
Scene Modelling, Recognition and Tracking with Invariant Image Features

Iryna Gordon and David G. Lowe
University of British Columbia

Department of Computer Science
Vancouver, BC, Canada�

skrypnyk, lowe � @cs.ubc.ca

Abstract

We present a complete system architecture for fully auto-
mated markerless augmented reality (AR). The system con-
structs a sparse metric model of the real-world environ-
ment, provides interactive means for specifying the pose of a
virtual object, and performs model-based camera tracking
with visually pleasing augmentation results. Our approach
does not require camera pre-calibration, prior knowledge
of scene geometry, manual initialization of the tracker or
placement of special markers. Robust tracking in the pres-
ence of occlusions and scene changes is achieved by using
highly distinctive natural features to establish image corre-
spondences.

1. Introduction

Until recently, accurate registration of virtual content has
imposed substantial initialization and setup requirements on
vision-based camera tracking in AR. Many successful sys-
tems have been developed [12, 1, 11, 24], which rely on
strategically placing fiducial markers in the environment
and performing manual camera calibration procedures. In
contrast, our work is motivated by the need for more flexible
and automated AR systems, capable of operating in unpre-
pared settings and generally requiring less time and effort to
set up. We present an approach which meets this goal, and
at the same time is capable of robust 6 degree-of-freedom
camera pose tracking, as well as convincing geometric con-
sistency of augmentation. The only required input is a set of
reference images, taken by a handheld uncalibrated camera
from arbitrary viewpoints.

As an alternative to markers, we propose the use of sta-
ble natural features to aid the tracker. Generated from an
image via the Scale Invariant Feature Transform (SIFT) al-
gorithm [16], these features act as descriptors of local image
patches. They are invariant to image scaling and rotation,
and partially invariant to changes in illumination and view-

point. The distinctiveness of SIFT features, as well as their
abundant presence over a large range of image scales, make
them suitable for recognition in cluttered and dynamic set-
tings. Feature matching can be performed efficiently and
reliably via an approximate tree search algorithm.

The system operates in two stages. During the first, of-
fline stage, SIFT features are extracted from the reference
images and multi-view correspondences are established.
These correspondences are used to build a metric model of
the real world to be augmented (which could be an individ-
ual object or a general scene). At the same time, calibra-
tion parameters and camera poses corresponding to image
viewpoints are computed. Structure and motion recovery is
performed with a simple yet powerful technique, based on
non-linear least squares, which is able to construct models
of arbitrary geometric complexity.

Once the real world model has been obtained, the posi-
tion, orientation and size of the virtual object must be spec-
ified relative to this model. For this purpose we provide an
interactive application, which allows the user to determine
the appearance of the virtual object in the reference images.

The second stage of the system involves model recog-
nition and computation of the current camera pose for live
video augmentation. Features detected in the current video
frame are matched to those of the world model, and these
matches are used to compute the current pose of the cam-
era. Jitter is minimized by regularizing the solution using
the camera pose computed for the previous frame. The
influence of the previous solution on the current one is
weighted without imposing constraints on the overall cam-
era motion. The tracker is remarkably stable (Figure 1
demonstrates some of its capabilities), and can perform on-
line scene recognition and recovery from failure, with the
tracked scene going in and out of view. Automatic recogni-
tion is one of the strongest advantages of our system, mak-
ing it suitable for a variety of mobile applications which
involve augmentation of recognized scenes, such as com-
puterized museum tour guides and site navigators.

The remainder of this paper is organized as follows. An

Figure 1. Typical performance of the tracker: a) a virtual teapot is placed in the modelled desk scene;
b) the scene does not have to be fully static; c) changes in lighting are properly handled; d) so are
drastic changes in viewpoint; e) moderate amounts of motion blur are acceptable; f) partial view of
the scene is correctly recognized.

overview of related work is provided in Section 2. Section 3
discusses our approach to scene modelling and virtual ob-
ject insertion. The details of camera pose tracking are pre-
sented in Section 4. System performance is discussed in
Section 5, followed by final remarks in Section 6.

2. Related research

In most marker-free AR systems, natural features are
used for establishing correspondences between consecutive
frames in a video sequence, i.e., for narrow baseline match-
ing. Some of the most common choices are the Harris cor-
ner detector [9], applied in [4, 5], and the Kanade-Lucas-
Tomasi (KLT) tracker [18], used in [25, 8, 20]. To automate
the initialization and failure recovery of a tracker, reliable
wide baseline matching is desired, which in turn imposes
a demand for a higher degree of feature invariance. This
problem is closely related to the task of object recognition
in computer vision, yet to our knowledge little effort has
been made to introduce it to AR.

A recent approach [6] proposes tracking of
parallelogram-shaped and elliptical image regions, ex-
tracted in an affinely invariant way, which can be used
for scene recognition. Impressive results are presented,
however the tracker lacks generality, as it relies on the
presence of planar structures in the viewed scene. In [15]
viewpoint invariance is achieved by applying eigen image
methodology to a set of local image patches, which capture
the appearance of a real-world point in several views. Their

method relies on the pre-built CAD model of the object
to be augmented, and requires manual matching of model
points to their 2D projections in reference keyframes.
In [13] edges of a CAD model are matched to detected
image edges. Their visual tracking system is combined
with rate gyroscopes in order to handle rapid movements of
a head-mounted camera.

Although user-supplied CAD models have been shown
to be effective tools for camera tracking, they are not always
readily available, and their use is limited to objects that can
be easily modelled by hand. In contrast, our method pri-
marily targets arbitrary shapes and textures, often present
in natural environments and man-made settings. Moreover,
no additional commercial tools or equipment, other than an
off-the-shelf video camera, is required.

Various techniques have been suggested in AR for ac-
quiring a reference representation of the real world. In [4]
two or more reference views are used to compute current
camera pose from epipolar geometry constraints on nat-
ural feature correspondences. Markers are still used to
pre-calibrate the reference frames with standard calibration
tools. The initial camera pose must be very close to one of
the reference images, due to wide baseline matching limi-
tations. A learning-based strategy is proposed in [8], where
the scene is represented by a set of natural features, de-
tected and calibrated during an initial marker-based track-
ing phase. The system presented in [14] uses fiducial de-
tection to represent the environment and its virtual contents
in an affine frame of reference, with an aim to avoid metric

camera calibration. This innovative approach achieves com-
parable results with minimum initialization effort, however
it does not allow the modelling of perspective projection ef-
fects at close camera distances. In [22] the coordinate frame
of the real world is manually inserted into reference views,
by specifying image locations of control points. Line inter-
sections on fiducials are tracked to estimate the motion of
the camera. Completely markerless and general techniques
are presented in [5] and [20], where virtual object regis-
tration is achieved based on the results of a global bundle
adjustment and self-calibration, leading to metric camera
motion and scene structure recovery. Both of these meth-
ods perform offline batch processing of the entire video
sequence, with no support for online scene recognition or
tracking.

3. Learning scene geometry

The preliminary stage of the system takes as an input an
unordered set of images of the real world scene or object
to be augmented. The images are acquired from unknown,
spatially separated viewpoints by a handheld camera, which
does not need to be pre-calibrated. At least two snapshots
are required; using more allows the capture of more scene
features and thus enables a wider-range and more reliable
tracking. In our experiments, we have used 5 to 20 images
which were gathered from front, side and top viewpoints,
separated by at most about 45 � . The scene is assumed to
be mostly rigid, with no special markers or known struc-
tures present. The system uses these input images to build a
sparse 3D model of the viewed scene and to simultaneously
recover camera poses and calibration parameters. The vir-
tual object can then be inserted into the modelled environ-
ment. The problem is divided into the following steps:

1. Local point features are extracted from the input im-
ages.

2. A robust wide baseline matching technique is applied
to find two-view feature correspondences, leading to
the construction of multi-view matches.

3. A subset of multi-view matches is chosen as an input
to an iterative algorithm for structure and motion re-
covery.

4. The remaining matches are triangulated using com-
puted camera parameters, and outliers are removed.

5. The position, orientation and size of the virtual object
are defined relative to the coordinate frame of the re-
covered model.

3.1. Feature extraction and matching

The main attractions of SIFT features are their distinc-
tiveness and invariance, resulting in a high probability of
correct matches across a wide range of image variations. In
addition, many of these features densely populating a typi-
cal image can be efficiently extracted (see Figure 2), mak-
ing them suitable for recognition and tracking in the pres-
ence of occlusions, and generally for algorithms benefiting
from a large number of feature matches. In this section
we give a brief overview of the feature extraction algorithm
(see [16, 17] for more details), followed by the discussion
of the multi-view feature matching approach.

Figure 2. SIFT keypoints extracted from a
640 � 480 image of a sneaker. The algorithm
found 1533 features shown as white arrows,
with size and direction corresponding to fea-
ture scale and orientation, respectively.

Candidate feature locations are first identified in spatial
and scale domains at extrema of a difference-of-Gaussian
(DOG) function. An initial image is repeatedly convolved
with variable-scale Gaussians, after which adjacent Gaus-
sian images are subtracted to produce the DOG images.
Each point in the latter is then compared to its neighbours
in both image location and scale, in order to find the DOG
peaks. At each peak, a detailed model is fit for location,
edge response and peak magnitude, rejecting unstable can-
didates. Besides image location and scale at which it was
found, each stable feature is assigned an image orientation
and a feature descriptor vector, which reflect local image
properties. Feature orientation and descriptor vector are
computed from gradient magnitudes and orientations, sam-
pled within a circular Gaussian-weighted window around
the feature. The length of the descriptor vector varies de-
pending on the number of orientation histograms used to
accumulate the samples. Best results are achieved with 128
dimensions, however smaller values are acceptable. Fea-

ture descriptors are represented in a scale- and orientation-
invariant manner, and are normalized to reduce the effects
of illumination changes.

The best candidate match for a SIFT feature is its near-
est neighbour, defined as the feature with the minimum Eu-
clidean distance between descriptor vectors. The reliability
of the nearest neighbour match can be tested by compar-
ing its Euclidean distance to the one of the second near-
est neighbour. If these distances are too similar, the near-
est neighbour match is discarded as an outlier. This simple
method works well in practice, since incorrect matches are
much more likely to have close neighbours with similar dis-
tances than correct ones, due to the high dimensionality of
the feature space.

The large numbers of features generated from images, as
well as the high dimensionality of their descriptors, make an
exhaustive search for closest matches extremely inefficient.
Therefore we employ an approximate Best-Bin-First (BBF)
algorithm, based on a k-d tree search [3]. A k-d tree is con-
structed from all SIFT features which have been extracted
from the reference images. The search examines bins, or
tree leaves, each containing a feature, in the order of their
closest distance from the current query location. Search
order is determined with a heap-based priority queue, and
an approximate answer is returned after examining a prede-
termined number of nearest leaves. This technique finds a
closest match with a high probability, and enables feature
matching to run in real time.

For each feature in a reference image, the BBF search
finds its nearest and second nearest neighbour pair in each
of the remaining images. Putative two-view matches are
then selected based on the nearest-to-second-nearest dis-
tance ratio (with the threshold value of 0.8). We improve
this set of matches by applying an epipolar geometry con-
straint to remove the remaining outliers. For each image
pair, this constraint can be expressed as

������ ��� � �	��
 (1)

where � ���� ����������� � and � ���� ����������� � are homoge-
neous image coordinates of the matched features in images �
and � , respectively, and � ��� is a fundamental matrix of rank
2. The computation of � between each pair of � images
has "! #%$ complexity, thus quickly becoming prohibitively
expensive with increasing � . Therefore we apply a selec-
tive approach, similar to [21], which is linear in the num-
ber of images. Image pairs are selected based on a greedy
algorithm, which constructs a spanning tree on the image
set. Starting with the two images that have the most puta-
tive matches, we compute � consistent with the majority of
matches using the RANSAC algorithm [7], discard outliers
and join these images with an edge. This process is repeated
for the image pair with the next highest number of matches,
subject to the constraint that joining these images does not

create a cycle. In this manner, the expensive cleanup oper-
ation is applied only to the more promising candidates: im-
ages from less separated viewpoints generally lead to more
putative matches, most of which are likely to be correct.

The entire image set is considered processed when an ad-
dition of any remaining image pair would create a cycle in
the tree. At this point we establish multi-view 2D point cor-
respondences by traversing the tree and stitching together
two-view feature matches. Because the tree structure is free
of cycles, the generation of multi-view matches is straight-
forward and unambiguous.

3.2. Motion and structure recovery

Once the multi-view matches have been established, we
seek to compute world coordinates of the corresponding
3D points, calibration parameters and camera poses for
each reference view. Formally, a 2D projection � �&� � � ��� � ��� ��� � of a 3D point ' � �() �+*,�+-�� ��� � in an im-
age � is expressed as

� �&�	.0/1� ' � (2)

where . denotes equality up to a scale factor, and /2� is a3 �54 camera matrix of the form

/1� �067 8 �%9�� � (3)

In the above equation, matrix
6

contains camera calibration
parameters, such as focal length, aspect ratio and principal
point coordinates;

8��
and 9 � are the rotation and translation

of the world frame relative to the camera frame for image � .
A classical approach to this problem begins with an alge-

braic initialization of projective structure and motion, using
two- or three-view epipolar constraints. This is followed by
an upgrade to a metric framework with self-calibration tech-
niques, as well as a solution refinement via an iterative bun-
dle adjustment optimization [10]. We employ an alternative
technique suggested in [23], which omits the linear initial-
ization step and solves for all of the unknown parameters
iteratively, using a general-purpose optimization algorithm,
such as Levenberg-Marquardt [19]. The problem is formu-
lated as the minimization of the reprojection errors over all
camera parameters and world point coordinates, given im-
age projections of the world points:

:�;=<>�?�@BA � A �DC�E �GFIHJFLK����NMPO � �&�NM C # (4)

where
H

is the non-linear projection function and the vectorK ��� �Q ' ��SR ��UT � � � contains the unknown parameters: 3D
coordinates ' � of a world point � , camera pose parametersR � for an image � , and global calibration parameters T (or T � ,
in case of varying calibration parameters). The confidence
weight E � associated with ' � is lowered for world points

Figure 3. One of 20 reference images of a coffee mug on top of a book (left) and the recovered model
(right), with cameras shown as wire cones. The outermost cameras were placed about 60 � apart.
The model correctly captures the planarity of the book surface and the roundness of the mug.

with high reprojection errors after a predefined number of
iterations, thus reducing the contribution of likely outliers
to the final solution.

To initialize the algorithm, we back-project the 2D points
to an

) * -plane of the world frame, place all cameras at the
same default distance along the - -axis directly facing the
plane, and use default values for the calibration parame-
ters. This simple initialization allows us to achieve proper
convergence with the cameras as far as 90 � apart, in a few
dozen iterations. As shown in [23], full 360 � models can
be recovered by starting with a subset of nearby cameras
and incrementally adding more cameras and point matches
to the intermediate solution. Occasional depth reversals are
remedied by reflecting the depth of the model about the

) * -
plane, and selecting the solution with the best final repro-
jection error.

Besides its simplicity, this approach is attractive for sev-
eral reasons. It produces a statistically optimal estimate
within a broad region of convergence, it robustly handles
noisy measurements and incomplete multi-view correspon-
dences, and it is flexible in the number of parameters to be
computed. It can converge to a realistic estimate of camera
parameters, including scenarios with a varying focal length.
In addition, scenes with arbitrary geometric shapes (includ-
ing planes) are correctly reconstructed (see Figure 3).

To reduce problem size, as an input to the Levenberg-
Marquardt algorithm we select a limited number (at most
100) of the points with the most correspondences. Coordi-
nates of the remaining points can be easily computed us-
ing standard triangulation techniques [10], once the camera
parameters have been recovered. Lastly, we remove any
model point outliers with large reprojection errors and un-

likely 3D coordinates. The latter are usually a result of in-
frequent feature mismatches which have survived the epipo-
lar constraint test. They either appear behind the line of
sight of all cameras, or have an unusually large depth, no-
ticeably deviating from the cluster of inliers.

3.3. Virtual object placement

The insertion of the virtual object into the real world is
achieved by adjusting its projection in the reference images
until it appears correctly rendered. First, the 3D coordinates
of the virtual frame origin � are established via a simple tri-
angulation method, as follows. The projection of � is spec-
ified in one of the reference images with a click of a mouse
button (the virtual frame is “anchored” in 2D). Afterwards,
the relative depth of � is adjusted by switching to a dif-
ferent view and moving the corresponding projection of �
along an epipolar line imposed by the anchoring view. This
is equivalent to moving � along a line connecting the cam-
era centre and the projection of � in the anchoring image
(see Figure 4).

Next, the user is able to fine-tune the position, orien-
tation and size of the virtual object in variable-size incre-
ments. Figure 5 shows an example of the virtual frame in-
sertion and pose adjustment. The virtual object is rendered
onto the reference images using previously recovered cam-
era parameters. At any time the user can switch between the
images to view the corresponding projection of the virtual
contents. Note that the geometric relationships between the
real world, its virtual contents and the cameras are defined
in the same generic units, so that there is no need to recover
the absolute scale of the real world model.

Figure 4. The placement of the virtual frame
origin � in 3D is achieved by anchoring its
projection ��� in image � and adjusting its pro-
jection ��� in image � along the epipolar line� � .

4. Model recognition and camera tracking

The online computations of the system are summarized
in the following steps:

1. SIFT features are extracted from the current frame of
the video sequence.

2. The new features are matched to the image features of
the world model using the BBF algorithm, resulting in
a set of 2D-to-3D correspondences.

3. The correspondences are used to compute the current
camera pose, via a robust approach which combines
RANSAC and Levenberg-Marquardt algorithms.

To initialize the tracker, a k-d tree is constructed from
the image features of the world model. Each image fea-
ture is a 2D projection with links to its 3D world coordi-
nates, a reference image in which it was found and the cor-
responding recovered camera pose. During tracking, this
structure is used to efficiently detect model points’ projec-
tions in each new frame. A nearest and a second nearest
neighbour pair is found for each feature from the current
frame via a BBF search, with the two neighbours belonging
to different model points. As in Section 3.1, the reliabil-
ity of the best match is tested by comparing its Euclidean
distance to that of the second best match.

Tracking failure is assumed if the number of reliable best
matches falls below a predefined threshold (set to 15 in our
experiments). This occurs when all or most of the model
disappears out of sight, or the frame contains too much mo-
tion blur. In such cases the rendering of virtual contents is
postponed until enough model points are detected.

Given a set of putative 2D-to-3D matches F �
	 ��� ' ��M for
the frame , we can compute the corresponding camera pose

parameters by minimizing the residual sum:

: ; <��� A � C�E 	 �GFLHJFLK 	 �NM�O ��	 �,M C # (5)

where the weight E 	 � describes the confidence in the mea-
surement � 	 � and is set to the reciprocal of its estimated
standard deviation in the image. This time the camera pose
parameters R 	 are the only unknowns in the vector K 	 � (as-
suming unchanging calibration parameters). We initializeR 	 to R 	���� , computed for the previous frame. For the first
frame of the video sequence or the one immediately af-
ter tracking failure, as an initial guess we use the camera
pose of the reference image contributing the most 2D fea-
ture matches from the BBF search.

We apply RANSAC to compute the camera pose consis-
tent with the most matches. The minimization given by (5)
is performed for each RANSAC sample, and the final solu-
tion is computed using all of the inliers as input. Despite its
iterative nature, this approach has proven to be sufficiently
fast for online use. The small number of unknown parame-
ters results in a rapid execution of Levenberg-Marquardt it-
erations. Very few RANSAC samples are needed, since the
non-linear computation of 6 elements of R 	 , corresponding
to the 6 degrees-of-freedom of the camera pose, requires the
minimum of only 3 matches. Furthermore, the input set of
matches usually contains a very small fraction of outliers,
most of which have already been removed by the distance
ratio check.

4.1. Jitter reduction

The solution to (5) provides a reasonable estimate of the
camera pose, yet typically leads to a “jitter” of the virtual
projection in the video sequence, particularly noticeable
when the camera is fully or nearly stationary. This inac-
curacy can be a result of image noise, as well as too few or
unevenly distributed feature matches. In addition, the sur-
face of the error function may be flat near a local minimum,
as it may be difficult to distinguish between slight changes
in rotation and translation parameters.

To stabilize the solution, we modify (5) by adding a regu-
larization term which favours minimum camera motion be-
tween consecutive video frames:

: ; <��� A � C�E 	 � FLHJFLK 	 � M�O � 	 � M C #���� C � F R 	 O R 	���� M C # (6)

where
�

is a � � � diagonal matrix of prior weights on
the camera pose parameters, and

�
is a scalar which con-

trols the tradeoff between the current measurements and the
desired estimate. Each diagonal entry of

�
is set to the in-

verse of the experimentally estimated standard deviation of
the corresponding parameter. Instead of setting

�
to a con-

stant value, we attempt to adjust it separately for each video

Figure 5. Insertion of the virtual frame into a desk scene: a) initial placement into one of the reference
images by specifying the desired location of the frame’s origin; b) the frame’s trajectory along the
epipolar line in another image; c) subsequent orientation adjustment.

frame, in order to prevent oversmoothing of camera motion
(which would result in a virtual object “drifting” behind a
faster moving scene). The adjustment of

�
is performed as

follows. At first, we solve for R 	 using (5), i.e. with
� �

.
Once a local minimum has been reached, we explore its im-
mediate neighbourhood, searching for a regularized solu-
tion. This is done by executing a few additional Levenberg-
Marquardt iterations, this time solving (6) with gradually
increasing values of

�
. For each additional iteration,

�
is

computed as

� � � � �
C � F R 	 O R 	���� M C # (7)

where � is the number of 2D-to-3D matches and
�

is an
estimated error of an image measurement (set to a fraction
of a pixel). We stop when the next iteration would result
in a total reprojection error that deviates too much from the
error yielded by the original solution of (5). In essence,
as much smoothing as possible is applied while still agree-
ing with the measured data. As a result, larger values of�

are used for slower frame-to-frame motions, significantly
reducing jitter, while fast and abrupt camera motions are
handled without drift.

5. Experiments

The system prototype has been implemented in C using
OpenGL and GLUT libraries, on an IBM ThinkPad with a
Pentium 4-M processor (1.8 GHz) and a Logitech Quick-
Cam Pro 4000 video camera. An example of current com-
putation times for the tracker is given in Figure 6. More
work needs to be done to optimize the tracker in order to
achieve real-time performance.

To demonstrate the capabilities of the system, we have
tested its performance on a variety of scenes and tracking
scenarios. Some of the augmented video frames are shown
in Figures 10 through 13. Video examples are available at
http://www.cs.ubc.ca/ . skrypnyk/arproject/.

feature extraction (SIFT algorithm) 150 ms
feature matching (BBF algorithm) 40 ms
camera pose computation 25 ms
frames per second 4

Figure 6. Average computation times for a
video sequence with 640 � 480 frame size.
The real world model contains about 5000 3D
points.

In order to test the accuracy of registration, we aligned
a virtual square with an ARToolKit marker [2], which was
present in a modelled scene (Figure 7).

Figure 7. ARToolkit marker in the scene
(left). Virtual square, superimposed onto the
marker during tracking (right).

While tracking the scene, the corners of the marker were
detected using the ARToolKit library, and their image coor-
dinates were used as the ground truth for the registration of
the virtual square. Figures 8 and 9 compare the results for
one of the corners.

6. Conclusions and future work

In this paper we presented a versatile approach to AR,
which performs registration of virtual objects into a live

Figure 8. Stationary camera results for 300
frames. Jitter of the virtual square is signif-
icantly reduced by camera pose regulariza-
tion.

video sequence using stable local image features. The sys-
tem consists of two parts. The offline part involves recov-
ery of metric scene structure and camera parameters from a
set of reference images, via purely passive computer vision
techniques. The online part performs camera pose track-
ing and virtual object registration using results of the of-
fline processing. No manual initialization of the tracker is
required. The system can handle scenes with moving ele-
ments, occlusions and illumination changes. No constraints
are imposed on the camera motion, or the type of the opera-
tional environment, other than the presence of some texture
for feature extraction.

Relying on high contrast in scene images may impose
certain restrictions on the applicability of this method. Ex-
amples shown in this paper yield from a few hundred to a
few thousand SIFT features per 640 � 480 image, which is
more than adequate for reliable matching. Several modifi-
cations and improvements can be made to achieve good per-
formance when dealing with regions of lower contrast, such
as lowering the DOG threshold value for keypoint extrac-
tion and combining SIFT features with edge-based image
descriptors.

It should be noted that our approach is unable to handle
proper occlusion of inserted virtual content by real objects
in the world. To achieve this effect, a full model of the
observed scene is required. The construction of complete
models from images is an important subject of research in
computer vision, however it is beyond the scope of this
project.

Currently, the implementation of the tracker runs at 4-5
fps on average, which is too slow for real-time operation
(20-30 fps). The main bottleneck in online processing is
acquisition of video frames and feature extraction. Future
research efforts will include overall system optimization, in-
volving both hardware and software improvements.

Figure 9. Moving camera results for 300
frames (top) and the first 30 frames (bottom).
The trajectories of the real and virtual cor-
ners are in close correspondence, with vary-
ing camera motion handled without notice-
able drift.

Our system has been able to achieve successful mod-
elling and recognition of scenes of varying size and com-
plexity, from handheld objects to buildings (Figures 10
through 13). The next step in performance testing will fo-
cus on the system scalability for operation in large envi-
ronments, such as a campus or a museum. A potential en-
hancement involves modelling individual buildings, rooms
or objects, and providing a mechanism for online switching
between these models as the user travels around his or her
surroundings.

Acknowledgements

We would like to gratefully acknowledge the financial
support of the Natural Sciences and Engineering Research
Council of Canada (NSERC) and the Institute for Robotics
and Intelligent Systems (IRIS).

References

[1] M. Appel and N. Navab. Registration of technical drawings
and calibrated images for industrial augmented reality. Ma-
chine Vision and Applications, 13(3):111–118, July 2002.

[2] http://www.hitl.washington.edu/artoolkit/.
[3] J. S. Beis and D. G. Lowe. Shape indexing using approxi-

mate nearest-neighbour search in high-dimensional spaces.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 1000–1006, 1997.

[4] K. W. Chia, A. D. Cheok, and S. J. Prince. Online 6 DOF
augmented reality registration from natural features. In Pro-
ceedings of the International Symposium on Mixed and Aug-
mented Reality, pages 305–313, 2002.

[5] K. Cornelis, M. Pollefeys, M. Vergauwen, and L. Van Gool.
Augmented reality using uncalibrated video sequences. Lec-
ture Notes in Computer Science, 2018:144–160, 2001.

[6] V. Ferrari, T. Tuytelaars, and L. Van Gool. Markerless aug-
mented reality with a real-time affine region tracker. In Pro-
ceedings of the IEEE and ACM International Symposium on
Augmented Reality, pages 87–96, 2001.

[7] M. Fischler and R. Bolles. RANdom SAmple Consensus: a
paradigm for model fitting with application to image analy-
sis and automated cartography. Communications of the As-
sociation for Computing Machinery, 24(6):381–395, 1981.

[8] Y. Genc, S. Riedel, F. Souvannavong, C. Akinlar, and
N. Navab. Marker-less tracking for AR: A learning-based
approach. In Proceedings of the International Symposium
on Mixed and Augmented Reality, pages 295–304, 2002.

[9] C. Harris and M. Stephens. A combined corner and edge
detector. In Proceedings of the 4th Alvey Vision Conference,
pages 147–151, 1988.

[10] R. Hartley and A. Zisserman. Multiple View Geometry in
Computer Vision. Cambridge University Press, 2000.

[11] W. A. Hoff, K. Nguyen, and T. Lyon. Computer vision-based
registration techniques for augmented reality. In Proceed-
ings of Intelligent Robots and Computer Vision XV, SPIE,
pages 538–548, 1996.

[12] H. Kato and M. Billinghurst. Marker tracking and HMD
calibration for a video-based augmented reality conferenc-
ing system. In Proceedings of the 2nd IEEE and ACM In-
ternational Workshop on Augmented Reality, pages 85–94,
1999.

[13] G. Klein and T. Drummond. Robust visual tracking for
non-instrumented augmented reality. In Proceedings of the
2nd IEEE and ACM International Symposium on Mixed and
Augmented Reality, pages 113–122, 2003.

[14] K. N. Kutulakos and J. R. Vallino. Calibration-free aug-
mented reality. IEEE Transactions on Visualization and
Computer Graphics, 4(1):1–20, 1998.

[15] V. Lepetit, L. Vacchetti, D. Thalmann, and P. Fua. Fully au-
tomated and stable registration for augmented reality appli-
cations. In Proceedings of the 2nd IEEE and ACM Interna-
tional Symposium on Mixed and Augmented Reality, pages
93–102, 2003.

[16] D. G. Lowe. Object recognition from local scale-invariant
features. In Proceedings of the 7th International Conference
on Computer Vision, pages 1150–1157, 1999.

[17] D. G. Lowe. Distinctive image features from scale-invariant
keypoints. Accepted for publication in the International
Journal of Computer Vision, 2004.

[18] B. Lucas and T. Kanade. An iterative image registration
technique with an application to stereo vision. In Proceed-
ings of the International Joint Conference on Artificial Intel-
ligence, pages 674–679, 1981.

[19] W. Press, S. Teukolsky, W. Vetterling, and B. Flannery. Nu-
merical Recipes in C: The Art of Scientific Computing. Cam-
bridge University Press, 1992.

[20] H. S. Sawhney, Y. Guo, J. Asmuth, and R. Kumar. Multi-
view 3D estimation and applications to match move. In Pro-
ceedings of the IEEE Workshop on Multi-View Modeling and
Analysis of Visual Scenes, pages 21–28, 1999.

[21] F. Schaffalitzky and A. Zisserman. Multi-view matching for
unordered image sets, or ”How do I organize my holiday
snaps?”. In Proceedings of the 7th European Conference on
Computer Vision, pages 414–431, 2002.

[22] Y. Seo and K. S. Hong. Calibration-free augmented real-
ity in perspective. IEEE Transactions on Visualization and
Computer Graphics, 6(4):346–359, 2000.

[23] R. Szeliski and S. B. Kang. Recovering 3D shape and
motion from image streams using non-linear least squares.
Technical report, Cambridge Research Laboratory, 1993.

[24] M. Tuceryan, D. S. Greer, R. T. Whitaker, D. E. Breen,
C. Crampton, E. Rose, and K. H. Ahlers. Calibration re-
quirements and procedures for a monitor-based augmented
reality system. IEEE Transactions on Visualization and
Computer Graphics, 1(3):255–273, September 1995.

[25] A. Yao and A. Calway. Robust estimation of 3-D camera
motion for uncalibrated augmented reality. Technical Re-
port CSTR-02-001, Department of Computer Science, Uni-
versity of Bristol, March 2002.

Figure 10. The augmentation of the entrance to the university library with a 2D textual annotation.

Figure 11. A virtual teapot on a spotted coffee mug. The last two frames demonstrate successful
recognition in cluttered scenes.

Figure 12. The placement of a 3D object (the cube) on top of a 2D surface (the book cover). The book
is partially occluded in the last two frames.

Figure 13. A virtual robotic dog in the modelled corner of the lab room. Successful results were
achieved with people freely moving around the room.

