be found.

Following each iteration of data �tting, the covariance matrix, P, for the model

parameters is given by the inverse of the matrix on the left-hand side of equation 1:

P =

�

J

T

J+W

T

W

�

�1

This can be computed e�ciently as a by-product of the least-squares solution. Then

the variance in each future predicted measurement can be computed from this

covariance matrix:

S = APA

T

(2)

where each row of A gives the derivatives of a predicted measurement with respect

to each of the model parameters. For matching model lines, we are interested in

the variance perpendicular and parallel to each endpoint of each visible model edge

as well as the variance in orientation of each model edge. The variance of each

predicted measurement is given by the corresponding diagonal element of S. Note

that it is not necessary to compute the o�-diagonal elements of S, which otherwise

would be a large and expensive matrix to compute.

Therefore, we have completed the circle, in which new matches constrain model

parameters, which in turn constrain the predictions for future matches. A few

correct initial matches can greatly reduce the variance of further predictions and

often eliminate further search, as shown in the �nal examples.

Matching with minimal search

Robust matching can be achieved by searching for sets of matching image segments

that are consistent with a projection of the object using a single set of parameter

values. As there are usually many more matches than are needed to solve for the

model parameters, the �nal solution is overconstrained and it is unlikely that a

false set of matches will closely �t the model. However, the search process itself is

computationally expensive, as it is necessary to compute updated model parameters

to check each combination of matching segments. This search process is minimized
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Figure 1: The probability distribution is illustrated for a measurement, f , of a predicted

model feature, a. This is compared to the uniform background distribution of other

features, b

i

, which could give rise to false matches.

by using a best-�rst search, starting with those matches that are most likely to be

correct and using those to constrain the expected locations of other matches. In this

way, the most reliable matches in each image are used to increase the probabilities

of correctly matching more ambiguous features, which in many cases can eliminate

backtracking altogether. Because the �nal identi�cation is overdetermined and can

be reliably veri�ed, the search can terminate once a valid set of matches have been

found.

Therefore, an important aspect of minimizing search during matching is to

accurately estimate the probability that each potentially matching image feature

matches some corresponding model feature. These probabilities can be determined

using Bayesian decision theory (Duda & Hart 1973) as a function of a vector f of

feature measurements relating each pair of model and image features. Let a rep-

resent an image feature that arose from the projection of a corresponding model

feature, and let b

i

; 1 i n; represent all other (incorrectly matching) image fea-

tures. In the absence of other information, the incorrectly matching image features

are modeled as arising from a uniform background distribution. Then we can use

Bayes rule to compute the probability that a particular feature measurement vector

f arose from a model feature rather than the set of background features:

P (ajf) =

P (f ja)P (a)

P (f)

=

P (f ja)P (a)

P (f ja)P (a) +

i

P (f jb

i

)P (b

i

)
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This probability calculation is illustrated in Figure 1 for the case of a one-

dimensional feature measurement, f . We assume a Gaussian probability distribu-

tion for the model feature and a uniform background density for the other features.

For a particular feature measurement, f

0

, the probability that the feature arose

from the model is given by

P (ajf

0

) =

p

p+ q

(3)

where p and q are the values of the probability distributions at f

0

, as shown in

Figure 1.

The particular feature measurements that are used for matching line segments

are the perpendicular distance of the center of the image segment from the projected

model segment and the angular di�erence in orientation of the segments. Therefore,

it is necessary to determine the probability distributions for model and background

features as a function of this two-dimensional space of measurements.

Let x be the perpendicular distance of an image segment from its correctly

matching model segment and y be the angular di�erence in orientation. For the

sake of e�ciency, we assume that these measurements are independent. Therefore,

the two-dimensional probability distribution for these variables is

p(x; y) =

1

2��

x

�

y

e

�0:5[(x=�

x

)

2

(y=�

y

)

2

]

where �

x

and �

y

are obtained from the square roots of the corresponding diagonal

elements of the matrix S in equation 2.

We assume that the background distribution of other (incorrectly matching)

image segments is uniform with respect to location and orientation. We can calcu-

late the density of this uniform distribution by dividing the total number of segments

in the image by the area that the features can occupy in the feature measurement

space. It would be possible to use a local measure of feature density around each

potential match, although this is not done in the current implementation. So far,

we have considered only the perpendicular distance of an image segment from a pro-

jected model segment. However, it is also necessary that the image segment overlap

the model segment in the direction parallel to its length. As the image segment

could be partially detected for any interval along its length, this is better modeled

as a uniform interval probability distribution rather than a Gaussian distribution,

which is why it is not included in the multivariate normal distribution above. The

predicted model segment is extended in length to include the uncertainty in its

endpoint positions, giving a total length m. An image segment of length s can have

its midpoint fall anywhere within an interval of length m � s. If the image con-

tains line segments, then the background summed probability density function

of line segments over all orientations and midpoint positions meeting the overlap

constraint is the uniform value (independent of x and y)

q =

(m � s)

�
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where and are the width and height of the image, or the area over which

was determined. The factor � in the denominator arises because this is the range

of orientations for nondirected line segments.

The probability of correctness of each match depends on the relative sizes of p

and q, as in equation 3. Therefore, matching segments are evaluated more highly

if they have a small angular di�erence and perpendicular distance from the model

prediction, if their lengths closely agree with the prediction, and if the predicted

variance of each measurement is small. These criteria seem to capture the most

relevant properties useful for correctly matching line segments.

Best- rst search

The probability of correctness for each potential match between the model predic-

tions and image features is used to guide a best-�rst search process. Each node of

this search tree requires performing a least-squares solution for all model parame-

ters, which is a relatively expensive operation. Therefore, it is important to select

an optimal ordering for the search to minimize the possibility of backtracking, and

to also select enough matches at each node to constrain the parameters in lower

nodes and lead to a quick acceptance or rejection.

The top-level nodes of the search tree make use of enough matches to constrain

at least the number of degrees of freedom in the current model. For the example

shown in this paper, the model has 7 degrees of freedom so at least 4 line segment

matches are selected (each line segment match constrains 2 degrees of freedom).

This number of matches are selected from a ranked list of the best matches, and

other matches are added with decreasing probability as long as the product of

probabilities remains above 0.9. The stabilized least-squares solution is carried out,

and the residual is checked as described earlier. If this match is rejected, then

at least one of the segments in the match set must be in error. The probability

of correctness for each segment match is reduced by 1 n in the rejected set of n

matches, and the best-�rst search proceeds to form new search sets based on these

updated probabilities. In general, the reduction in probabilities for the previous

matches will cause other matches to be considered, but a further check is performed

to see that no new set contains a complete rejected set from some previous node of

the search tree.

In practice, backtracking is usually avoided by this conservative approach of

selecting only a few of the most reliable matches and using these to constrain the

locations of further matches. However, there will always be some probability of

making mistakenmatches that lead the parameter solution away from its true value,

so the ability to backtrack adds substantially to the system's robustness.

A further method that is used to allow for sudden unexpected motion of the

object is to increase the search range when the system is unable to �nd the object.

The search range is determined by the prior variances attached to each object

parameter before processing each new image. If the ranked list of potential matches

for this image contains too few candidates, then the parameter ranges are doubled
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and a search is made for new matches. This doubling can be performed up to 2

times, leading to a large search region when necessary in order to �nd an object

that cannot be found locally.

Real-time line detection

Until recently, the major computational bottleneck for motion tracking has been

the large number of computations required for low-level image analysis. However,

a number of vendors now o�er inexpensive systems for performing a range of dig-

ital image-level operations at video rates. In this work, we have used a Datacube

MaxVideo 20 board that performs 8x8 convolutions on 512x512 images at up to

60 frames per second (performing up to 1 billion 8-bit multiplications per second).

We use an 8x8 convolution kernel that is a Laplacian of Gaussian operator with

� = 1:2, for use in Marr-Hildreth (1980) edge detection.

Currently, the output of the image processing operations must be transferred

over a bus interface to the host computer (a Sun SPARCstation 2) for higher-level

processing. This simple image transfer and edge linking are currently the major

computational bottlenecks, but they are minimized by only transferring a region

around the expected location of the object as computed from the previous image.

This means that processing is somewhat slower for large, nearby objects as compared

to smaller, more distant ones.

The convolved image region is scanned to detect zero-crossing locations where

there is a change of sign between adjacent pixels. The approximate gradient at

the zero crossing is computed by taking the di�erence of neighboring pixels across

the zero crossing. These edge pixels are linked into lists on the basis of local 8-

neighbor connectivity. At the same time, Canny (1986) hysteresis thresholding is

performed using a high and low threshold on gradient. The resulting lists of con-

nected edge points are segmented into straight line segments using a scale-invariant

recursive subdivision algorithm described in an earlier paper (Lowe 1987). All of

these operations can be performed very e�ciently even on a serial machine; how-

ever, the reliability and accuracy of this feature detection could be improved with

the availability of more computing resources.

In order to make subsequent feature matching as e�cient as possible, all of

the line segments are indexed into a three-dimensional array on the basis of 2-D

position of the midpoint and orientation. Subsequent attempts to match features at

a particular range of positions and orientations need to examine only those segments

that are indexed in the small subset of the array locations that intersect these

bounds.

Implementation results

All steps of edge detection, matching, convergence and veri�cation can be done in

under 0.3 seconds on the system described above. In most cases, the probabilistic

matching criteria select correct matches on the �rst attempt and do not require any
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further search. In di�cult cases, search is terminated after exploring 5 branches of

the search tree so that the next image in the sequence can be processed without

signi�cant delay.

We have tested this system on thousands of images by holding the object model

in front of the camera and slowly moving it. The system displays the edges of the

object at the current calculated location superimposed on the camera image. These

edges are shown in yellow when the object has been correctly veri�ed and in red

when the object cannot be matched. As the current computational resources limit

processing to 3 to 5 frames per second and a limited search range, it is necessary to

move the object quite slowly. However, the tracking is quite robust and continues

even when up to half or more of the edges are occluded. The system performs well

over a wide range of lighting conditions and with complex backgrounds containing

many false edges.

Figures 2{7 show an example of this process for one image of a motion sequence.

Figure 2 shows the input image from a CCD camera. The object is a �le box with a

hinged lid, so that there are 7 unknown parameters that must be solved for. Parts

of the box are occluded by the author's hands, there are many reections from

the object's surface, and the background is cluttered. The line segments extracted

from this image and the initial estimate for the position of the object computed

by velocity extrapolation from the previous two images are shown in �gure 3. This

example is for an object that is relatively far from its predicted position. Also shown

as heavy lines are the best matches to image line segments which are selected on

this iteration. In the background, the light gray shading indicates the union of

all regions within 2 standard deviations of the predicted model edges (there is no

display of the variance in edge orientation, which is also computed). Subsequent

iterations are shown in �gures 4 to 6. The rapid reduction in the size of the shaded

regions indicates how the reduction in variance resulting from earlier matches greatly

reduces the subsequent search space. This \locking on" phenomenon is the result

of the overconstrained nature of the model-based vision problem and is what leads

to high reliability and e�ciency. The shaded gray regions also illustrate that the

variance is far from uniform for di�erent parts of the object, meaning that simpler

strategies for reducing the search range are unlikely to work as well. As can be

seen from �gure 7, the �nal computed parameters are quite accurate due to the

overconstrained data and the least-squares �t. All steps of matching in these �gures

requires about 0.1 seconds on a Sun SPARCstation 2 (not including line segment

extraction).

Conclusions and future directions

This paper describes an approach to model-based matching that provides for both

reliability and e�ciency by integrating the treatment of matching and measurement

errors. There is a role for both general tree search and for error estimation.
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Figure : The original image from a motion se uence of a le box with a hinged lid.

Figure : ine segments extracted from the image are shown with the model superim-

posed from its initial estimated viewpoint. The shaded area shows the union of the regions

of uncertainty for feature locations. Initial matched image segments are shown with heavy

lines.
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Figure : The position of the model is shown following the rst iteration of matching and

parameter determination. urther matched image segments are shown with heavy lines.

Figure : The model following the second iteration of parameter determination.
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Figure : The model is shown following the third and nal iteration of parameter deter-

mination. The region of uncertainty around each model edge is now very small.

Figure : The model is superimposed on the original image from its nal viewpoint.
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This approach has been implemented in a functioning system that can ro-

bustly track objects at the rate of 3 to 5 frames per second. With moderate in-

creases in computer speeds|as are already available with low-cost parallel systems

of microprocessors|such a system could be used to track objects at 30 or 60 frames

per second and provide real-time visual input for robots. Tracking multiple objects

would require at most a linear increase in computer speeds. With yet faster pro-

cessing, it would be possible to track exible objects with large numbers of internal

parameters.

An important future direction for this work is to incorporate the capability for

general object recognition (Lowe 1987). Recognition would make use of all of the

components described in this paper, but would need in addition an indexing system

from image feature groupings to potential object matches. The addition of feature

grouping techniques would also be very useful for the motion tracking problem, as

higher-level groupings are far less likely to be incorrectly matched than isolated line

segments. The result would be the integration of recognition and tracking, which

are simply di�erent ends of a continuum representing the degree of prior knowledge

regarding the locations of objects in an image.
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