
Augmenting Reality, Naturally

by

Iryna Gordon

B.Sc., University of Manitoba, 2000

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

Master of Science

in

THE FACULTY OF GRADUATE STUDIES

(Department of Computer Science)

We accept this thesis as conforming
to the required standard

The University of British Columbia

November 2004

c© Iryna Gordon, 2004

Abstract

Augmented Reality (AR) is a promising new technology, aimed at enhancing the

user’s visual perception of the physical world with computer-generated virtual im-

agery. Virtual objects, such as rendered 3D models, 2D textures, highlights and

labels, must appear correctly projected onto live video captured by a mobile cam-

era. To achieve such a synthesis in a realistic manner, it is necessary to recognize

what is viewed by the camera, and to accurately localize the camera and the virtual

objects in the real world.

In this thesis I address the challenge of automated and robust video augmen-

tation in a variety of natural and unprepared settings. I have implemented a system

which computes the camera pose by matching natural image features from a current

video frame to a previously constructed 3D model of an operating environment. The

system provides built-in tools for the construction of the scene model from reference

images, the autocalibration of the camera and the interactive insertion of a virtual

object into the modelled scene. Invariant natural features replace special markers

for achieving successful recognition in images, and enable stable camera tracking

in occluded and dynamic settings. Model recognition from arbitrary viewpoints

removes the need to manually initialize the tracker. Experimental results demon-

strate geometrically consistent augmentation for a wide variety of environments and

unconstrained camera motion.

ii

Contents

Abstract ii

Contents iii

List of Tables v

List of Figures vi

Acknowledgements viii

Dedication ix

1 Introduction 1

1.1 Emerging AR Applications . 2

1.2 Background . 3

1.2.1 Basics . 3

1.2.2 Challenges . 4

1.2.3 New Directions . 6

1.3 Thesis Overview . 7

2 Related Research 10

2.1 Towards Markerless AR . 10

2.1.1 Invariant Features for Recognition 11

2.2 Describing the World . 13

iii

2.2.1 3D Modelling from Images . 15

3 Modelling Reality 17

3.1 Image Features . 18

3.1.1 Feature Extraction . 19

3.1.2 Feature Matching . 19

3.1.3 Verifying Geometric Consistency 21

3.2 Scene Structure and Camera Parameters 24

3.2.1 Incremental Model Construction 26

3.3 Inserting Virtual Content . 29

4 Camera Tracking 32

4.1 From Features to Camera . 33

4.2 Reducing Jitter . 34

4.3 Speeding Up Model Recognition . 35

5 Experiments and Results 37

5.1 On Modelling . 39

5.1.1 Challenges in Shape Reconstruction 43

5.2 On Tracking . 46

5.2.1 Computation Times . 47

5.2.2 Registration Accuracy . 47

6 Concluding Remarks 51

6.1 Future Work . 52

Bibliography 54

iv

List of Tables

5.1 Experimental data . 38

5.2 Performance of the modelling algorithm 42

5.3 Computation times . 47

v

List of Figures

1.1 Aligning real and virtual imagery . 5

1.2 Augmentation examples . 9

2.1 SIFT features in an image . 13

3.1 Spanning tree example . 22

3.2 Model and cameras . 27

3.3 Triangulating the virtual frame origin 30

3.4 Inserting the virtual object . 31

4.1 Speeding up recognition . 36

5.1 Tabletop model . 40

5.2 Boxes model . 40

5.3 Mug model . 40

5.4 Sneaker model . 41

5.5 Book model . 41

5.6 Library model . 41

5.7 Shape ambiguity . 44

5.8 Inaccurate camera pose . 45

5.9 Tracking the coffee mug . 46

5.10 Tracking the Velveteen Rabbit . 46

5.11 Registration accuracy experiment . 48

vi

5.12 Aligning squares: stationary camera results 50

5.13 Aligning squares: moving camera results 50

vii

Acknowledgements

My deepest gratitude goes to my supervisor, Dr. David Lowe, for his invaluable

guidance, insight and support in this research, and throughout my Masters studies.

Without his contribution this work would not have been completed. My sincere

thanks to Dr. Jim Little for agreeing to be the second reader of this thesis.

I would like to thank the Robuddies group and the fellow students at the Lab-

oratory for Computational Intelligence, for their helpful comments and stimulating

discussions, and for making these last few years of study most enjoyable.

Special thanks to my husband David for his endless support, understanding

and encouragement in every step of this endeavour.

This project was funded by the Natural Sciences and Engineering Research

Council of Canada (NSERC) and the Institute for Robotics and Intelligent Systems

(IRIS).

Iryna Gordon

The University of British Columbia

November 2004

viii

to my husband,

for putting up with everything this work entailed

ix

Chapter 1

Introduction

Unlike Virtual Reality, which completely immerses the user into a world generated

by a computer, Augmented Reality integrates virtual elements into the user’s real

surroundings. Additional visual information is introduced while preserving natu-

ral interaction with the physical world. This characteristic makes AR an exciting

technology with a vast potential in human-computer interfaces. A comprehensive

introduction to AR as a field, as well as a discussion of important challenges, recent

research trends and emerging applications, can be found in [3, 4].

Pioneer works related to AR date back to the introduction of head-mounted

3D displays (HMDs) in the 1960s [46]. Technological advances of the recent years

have fuelled the growth of AR into a promising interdisciplinary field. It has at-

tracted interest of researchers in computer vision, graphics, user interfaces and

engineering. New applications have emerged in the areas of medicine, industry,

tourism, entertainment and education, to name a few. Imagine an architect, ob-

serving through a pair of special glasses a rendered model of his design, displayed

over an empty construction lot; a tourist, while exploring an archeological site, see-

ing a virtual replica of an ancient temple where it once stood; a child, turning a page

of a book and seeing characters come to life in an animated virtual scene; a civil

engineer with an X-ray vision of a building’s electrical wiring; a technician, repair-

1

ing equipment with instructions projected directly onto the relevant locations. . .

the possibilities are endless.

1.1 Emerging AR Applications

Archeoguide [51] is an AR-based computer guide for cultural heritage sites. Histor-

ical site visitors are equipped with a see-through HMD, an earphone and a mobile

tracking system. Supplemental audio and visual information is meant to provide a

deeper insight into the relevant aspects of a historical location.

The Medarpa project [43] involves developing an AR-supported medical

workstation for various surgical procedures. With an aid of a semi-transparent

display located above a patient, a treating physician can view computer-generated

medical images, projected directly onto the patient’s body.

A successful application of AR to industry is demonstrated in [1]. 2D techni-

cal drawings, such as floor maps, pipe layouts and wiring plans, are used to register

3D models of new installations in factory images.

Magic Book [8] is an innovative application, which combines Augmented and

Virtual Realities in a collaborative environment. By looking at a book page through

a special HMD, a reader can view animated virtual scenes, projected onto the page.

With a flip of a switch, the reader is transported into a fully immersive virtual

environment, becoming part of the story. Several readers can gather around the

book and share their virtual experiences by exchanging their perspectives of the

story scene.

Augmented Chemistry [16] is an interactive educational workbench, which

enables a student to construct 3D virtual molecules. Using a special gripper tool,

the student can pick up virtual “atoms” from a booklet that contains elements of

the periodic table, and bind them to the molecular model.

In [18] AR technology is applied to enrich a visitor’s experience of a museum

exhibit. A small video camera is attached with a flexible wire to a corner of an

2

exhibit display. By pointing the camera at different parts of the display, visitors can

view relevant textual and graphic information on a nearby PC screen.

1.2 Background

The nature of a particular application dictates the amount of realism to be achieved

by the augmentation. Virtual content may range from simple highlights and textual

annotations to complex 3D graphics with lighting effects, animation and proper res-

olution of occlusions. Regardless of the sophistication level of its graphics, the first

and foremost demand from any AR application is a timely and accurate geometric

registration of a virtual projection in a real-world image. A virtual object must ap-

pear seamlessly integrated into the user’s environment as the camera moves around.

A jittery, floating or flickering virtual content is likely to cause immediate irritation,

at the very least.

1.2.1 Basics

In a video see-through AR, precise registration is a consequence of an exact alignment

of two video streams: the live video of the real world and the rendering of a virtual

object by a graphics engine1. We can think of it as an alignment of two cameras: the

real one, through which the user sees the world, and the virtual one, which projects

the graphics component (Figure 1.1). The following geometric transformations must

be established:

• object-to-scene: 3D coordinates of a virtual object, expressed in a coordinate

frame of a real-world scene;

• scene-to-camera: the pose (orientation and translation) of the camera in the

real world; and

1Optical see-through technology projects virtual content directly onto a semi-transparent
surface in front of the user’s eyes. This thesis assumes video-based synthesis, although the
same principles apply to both video and optical AR systems (an additional requirement for
the latter is the calibration of the optical combiner with respect to the user’s eyes).

3

• camera-to-image: the calibration parameters of the camera, defining its pro-

jection of a 3D object onto a 2D image plane.

Before projecting a virtual object onto an image surface, the 3D pose of the

object must be expressed in the camera frame:

Rco = RcsRso (1.1)

tco = Rcstso + tcs (1.2)

where Rco and tco compose the object-to-camera transformation; Rso and tso denote

the object-to-scene transformation, which is usually determined in advance by the

user; lastly, Rcs and tcs form the scene-to-camera transformation, which must be

accurately computed for each video frame.

1.2.2 Challenges

While the problem of camera pose estimation, or camera tracking, is not unique

to AR, in the context of AR research it is undoubtedly one of the most important

and challenging tasks. This is because tracking must be performed online and in

real time. Also, the camera is often handheld or headmounted, and therefore its

motion can be quite unpredictable and unstable. Most importantly, the human eye

is capable of detecting even the slightest image discrepancies, which places a demand

on camera tracking results to be as accurate as possible.

Among existing camera tracking technologies, such as those based on mag-

netic or infrared sensors, vision-based tracking is quickly gaining popularity, in pro-

portion to the increasing accuracy and speed of computer vision algorithms, as well

as the emergence of fast dedicated hardware. Vision-based trackers are cheap, ac-

curate and long-range. While computational cost is becoming less of a concern, the

problems of robustness and flexibility remain to be solved.

4

Figure 1.1: Parameters of the real and virtual cameras must match in order to align
real and virtual imagery. K is a matrix containing camera calibration parameters;
R and t are a rotation matrix and a translation vector, respectively, which define a
3D Euclidean transformation.

5

1.2.3 New Directions

Until recently, scene recognition and camera tracking via vision sensing in AR has

commonly relied on identifying and tracking fiducial markers [23, 1, 22, 45]. These

artificial visual “beacons” take form of distinct and easily recognizable geometric

patterns, which must be strategically positioned in the environment prior to the

system operation. However, the required modification of the user’s surroundings

can be cumbersome, aesthetically questionable, and in some cases entirely infeasible

(for example, in outdoor applications). To make matters worse, the fiducials must

remain fully visible to be successfully detected. Thus, the use of markers imposes

limitations on the range of camera travel and makes an AR system vulnerable to

occlusions.

As a result, one of the new research trends in AR is camera tracking us-

ing natural features, which are already present in a viewed scene. Computer vision

algorithms are used to extract local image features and find their reliable correspon-

dences across images. Natural feature tracking enables a wide range of AR appli-

cations in unprepared settings, as well as provides a greater degree of robustness to

occlusions and changes in the environment. The success of a marker-free approach

largely depends on both the quantity and distinctiveness of natural features that

can be detected.

Earlier AR technologies required the camera to be carefully precalibrated

before use [50]. Manual calibration procedures are typically quite tedious and

time-consuming. Besides, they require specialized devices, such as objects or pat-

terns with a well established geometric configuration. Reliable autocalibration tech-

niques [21, 38] are a welcome advance in computer vision research, as they can sig-

nificantly reduce setup requirements for AR systems. Calibration-free approaches

to camera tracking in affine and projective frameworks have also been consid-

ered [25, 45].

6

1.3 Thesis Overview

My work is motivated by the rising need for versatile, low-maintenance AR systems,

capable of functioning in uprepared settings and generally requiring less effort to

initialize and operate. This thesis aims at developing an approach to AR which

performs automatic tracking (re)initialization, does not require manual camera pre-

calibration procedures or prior knowledge of scene geometry, and can operate in a

vast variety of environments, yielding consistent and accurate augmentation results.

As an alternative to special markers, I use stable natural features as visual

data which drives the system’s algorithms. Generated from an image via the Scale

Invariant Feature Transform (SIFT) algorithm [29, 30], these features act as descrip-

tors of local image patches. They are invariant to image scaling and rotation, and

partially invariant to changes in illumination and viewpoint. The distinctiveness

of SIFT features, as well as their abundant presence over a large range of image

scales, make them suitable for recognition in cluttered and dynamic settings. Fea-

ture matching is performed efficiently and reliably via an approximate tree search

algorithm.

The system operates in two stages. During the first, offline stage, SIFT fea-

tures are extracted from reference images of an environment to be augmented (this

can be an individual object or a general scene). The images are assumed to have

been taken by an uncalibrated camera from unknown viewpoints. Multi-view fea-

ture correspondences are then found, to be used for building a Euclidean model of

the image contents. At the same time, calibration parameters and camera poses cor-

responding to the reference viewpoints are computed. These structure-from-motion

computations are performed with a straightforward and powerful technique. It is

based on non-linear least squares, and can construct models of arbitrary geometric

complexity starting from a very simple initialization.

Once the real-world model has been obtained, the position, orientation and

size of a virtual object must be specified in the coordinate frame of the model. To

7

this end I have developed an interactive application, which allows the user to place

a virtual object into a scene by determining its appearance in the reference images.

The second stage of the system involves model recognition and camera track-

ing for live video augmentation (Figure 1.2 shows a few examples of augmented video

frames). Features detected in a current video frame are matched to those of the

world model, and the matches are used to compute the pose of the camera relative

to the model. Virtual jitter, resulting from computational inaccuracies, is reduced

by regularizing the solution, using the camera pose computed for the previous frame.

The influence of the previous solution on the current one is weighted in such a way

as not to impose constraints on the overall camera motion. The camera tracker can

perform online scene recognition and recovery from failure, with the tracked scene

going in and out of view. Automatic recognition is an essential feature for many

applications, particularly for automated mobile systems.

The remainder of this paper is organized as follows. An overview of re-

lated research is provided in Chapter 2. Chapter 3 discusses the approach to scene

modelling and virtual object insertion. The details of camera pose tracking are pre-

sented in Chapter 4. Chapter 5 discusses experimental results and overall system

performance. Final remarks and conclusions are found in Chapter 6.

8

Figure 1.2: System in action: a) a virtual teapot in the modelled desk scene; b) a
non-rigid change in the scene; c) a change in lighting; d) a change in viewpoint; e)
motion blur; f) partial view of the scene.

9

Chapter 2

Related Research

The multitude of current research directions in AR reflects the interdisciplinary

nature of the field. New developments include enabling hardware technologies for

wearable AR systems, user acceptance studies, photorealistic rendering, collabo-

rative applications and many others [4]. This chapter narrows its survey to visual

environment sensing, which is the focus of the thesis. In particular, under discussion

are natural feature-based approaches and methods for acquisition of an environment

representation, which underlay camera tracking in AR.

2.1 Towards Markerless AR

In most markerless AR systems, natural features are used for establishing corre-

spondences between consecutive frames in a video sequence, i.e., for narrow baseline

matching. Such correspondences, often referred to as optic flow, are used for de-

termining the frame-to-frame motion of the camera. Some of the most common

choices of features for narrow baseline matching are the Harris corner detector [20],

applied in [10, 11], and the Kanade-Lucas-Tomasi (KLT) feature tracker [31], used

in [52, 17, 41]. These features can be efficiently extracted and have been used quite

effectively for the tasks of motion tracking and structure-from-motion. However,

they do not provide a good basis for wide baseline matching, which is required for

10

automated tracker initialization and demands higher viewpoint and scale invariance

from image features.

A recent approach to markerless AR [13] proposes tracking of parallelogram-

shaped and elliptical image regions, extracted in an affinely invariant way. These

local features can also be used for scene recognition, although not in real time.

Compelling results are presented, however the tracker lacks generality, as it relies

on the presence of planar structures in the viewed scene.

In [27] viewpoint invariance is achieved by applying eigen image methodology

to describe a collection of local image patches. These patches are extracted from

reference images and capture the appearance of a small region in several distinct

views. The AR system expects the user to supply a Computer-Aided Design (CAD)

model of a real object to be augmented, and requires manual matching of CAD

model points to their 2D projections in reference images.

The system described in [24] uses image edges as natural features. Contours

of a supplied CAD model are matched to detected image edges. The visual tracking

system relies on rate gyroscopes to handle rapid movements of a headmounted cam-

era. Automatic localization and recovery from tracking failure are not supported.

2.1.1 Invariant Features for Recognition

The problem of feature invariance and distinctiveness is closely related to the task

of object recognition in computer vision. To this end, numerous types of stable

features have been proposed, some of which will be discussed below.

Features invariant to affine transformations [35] have been used for 3D ob-

ject modelling and recognition [40], as well as for multi-view matching of unordered

image sets [42]. An affinely invariant descriptor for a local image patch is obtained

by resampling the patch in an affine reference frame. An affine transformation pro-

vides a mapping for an elliptical image region into a unit circle, or similarly, for

a parallelogram into a unit square. For image patches on planar surfaces, affinely

11

invariant descriptors provide full viewpoint invariance under orthographic projec-

tion. Affine invariants can also be used for recognizing non-planar shapes, which

are approximated by collections of small planar patches [40].

In [33] “maximally stable extremal” (MSE) regions are sought by threshold-

ing an image and keeping track of the connected components as the threshold value

changes. An MSE region is found when an area of a component remains unchanged

over a large range of thresholds. MSE regions correspond to image areas which have

high contrast with respect to their surroundings, and are invariant to affine trans-

formations of image intensities. The above paper proposes an efficient extraction

algorithm and a robust similarity measure for establishing tentative matches.

A descriptor for matching object shapes is developed in [7]. A shape is

represented by a set of points, sampled from an object contour in an image. For a

point on the contour, a shape context descriptor is computed from a coarse histogram

of the relative coordinates of the rest of the points. The descriptor is invariant under

scaling, image rotation and translation, and is robust to small affine transformations.

Another contour-based approach is discussed in [36]. Curves are extracted

from an image, which are then segmented at points of high curvature. The longest

curves are chosen as keys and are fit into local context patches. Each context patch

is a normalized square image region, containing the key curve and all other curve

segments that intersect the region. Good recognition results are demonstrated for

complex objects in the presence of clutter and occlusions.

This thesis makes use of scale-invariant SIFT descriptors, which are highly

distinctive, relatively efficient to extract and stable in the presence of image noise.

In addition, the SIFT algorithm produces a dense population of features for typical

textured images (Figure 2.1), which makes it suitable for recognition in cluttered

settings, and for optimization algorithms which benefit from large input sets. Pre-

vious experiments demonstrate a remarkable success of SIFT features in a variety

of object recognition tasks [30].

12

Figure 2.1: A 640×480 image of a famous book (left) and its found SIFT features
(right). The algorithm extracted 625 features, shown as overlapping squares with
varying scale and orientation.

2.2 Describing the World

3D CAD models have proven to be quite effective as reference tools for object recog-

nition and camera tracking in AR. The drawback is extra effort involved in manually

building a CAD model in advance, as it may not be readily available. Moreover,

CAD tools are limited to objects that can be easily modelled by hand, i.e. those

with well defined geometric shapes. In contrast, in my work I attempt to target ar-

bitrary shapes and textures, often present in natural environments and man-made

settings. I also aim to reduce system requirements for additional commercial tools

or equipment, limiting them to just an off-the-shelf video camera. Consequently, an

alternative reference representation of the real world must be sought.

Various techniques have been suggested in AR for acquiring a reference rep-

resentation of an operating environment, to aid online computations. In [10] two

or more reference views are used to compute the current camera pose from epipo-

lar geometry constraints on natural feature correspondences. Markers must still be

used to precalibrate the camera and to determine its pose for the reference images.

Another disadvantage of the approach is that the camera pose for the very first

video frame must be very close to one of the reference views, due to limited wide

baseline matching capabilities.

A learning-based strategy is proposed in [17], where a real environment is

13

represented by an acquired set of natural features. These features have been detected

and localized in 3D during an initial tracking phase. The learning phase relies on

recognizing fiducial markers, whose locations in the world have been determined in

advance. Markers are first used to compute the pose of the camera, after which the

system can compute world coordinates of newly detected natural features. In this

manner, an initially limited tracking range is extended during online operation of

the system.

The fiducial-based system, presented in [25], uses the factorization method [48]

to represent a scene and its virtual content in an affine frame of reference, with an

aim to avoid Euclidean camera calibration. This innovative approach achieves com-

parable results with minimum initialization effort and simple algorithms. However,

it does not allow the modelling of perspective projection effects at close camera

distances. Non-Euclidean representation also precludes the use of more complex

rendering techniques, such as lighting effects.

The authors of [45] extend the method described in [25] to a perspective

projection framework. During system setup, a world coordinate frame must be

manually inserted into two reference views, by specifying image locations of control

points. Five control points establish a projective frame of reference in which the

motion of the camera is defined. Line intersections on fiducials are matched across

video frames to estimate camera motion.

In [9] a parameterized cuboid structure, which must be present in a viewed

scene, serves as a reference object. Once the user has identified in an image six

control points, defining the cuboid, the system can estimate both the intrinsic (cal-

ibration) and extrinsic (pose) parameters of the camera, by solving a linear system.

Experimental results demonstrate successful insertion of virtual objects into both

static and dynamic scenes, albeit not without substantial human interaction.

Fully markerless and general techniques are presented in [11] and [41], where

virtual object registration is achieved based on structure-from-motion results. Eu-

14

clidean 3D structure of a viewed scene and camera motion are recovered from an

input video sequence. Both of the above methods rely on an image order, dictated

by the video sequence, and perform offline batch processing and augmentation of

the entire sequence, with no support for online scene recognition or tracking1. In

contrast, this thesis employs automated 3D modelling from unordered images to

support live video augmentation.

2.2.1 3D Modelling from Images

The task of structure-from-motion is one of the classic problems in computer vision

and as such has been extensively studied. Earlier approaches primarily considered

shape recovery from point correspondences in two images [12, 28], while more recent

algorithms often deal with larger image sets, which provide wider baseline and richer

image data for increased accuracy of results [38, 15, 44, 19].

In [2] an algorithm based on Kalman filtering is applied to recursively recover

object shape and camera motion from an image sequence. In [34] a recursive ap-

proach is applied to affine reconstruction. A disadvantage of sequential processing

of image data lies in its sensitivity to poor initialization, which can significantly

affect the accuracy of subsequent computations.

A well-known factorization method, developed in [48], uses singular value

decomposition (SVD) to factor a matrix of image measurements into two matrices,

which define affine scene geometry and camera poses, respectively. In [25] this

measurement matrix is assumed to be complete, i.e., all model points are visible

in all images; in [40] missing correspondences are handled by splitting the partially

filled measurement matrix into several complete submatrices, applying factorization

to each and stitching the results into a single consistent solution.

A widely used approach to the structure-from-motion problem begins with

an algebraic initialization of structure and cameras in a projective frame of refer-

1Offline video augmentation methods, such as those applied in a cinema industry, are
commonly referred to as Match Move.

15

ence, using two- or three-view epipolar constraints on image point matches. The

constraints are defined by a fundamental matrix or a trifocal tensor, computed for

each image pair or triple, respectively. Projective initialization is followed by an

upgrade to an affine or Euclidean framework, with camera calibration parameters

recovered by autocalibration techniques [21, 37]. Lastly, the solution is refined via

an iterative bundle adjustment optimization.

Bundle adjustment refers to the refinement of an image-based reconstruction

to produce jointly optimal structure and camera parameter estimates. A solution

that is statistically optimal and robust to image noise can be found by iteratively

minimizing a cost function that quantifies the model fitting error (the average image

reprojection error of 3D model points). A exhaustive survey of the theory of bundle

adjustment and applied methods can be found in [49].

My approach to structure-from-motion is based on a simple optimization

strategy, suggested in [47]. The projective or affine initialization step is omit-

ted entirely: all of the unknown parameters are estimated directly in a Euclidean

framework, by applying bundle adjustment. Experimental results, reported in [47],

demonstrate successful convergence of the non-linear optimization in the absence of

any a priori information about scene structure or camera poses.

16

Chapter 3

Modelling Reality

The initial stage of the system automatically constructs a 3D representation of an

operating environment, computes calibration parameters of the camera and provides

means for visually specifying a desired location of a virtual object in its real sur-

roundings. These preliminary computations are performed offline, and are intended

to provide supporting data for live video processing.

The modelling algorithm requires as an input a set of reference images of

the environment. The images can be acquired by a handheld, uncalibrated camera

from spatially separated viewpoints. No assumptions are made about the relative

positioning of the cameras; however, certain overlap in the image content is recom-

mended for reliable feature matching (up to about 45◦ of rotation between adjacent

viewpoints has been found acceptable). At least two snapshots are needed to esti-

mate the 3D structure of the viewed content; using more provides a richer visual

description of the scene, and thus enables better recognition performance and wider

range of camera travel. In my experiments, I have used up to 40 images, covering

from 60◦ to 360◦ of a surrounding view. The scene is assumed to be rigid and mostly

static1, with no special markers or geometric structures known to be present. The

current implementation requires calibration parameters of the camera to remain

1Individual moving elements (e.g., people in a room) are treated as outliers.

17

constant during acquisition of reference images and online operation. This require-

ment can be easily alleviated by adding the necessary unknown parameters to be

computed by the corresponding algorithms.

The reference images are used to build a sparse model of the viewed scene.

Such a model is a collection of distinctive world points, which appear as SIFT

features in the input images, and for which 3D Euclidean coordinates have been

computed. Camera poses, corresponding to the reference viewpoints, as well as

calibration parameters are computed simultaneously with the scene model. The

structure-from-motion computations are followed by the insertion of the virtual

object into the modelled environment.

The offline processing is divided into the following steps:

1. Local invariant point features are extracted from the input images.

2. A robust wide baseline matching technique is applied to find two-view feature

correspondences, leading to the construction of multi-view matches.

3. A subset of multi-view matches is chosen as an input to an iterative structure-

from-motion algorithm, which produces an initial portion of the model.

4. The rest of the matches are used to compute the remaining camera poses and

world point coordinates via resectioning and triangulation, respectively.

5. The position, orientation and size of a virtual object, expressed in the coordi-

nate frame of the final model, are defined by the user.

3.1 Image Features

The first objective is to extract local interest points and find their correspondences

over multiple images in the input set. A brief overview of the feature extraction

algorithm is given below (details can be found in [29, 30]), followed by the discussion

of the approach to multi-view feature matching.

18

3.1.1 Feature Extraction

Candidate feature locations are first identified in spatial and scale domains at ex-

trema of a difference-of-Gaussian (DOG) function. An initial image is repeatedly

convolved with Gaussians at different scales. Afterwards Gaussian images, adjacent

in the scale pyramid, are subtracted to produce DOG images. Each point in the

latter is compared to its neighbours in both image location and scale, in order to

find the DOG peaks. At each peak, a detailed model is fit for location, edge response

and peak magnitude, rejecting unstable candidates which are sensitive to noise.

Besides image location and scale at which it was found, each stable feature is

assigned an image orientation and a descriptor vector, reflecting local image proper-

ties. Both orientation and descriptor vector are computed from gradient magnitudes

and directions, sampled within a circular Gaussian-weighted window around the fea-

ture. To achieve scale invariance, the scale of the feature is used to select a smoothed

image from which the samples are drawn. Feature orientation is assigned based on

the dominant direction of the gradient samples, corresponding to a peak in a 36-bin

histogram2.

The length of the descriptor vector varies depending on the number of ori-

entation histograms used to accumulate the samples. Best results are achieved with

128 dimensions, corresponding to a 4×4 sample region with 8 orientations. The

descriptors are represented in an orientation-invariant manner by rotating gradient

orientations relative to the assigned feature orientation. Lastly, the descriptors are

normalized to reduce the effects of illumination changes.

3.1.2 Feature Matching

Once the features have been extracted from the input images, the next step is to

establish their reliable correspondences across the image set. For each feature in

2Multiple peaks with similar magnitudes result in multiple features at the same location,
but with different orientations.

19

a reference image, its putative matches are found in each of the remaining images.

Next, the tentative set of matches is improved by removing outliers and introducing

additional matches.

The best candidate match for a SIFT feature is its nearest neighbour, defined

as a feature with a minimum Euclidean distance between descriptor vectors. A

simple and effective method can be applied to test the reliability of a best match. It

involves comparing Euclidean distances of a nearest neighbour and a second nearest

neighbour, both found in the same image. If the ratio of the nearest to the second

nearest distance is too high, the nearest neighbour match is discarded as an outlier.

The threshold value of 0.8 for the distance ratio has been found to work well in

practice, discarding many true outliers and relatively few inliers. In a sense, the

distance ratio tests the ambiguity of a best match: in a high-dimensional feature

space incorrect matches are more likely to have competing candidates with similar

distances, than correct ones.

Large numbers of features found in images, as well as the high dimension-

ality of their descriptors, make exhaustive search for nearest neighbours extremely

inefficient. In order to improve efficiency without sacrificing the quality of matches,

I employ the approximate Best-Bin-First (BBF) algorithm, based on a k-d tree

search [5]. BBF finds true nearest neighbours with a high probability and enables

feature matching to run in real time.

A k-d tree of image features is constructed as follows. Starting with a com-

plete set of features, the set is split in two on the dimension in which the feature

descriptors exhibit the highest variance. The mean value of the descriptors in that

dimension is chosen as the division point. An internal node is created to store the

dimension index and the division value. This process is repeated recursively on the

divided subsets, with tree leaves eventually created to contain a single feature. Each

dimension is chosen for division at most once, which works well for high-dimensional

spaces and simplifies computation of search boundaries during tree traversal.

20

The BBF search is performed on the k-d tree to find nearest and second

nearest neighbours for each feature, in all images other than the one from which the

query feature originated. Each feature in the tree stores an index of an image where

it was found. For each query the search algorithm maintains two parallel arrays of

nearest and second nearest neighbours, indexed by an image number.

First, the tree is traversed down to the leaf, and the Euclidean distance is

computed between the leaf and the query feature. The search then backtracks,

examining branches that have not yet been explored, in the order of their increasing

distance to the query. This order is maintained with a heap-based priority queue.

Each time a branch decision is made at an internal node, an entry is added to the

queue. The entry contains a child node not being examined next and a distance

between the query and the current search boundary, the latter defined by the path

traversed so far.

The search terminates after a predetermined number (a few hundred) of leaf

checks have been made. Although this termination strategy does not guarantee that

matches are found in all images for each feature, it has worked quite effectively for

the experimental data sets, producing hundreds of putative two-view matches for

each image pair.

3.1.3 Verifying Geometric Consistency

A set of putative correspondences is gathered from all two-view matches that satisfy

the distance ratio check and are one-to-one consistent (two features in a match are

each other’s nearest neighbours). These matches undergo further outlier removal by

enforcing the epipolar constraint. For each image pair the constraint is defined as

xT
i Fijxj = 0 (3.1)

where xi = [ui vi 1]T and xj = [uj vj 1]T are homogeneous coordinates of the

matched feature points in images Ii and Ij , respectively, and Fij is the fundamental

matrix.

21

Figure 3.1: A spanning tree, constructed on the set of 9 sneaker images. Edge
numbers represent the order in which image pairs were processed. Note the viewpoint
proximity of the adjacent images.

The computation of F between each pair of N images has
(N

2

)

complexity,

thus quickly becoming prohibitively expensive with increasing N . Therefore I have

decided to apply a more selective approach, based on [42], which is linear in the

number of images. A greedy algorithm is used to select a subset of N − 1 image

pairs for computing F . The algorithm constructs a spanning tree on the image set

(see Figure 3.1 for an example). Starting with the two images that have the most

putative matches, the algorithm joins the images with an edge, uses RANSAC [14]

to compute F consistent with the majority of matches and removes the disagreeing

minority as outliers. The image pair with the next highest number of matches is

processed next, subject to the constraint that joining these images does not introduce

a cycle in the tree. Once the tree is completed, multi-view correspondences can be

easily found by traversing the tree and stitching together two-view matches.

The spanning tree method limits expensive epipolar computations to be per-

formed only on more promising candidates. These are typically image pairs from less

separated viewpoints, which lead to a larger and cleaner set of candidate matches.

The computations at each tree edge deserve a closer look. First, F is repeat-

22

edly computed via the normalized 8-point algorithm [21] for a number of random

RANSAC samples. Since computing F for each possible sample of 8 matches is

computationally infeasible, the number of samples is taken to be sufficiently high to

give a success probability in excess of 99%. The success probability Γ is defined as

Γ = 1 − (1 − (1 − o)m)n (3.2)

where o is the fraction of outliers, m is the number of matches in each sample and

n is the number of samples [37]. For data sets used in this thesis it typically took a

few hundred RANSAC samples to reach the desired success probability.

Once Γ has reached its desired value or n exceeds the maximum allowable

threshold (2,000 samples), F with the largest number of inliers is selected as the

correct solution. A match between two image points is considered an inlier if the

sum of perpendicular distances from the points to the corresponding normalized

epipolar lines, defined by F , is below a predefined threshold of a few pixels. Matches

inconsistent with F are discarded as outliers, after which the algorithm iteratively

finds additional inliers and refines the estimate of F .

Additional point matches between images Ii and Ij are found as follows.

First, for each unmatched xi its nearest neighbour xj is found, which has not yet

been matched and is consistent with the computed Fij . The epipolar consistency

constraint defines a search space for a match in Ij along an epipolar line. The next

step is to narrow down this search space by also looking for consistency in the nearby

image content. To this end, 3 points are found in Ii among the already matched

inliers, which are closest to xi in terms of image distance. Let these points be ni,k,

matched to nj,k in Ij , where k ∈ [1, 2, 3]. The verification compares

1. feature scale ratio between xi and xj to that between ni,k and nj,k, and

2. scaled image distance between xi and ni,k to that between xj and nj,k,

which should be similar for all k, i.e., the ratio of a smaller to a larger value should

be above a threshold of 0.8. Essentially, image features nearby xi in Ii are expected

23

to match features nearby xj in Ij, having undergone a scale change similar to that

between xi and xj .

3.2 Scene Structure and Camera Parameters

Once the multi-view correspondences have been established between the image

points, the next objective is to compute world coordinates of the corresponding

3D points, calibration parameters and camera poses for each reference image.

In homogeneous coordinates, a linear relationship between a 3D point Xj =

[Xj Yj Zj 1]T and its 2D projection xij = [uij vij 1]T in an image Ii is defined as

xij ∼ PiXj (3.3)

where ∼ denotes equality up to a scale factor, and Pi is a 3×4 projective camera

matrix of the form

Pi = K[Ri ti] (3.4)

In the above equation, Ri and ti are a rotation matrix and a translation vector of

the world frame relative to the camera frame for Ii. Matrix K contains calibration

parameters:

K =













f 0 pu

0 af apv

0 0 1













(3.5)

where f , a and [pu pv]
T are a focal length, an aspect ratio and principal point

coordinates, respectively.

Using the inhomogeneous representation of the points, a 2D projection xij =

[uij vij]
T (in an image coordinate frame) of a 3D point Xj = [Xj Yj Zj]

T (in a world

coordinate frame) is obtained via the non-linear perspective projection function Π():

xij = Π(RiXj + ti) = Π(













X ′

j

Y ′

j

Z ′

j













) =







f
X′

j

Z′

j

+ pu

af
Y ′

j

Z′

j

+ apv






(3.6)

24

The structure-from-motion problem is formulated as a minimization of squared

reprojection errors over all camera parameters and world point coordinates, given

image projections of the world points:

min
aij

∑

i

∑

j

‖wj(xij − x̃ij)‖
2 (3.7)

where wj is a confidence weight assigned to Xj, x̃ij = [ũij ṽij]
T are the measured

image coordinates of Xj in Ii, and xij are the estimated image coordinates of Xj ,

computed according to (3.6). The vector aij =
[

XT
j , f, a, pu, pv,p

T
i

]T
contains all of

the unknown structure-and-motion parameters, including the 6 degrees of freedom

of the camera pose pi.

The solution to (3.7) is found iteratively using the Levenberg-Marquardt

(LM) algorithm [39], which computes incremental updates to the unknown param-

eters at each iteration3. Derivatives which form the Jacobian matrix are approxi-

mated numerically.

After a predefined number of initial iterations, the algorithm begins to reduce

the confidence weights of world points with high reprojection errors, thus lowering

the contribution of likely outliers to the final solution. At each iteration, the weight

wj is reduced if Xj has an image residual eij more than twice as large as the total

average reprojection error E:

E =

√

∑

i

∑

j ‖wj(xij − x̃ij)‖2

N
(3.8)

eij =
√

‖xij − x̃ij‖2 (3.9)

wj = min(wj ,
2E

eij

) (3.10)

where N is the total number of image points. For the rest of the world points with

low image residuals, the weights are reset to the default value of 1.0.

3Updates to the camera orientation take form of three rotations: around the x, y and z

axes. The order of these rotations does not matter, since the angles are small at each LM
iteration and any minor errors are corrected by future convergence.

25

To initialize the unknowns, reasonable default values are guessed for the

calibration parameters. Image points are backprojected to the xy plane of the world

frame, and all of the cameras are placed at the same distance along the z axis of the

world frame, directly facing the points and having the same orientation. Following

this simple initialization, the algorithm generally takes a few dozen iterations to

converge to a reasonable solution (Figure 3.2).

Besides its simplicity, the direct bundle adjustment approach is attractive

for several reasons. It produces a statistically optimal result, at the same time

avoiding accumulation of error due to algebraic manipulations; it can robustly handle

noisy measurements and missing correspondences, and is flexible in the number of

parameters to be computed; and it can handle scenes of arbitrary geometry while

requiring no a priori knowledge of scene structure or camera parameters.

3.2.1 Incremental Model Construction

The iterative optimization method, described above, has two major limitations.

First, computation time increases dramatically with the number of unknown pa-

rameters. I have implemented a standard (non-sparse) version of the LM algorithm,

in which the solution of normal equations is O(N 3), a step that gets repeated many

times. Second, the algorithm has trouble converging if the viewing angle captured

by the cameras is too wide, i.e., the farthest cameras are more than 90◦ apart. I

deal with both of these problems by splitting the input data, based on a method

described in [42]. A subset of the point matches is selected from a limited number

of images for the computation of the partial model, then the remaining matches are

used to incrementally update and refine the model.

I begin by ordering the reference images, based on the number of their two-

view point matches which have passed the epipolar constraint test. The two images

with the most matches are placed at the start of the ordered list; the next image

to be added is adjacent to the already ordered images by an edge in the spanning

26

Figure 3.2: Building a model of a coffee mug placed on top of a magazine, from
20 reference images: (a) initialized structure and cameras (E = 62.5 pixels); (b)
results after 10 iterations (E = 4.2 pixels); (c) results after 20 iterations (E = 1.7
pixels); (d) final results after 50 iterations (E = 0.2 pixels). Bundle adjustment was
used to simultaneously compute poses of all 20 cameras and coordinates of 100 world
points with the most image matches (the rest of the world points were triangulated
following LM convergence).

27

tree (see Section 3.1.3), and has the largest number of matches among all adjacent

images.

The first few (5 to 10) images from the ordered list are selected for the

computation of an initial model. These images are likely to be in close spatial

relationship with each other, as they have many shared points. The exact number

of initial images depends on the data set: if the reference images were acquired from

viewpoints closely located to each other, more images should be used for initial

reconstruction to cover a sufficiently wide baseline for accurate results. To reduce

problem size, at most 100 multi-view matches, linking the most image points, are

used from the selected images as an input to the LM algorithm.

A partial model is computed from image points in I0 . . . Ii−1 via bundle ad-

justment, as described at the beginning of this section. Afterwards, the correspon-

dences (x̃ij ,Xj) between already localized 3D world points and 2D image points in

the next ordered image Ii are used to compute the camera pose for Ii. I use LM to

minimize the residual sum:

min
pi

∑

j

‖wij(xij − x̃ij)‖
2 (3.11)

where wij is a weight assigned to the measurement x̃ij. In my implementation, it

is set to 1.0 for all image points4. The camera pose parameters pi are now the only

unknowns. They are initialized to an already computed camera pose, which yields

the lowest average reprojection error for the match set (x̃ij,Xj) (and therefore is

likely to be close to pi).

Following the computation of each new camera, the unknown coordinates of

world points, which appear more than once in the already processed images, are

determined using straightforward triangulation [21].

Once all of the images have been processed, additional world point outliers

are removed from the model. A world point is deemed an outlier if

4Alternatively, weights can vary to reflect the accuracy of feature localization, e.g. fea-
tures at different scales can have different image uncertainties.

28

1. its reprojection error is too high;

2. it is located behind all cameras by which it is viewed; or

3. it is located too far from the majority cluster of world points.

Outliers can be caused by image noise leading to poor feature localization, or by

occasional mismatches which have survived the epipolar constraint test.

Lastly, the full model is refined via the bilinear alternation strategy [32].

First, all camera poses are recomputed while holding world points constant, then

all world points are refined while fixing the cameras, and this process is repeated

until convergence. The same function as in (3.7) is minimized, but because cam-

eras and points are handled independently, the number of unknown parameters is

greatly reduced for each individual computation (6 unknowns for a camera, 3 for a

world point). On the downside, bilinear alternation usually takes many iterations to

converge, since only part of the data is considered at a time. The effects of bilinear

alternation, observed during the experiments, are discussed in Section 5.1.1.

3.3 Inserting Virtual Content

The insertion of a virtual object into the real world is achieved by adjusting its

projection in the reference images until it appears correctly rendered. First, the

3D coordinates of the virtual frame origin V are located via a simple triangulation

method, as follows. The projection of V is specified in one of the reference images

with a click of a mouse button (the virtual frame is “anchored” in 2D). Afterwards,

the relative depth of V is adjusted by switching to a different view and moving the

corresponding projection of V along an epipolar line imposed by the anchoring view.

This is equivalent to moving V along a line connecting the camera centre and the

projection of V in the anchoring image (Figure 3.3).

Next, the user is able to fine-tune the position, orientation and size of the

virtual object in controlled variable-size increments. Figure 3.4 shows an example

29

Figure 3.3: The placement of the virtual frame origin V in 3D is achieved by an-
choring its projection vi in the image Ii and adjusting its projection vj in the image
Ij along the epipolar line Li.

of an insertion of the virtual frame and the pose adjustment. The virtual object is

rendered onto the reference images using previously computed camera parameters.

At any time the user can switch between the images to view the corresponding

virtual projection, either as a 3D frame or a fully rendered object. Note that the

geometric relationships between the real world, the virtual object and the cameras

are defined in the same generic units, so that there is no need to recover the absolute

scale of the real-world model.

30

Figure 3.4: Insertion of the virtual object into a desk scene: (a) initial placement into
one of the reference images by specifying the desired location of the frame’s origin;
(b) the frame’s trajectory along an epipolar line in another image; (c) subsequent
orientation and size adjustments; (d) the rendered teapot is properly registered. The
user controls 7 degrees of freedom (translation, orientation and size) of the virtual
object relative to the world frame.

31

Chapter 4

Camera Tracking

As pointed out in Section 1.2, the pose of the camera relative to the world coordinate

frame must be accurately determined, in order to register a virtual object in a

current video frame. Camera tracking refers to the computation of the scene-to-

camera transformation while the camera is in use for live AR. Here tracking is

model-based, as it relies on recognizing a projection of a previously constructed

scene model in each frame of a video sequence. Below is a step-by-step summary of

online computations:

1. SIFT features are extracted from the current frame of the video sequence.

2. The features from the video frame are matched against the projections of the

model points in the reference images, leading to a set of 2D-to-3D correspon-

dences.

3. The found matches are used to compute the current camera pose via non-linear

optimization.

The online computations share a lot of similar building blocks with the algo-

rithms described in the previous chapter, with special care taken to improve both

speed and accuracy.

32

4.1 From Features to Camera

To initialize the system for camera tracking, a k-d tree is built from all of the image

points of the constructed scene model. These are 2D projections of 3D world points,

which appear as SIFT features in the reference images. Thus, for each world point

at least two corresponding SIFT features from different reference images are stored

in the tree1. Each leaf in the k-d tree stores an image point and contains a link

to the corresponding world point, an index of the reference image from which the

feature originated, and a link to the camera pose computed for that image.

As part of online processing, the BBF search is performed on the k-d tree, to

find a nearest and a second nearest neighbour pair for each newly detected feature,

this time subject to the two neighbours belonging to different world points. The

reliability of the best match is tested by comparing its Euclidean distance to that

of the second best match.

Tracking failure is assumed if too few reliable matches are found. The min-

imum number of required matches is 3: with 2 image measurements per match, 6

degrees of freedom of the camera motion can be recovered. Tracking failure usually

occurs when all or most of the model disappears out of sight, the model is too far

from the camera or the frame contains too much motion blur.

As in Section 3.2.1, the camera pose parameters are computed by LM from

the found 2D-to-3D matches (x̃tj ,Xj), by minimizing the average reprojection error:

min
pt

∑

j

‖wtj(xtj − x̃tj)‖
2 (4.1)

where t is an index of the current video frame. I initialize pt to pt−1, as there is

likely to be little camera displacement between two consecutive video frames. For

the first frame of the video sequence or the one immediately after tracking failure,

as an initial guess I use the camera pose of a reference image with the lowest average

reprojection error computed for (x̃tj ,Xj).

1To save memory, these features can be combined into a single representation, one per
3D point.

33

RANSAC is applied to make camera pose computations more robust to fea-

ture mismatches. Error minimization is performed for each RANSAC sample, and

the final solution, consistent with the majority of matches, is refined using all of the

inliers. Despite its iterative nature, this technique has proven to be sufficiently fast

for online use. Since there are only 6 unknown parameters, corresponding to the 6

degrees of freedom of a camera pose, LM iterations are rapidly executed. Moreover,

the non-linear computation of pt requires the minimum of only 3 matches, so that

only a few random RANSAC samples are needed to stumble upon a good solution.

4.2 Reducing Jitter

The solution to (4.1) provides a reasonable estimate of the camera pose, yet typically

leads to a jitter of the virtual projection in the video sequence, particularly noticeable

when the camera is fully or nearly stationary. This inaccuracy can be a result of

image noise, as well as too few or unevenly distributed point matches. In addition,

the surface of the error function may be flat near a local minimum, as it may be

difficult to distinguish between slight changes in rotation and translation parameters.

To stabilize the solution, I modify (4.1) by adding a regularization term which

favours minimum camera motion between consecutive video frames:

min
pt

∑

j

‖wtj(xtj − x̃tj)‖
2 + α2‖W (pt − pt−1)‖

2 (4.2)

where W is a 6×6 diagonal matrix of prior weights on the camera parameters, and

α is a smoothness factor, which controls the tradeoff between the current measure-

ments and the desired estimate. Each diagonal entry of W is set to the inverse of the

standard deviation of the corresponding parameter, reflecting the expected frame-

to-frame change in the camera pose (e.g. a few degrees for a change in rotation).

Instead of setting α to a constant value, I adjust it separately for each video

frame, in order to prevent oversmoothing of camera motion (which would result in

a virtual object drifting behind a faster moving scene). The amount of smoothing

34

is determined by controlling its contribution to the total reprojection error: the

contribution is forced to stay within range of combined image feature noise. This

can be expressed by the inequality

α2‖W (pt − pt−1)‖
2 ≤ σ2N (4.3)

where N is the number of image points and σ is the estimated uncertainty of an

image measurement (a fraction of a pixel). It follows that the maximum allowable

amount of smoothing is

α2 =
σ2N

‖W (pt − pt−1)‖2
(4.4)

Because pt is unknown, α cannot be computed in advance; instead, it is gradually

adjusted during LM iterations, as follows.

At first, pt is computed using (4.1), i.e. with α = 0. Once a local minimum

has been reached, the search explores its immediate neighbourhood, looking for a

regularized solution. This is done by executing a few additional LM iterations,

this time solving (4.2) with α recomputed at each iteration as per (4.4), given the

most recent estimate of pt. The search for a regularized solution terminates when

pt − pt−1 becomes very small (which is typical for a stationary camera), or if the

search is about to wander too far from the original local minimum (the difference

between the errors of regularized and unregularized solutions becomes too large).

Intuitively, as much smoothing as possible is applied while still trying to

agree with the measured data, within the bounds of its uncertainty. As a result,

larger values of α are used for slower frame-to-frame motions, significantly reducing

jitter, while fast and abrupt camera motions are handled without drift.

4.3 Speeding Up Model Recognition

SIFT feature extraction is currently the most computationally intensive operation

during tracking. In order to make it faster, I have implemented two simple modifi-

cations to the standard approach. One of them involves making the SIFT algorithm

35

skip the lowest level of the scale space pyramid when searching for DOG extrema.

This decreases computation time by about a third, at the cost of finding fewer fea-

tures at finer scales. The number of skipped pyramid levels can also be adjusted

dynamically, based on the size of the image portion occupied by the tracked object,

or the number of matched features.

The other modification involves extracting features only from the part of a

video frame that is likely to contain most of the model projection. The very first

frame and those immediately after a tracking failure are processed in full. Otherwise,

a bounding rectangle is computed for the next frame from all successfully matched

features (RANSAC inliers) in the current frame. The rectangle is centered at their

mean image location and is sized up to include all of the features plus some additional

space around them to account for frame-to-frame motion. Thus, in the next frame

the model is predicted to be found somewhere nearby its current image location.

This technique works quite well for recognizing scenes or objects which occupy only

a small fraction of an image (Figure 4.1).

Figure 4.1: A white rectangle shows which portion of the next video frame will be
processed to find SIFT features belonging to the modelled mug. The features that
have been successfully detected and matched in the current frame are shown as white
dots.

36

Chapter 5

Experiments and Results

The system prototype was implemented in C, using OpenGL and GLUT libraries

for the graphics engine. ARToolKit [23] libraries were used for video frame capture,

as well as for fiducial marker tracking in some of the experiments, described in this

chapter (ARToolKit documentation and source code are available for download at

http://www.hitl.washington.edu/artoolkit/). The system runs under Linux

RedHat on an IBM ThinkPad with a Pentium 4-M processor (1.8 GHz) and a

Logitech QuickCam Pro 4000 video camera.

In evaluating the performance and capabilities of the system, I aimed to

address the following criteria:

• versatility of the modelling and tracking strategies;

• accuracy and descriptiveness of constructed scene models, sufficient to support

reliable model-based camera tracking;

• registration accuracy of virtual content; and

• robustness of the tracking method to occlusions, changes in the environment

and unpredictable camera motion.

Table 5.1 provides a summary of several primary data sets collected for sys-

tem testing (many more were used in the process of system development). The data

sets contain reference images of scenes and individual objects of varying size, shape

37

and geometric complexity. In preparing the experimental data, I attempted to cover

a wide range of scene types, as well as different ways of positioning viewpoints from

which reference images could be acquired. For example, boxes images were taken

by cameras carefully lined up in two concentric circles, one above the other, while

sneaker images were taken from completely random positions. The library set was

acquired outdoors, with people freely moving in the camera view.

In Section 5.1 I present and discuss the results obtained by the scene mod-

elling approach, highlighting its strengths and weaknesses. Section 5.2 focuses on

the performance of the camera tracking method.

Table 5.1: Data sets used for the modelling and tracking ex-

periments. The “view” column specifies the approximate view

range, captured by the images. The last column shows one of

the reference images.

name images view description image example

tabletop 35 360◦ a random collection of

objects on a table sur-

face

boxes 40 360◦ two boxes, one rect-

angular and one oval-

shaped

continued on next page

38

Table 5.1 – continued from previous page

name images view description image example

mug 40 360◦ a coffee mug on top of a

magazine

sneaker 30 180◦ a sneaker on top of a

magazine

book 15 90◦ a hard cover children’s

book

library 17 60◦ an entrance to the UBC

library

5.1 On Modelling

Figures 5.1 through 5.6 show the constructed 3D models for each of the data sets

from Table 5.1. The modelling algorithm was able to capture planar surfaces of the

book and magazine covers, cylindrical shapes of the mugs and the Nestea container,

and the rectangular shape of the box with its right angles. The reader is invited

to make visual judgements of the realism of each model: although the models are

sparse, it should be possible to identify and differentiate various shapes present in

39

Figure 5.1: Tabletop model: side view (left) and top view (right).

Figure 5.2: Boxes model: side view (left) and top view (right).

Figure 5.3: Mug model: side view (left) and top view (right).

40

Figure 5.4: Sneaker model: side view (left) and top view (right).

Figure 5.5: Book model: side view (left) and top view (right).

Figure 5.6: Library model: side view (left) and top view (right).

41

each scene, as well as their spatial layout. Note that the models have a few points

on the boundaries, which appear to have strayed from the majority cloud. These

are either actual points from the surroundings that do not belong to the model, or

simply model outliers which have not been identified as such by the algorithm. One

should keep in mind that the models are ultimately intended for camera tracking

via model-based scene recognition, rather than for image-based rendering.

Table 5.2: Performance summary of the modelling algorithm:

final average reprojection error (in pixels), number of itera-

tions until convergence to build a partial model, total mod-

elling time (including refinement stage, but excluding feature

extraction and matching), number of 3D world points in the

model and percentage of detected outliers.

data set error iterations time world points outliers

tabletop 0.3742 48 9 min 9,575 2%

boxes 0.4085 42 15 min 10,710 2%

mug 0.3619 43 20 min 14,112 1%

sneaker 0.7961 42 13 min 9,133 2%

book 0.7668 42 4 min 4,181 3%

library 0.3602 45 6 min 4,915 2%

Table 5.2 shows some numerical results for each data set, such as the final

reprojection error, the number of LM iterations, taken to construct an initial model,

and the size of the final model. The times taken by SIFT and BBF algorithms, which

are not shown in the table, are typically under a minute per data set1. Recall that

only a subset of reference images participates in the initial structure-from-motion

1Finding additional matches after RANSAC iterations is done with a linear search, which
is time-consuming. However, it should be straightforward to implement it using BBF as
well.

42

computations, while the rest of the images are incrementally added afterwards to

extend the partial model (Section 3.2.1). For all of the data sets, a minimum of 40

and a maximum of 100 LM iterations were enforced. For the first 20 iterations, no

downweighting of 3D world points was performed, to avoid premature penalization

of non-planarities. The model refinement stage via bilinear alternation was applied

each time 4 new cameras were added to the partial model, in an attempt to avoid

error accumulation, as well as at the very end (after all of the cameras were computed

and world point outliers were removed). Refinement was limited to 20 iterations2,

each including recomputation of both camera poses and point coordinates.

5.1.1 Challenges in Shape Reconstruction

Realistic modelling results are more likely to be achieved if reference images are

taken by three or more cameras, whose locations are not too close together, and

whose lines of sight point in different directions. The variety in camera placement is

likely to provide sufficient and non-ambiguous 3D information about a viewed scene,

needed for a successful Euclidean reconstruction.

Occasionally bundle adjustment has been observed to converge to a false

local minimum, producing a scene model that is reversed in depth. Depth reversal,

also known as Necker reversal [21], is an inherent ambiguity in shape perception

of objects with Lambertian reflectance under orthographic projection. Essentially,

inverting the surface depth and reflecting the light source direction about the line

of sight results in an identical image [26]. The depth reversal ambiguity can also

occur under perspective projection, likely due to imperfect measurements and too

few, closely positioned viewpoints. As a general remedy I employ a simple strategy,

which involves reflecting the constructed model about the xy world plane, bundling

again with the reflected model used to initialize the algorithm, and selecting a final

solution with the lowest average reprojection error.

2Using more than 20 iterations did not result in a noticeable improvement.

43

Problems can also arise if all of the cameras are positioned at the same

height and with the same orientation around their x axis. In such cases, and par-

ticularly when modelling objects with simple shapes, the reconstruction can suffer

from a bas-relief ambiguity: a confusion between the relative scene depth and the

perceived amount of rotation. Concretely, for each image of an object illuminated

by a distant light source, there exists an identical image of the affinely transformed

object illuminated by a similarly affinely transformed light source [6]. A commonly

observed effect of the bas-relief ambiguity is a distorted model that appears ver-

tically stretched and expanded at the bottom, with cameras looking down on it

(Figure 5.7). It seems that the algorithm prefers to increase the relative scene depth

in favour of not moving the cameras farther apart from their shared initial location

(i.e., underestimating the amount of their rotation with respect to the scene).

Figure 5.7: An example of a stretched model: 16 cameras in a perfect circle, sur-
rounding a cylindrical vase.

Aside from the scenarios mentioned above, bundle adjustment can still con-

verge to a wrong local minimum. This occurs infrequently and may be due to various

reasons, such as a few too many feature mismatches. Bad results are easy to spot:

the reprojection error is high (above 1 pixel) and the model itself is clearly distorted,

with world points widely spread out. A quick and easy fix involves selecting a differ-

ent number of images for model construction: introducing or removing one or more

images often provides sufficient data to stir the algorithm in the right direction. In

the current implementation rerunning the modelling algorithm is done by hand; a

44

future improvement may involve detecting and fixing the problem automatically.

Not surprisingly, the most challenging camera setup is a full 360◦ view of a

scene. To build a model incrementally, the algorithm starts with a cluster of images

from close viewpoints, then incorporates information from images neighbouring the

initial cluster and so on, until the loop is closed. Thus gradual error buildup is a

concern. The result may be somewhat miscalculated camera poses corresponding to

one or two images which are processed last (closing the loop). The boxes data set is

an example of this occurence (Figure 5.8). Modelling inaccuracies lead to unstable

augmentation of the problem side of the scene, such as occasional jumps and jitter

of the virtual projection.

Figure 5.8: The virtual cube appears correctly aligned with the corner of the box
in the left and middle images. The right image shows misalignment due to the
inaccurately computed camera pose.

The refinement stage of the modelling algorithm was intended to correct

miscalculations due to error buildup. Unfortunately, the effect of the bilinear al-

ternation has been found insignificant and notoriously slow: after the first 20 to

40 iterations, the average reprojection error is typically lowered by about 0.2 pix-

els, after which the amount of improvement becomes negligible. Matters may be

improved by investigating a different refinement approach. One of the alternatives

is a sparse LM method which simultaneously refines world point coordinates and

camera parameters from a subset of most reliable feature matches.

45

5.2 On Tracking

Designing experiments for evaluating online performance of an AR system has

proven to be not a straightforward matter. The end goal of AR technology is to

provide a visually pleasing and stable augmentation effect in a variety of tracking

conditions, which is difficult to measure precisely and quantitatively. In order to

demonstrate online behaviour of the system, I have directed and produced a number

of movies which are available at http://www.cs.ubc.ca/~skrypnyk/arproject/.

Examples of augmented video frames from the tracking experiments are also shown

in Figures 5.9 and 5.10.

Figure 5.9: Virtual teapot on the coffee mug. The middle frame shows scale in-
variance. The last two frames demonstrate successful recognition of the partially
occluded mug in cluttered scenes.

Figure 5.10: Virtual cube on top of the book. The book is partially occluded in the
last two frames and shadowed in the last frame.

Tracking a Mug movie features partial occlusions, object disappearances and

reappearances, and jerky camera motion. Tracking a Library Entrance was filmed

outdoors with a handheld camera, walking in front of the building. Lastly, Tracking

a Table Scene has a camera make a full 360◦ trip around the scene. The flickering

of the virtual cube at the end of the last movie is due to sporadic motion blur in

the video frames. Note that the movies were recorded at a higher frame rate than

46

that achieved by the system.

5.2.1 Computation Times

An example of current computation times for the camera tracker is given in Table 5.3.

More effort in system optimization is required to achieve real-time performance of

20-30 fps. Note that the existing non-optimized implementation of YUV-to-RGB

colour conversion, required by ARToolKit, takes about 70 ms.

There is certainly room for improvement, not the least of which is hardware

upgrade. Software optimization is hoped to provide additional speedup. If SIFT

extraction remains computationally expensive, alternative tracking techniques can

be explored. For example, full SIFT-based model recognition can be performed

every few frames or whenever needed, while in between using faster narrow baseline

feature matching via simple image correlation (assuming smooth frame-to-frame

camera motion).

Table 5.3: Average computation times for a video sequence

with 640×480 frame size. The real-world model contains

around 5,000 scene points.

frame acquisition 70 ms

feature extraction (SIFT) 150 ms

feature matching (BBF) 40 ms

camera pose computation (RANSAC and LM) 25 ms

frames per second 3-4

5.2.2 Registration Accuracy

To test the accuracy of virtual object registration and the effect of the jitter re-

duction approach (Section 4.2), I set up an experiment in which a virtual square

47

was aligned with a square ARToolKit marker, which was part of a modelled scene

(Figure 5.11).

Figure 5.11: ARToolkit marker in the scene (left). Virtual square, superimposed
onto the marker during tracking (right).

The scene was observed with both a moving and a stationary camera. The

corners of the marker in each frame were detected using the ARToolKit routine

arDetectMarker, which is based on pixel intensity thresholding and subsequent edge

detection. Image coordinates of the marker’s corners were used as ground truth

for the registration of the overlaid virtual square. Figures 5.12 and 5.13 compare

image trajectories for one of the corners (the remaining corners produce equivalent

results). The offset of about 1.5 pixels between the trajectories of the virtual square

and the marker is due to the initial slight error in the manual placement of the

virtual square.

Figure 5.12 shows the image trajectories for 300 frames when the camera is

stationary (mounted on a table surface). The y-coordinate of the marker’s corner is

compared to that of the virtual square, for both the regularized and unregularized

camera solution. Clearly, the jitter of the virtual corner is significantly reduced by

the camera pose regularization. The regularization results in a trajectory which is

on the whole smoother than the ground truth, with very few small peaks.

Figure 5.13 demonstrates results when the handheld camera is in arbitrary

motion. The image coordinates were again measured over 300 frames. The results

48

for the first 30 frames, when the camera moved very little, are also shown, for a

closer look at the trajectories. The trajectories of the real and virtual corners are

in close correspondence, with varying camera motion handled without noticeable

drift. The alignment is maintained well even when shaking the camera (frames 110

to 190).

49

Figure 5.12: Stationary camera results for 300 frames.

Figure 5.13: Moving camera results for 300 frames (top) and the first 30 frames
(bottom).

50

Chapter 6

Concluding Remarks

In this thesis I explore a versatile and user-friendly approach to Augmented Reality,

a technology which registers computer-generated virtual objects into a live video of

the real world. The AR system, developed in the course of this project, is aimed at

meeting the following goals:

• automate initial camera localization and recovery from tracking failure;

• provide fully markerless, non-intrusive means for vision-based tracking of the

camera;

• handle a vast variety of operating environments; and

• increase robustness and stability of the camera tracker.

The system is designed to operate in two stages. The preliminary stage,

performed offline, involves construction of a sparse Euclidean model of the operating

environment and autocalibration of the camera, via purely passive computer vision

techniques. The online stage performs computation of the current camera pose

which, together with the results of the offline processing, is used by the graphics

engine to render a virtual object onto a video frame. The scene modelling and

camera tracking algorithms rely on extraction and matching of stable local features,

naturally occuring in images.

51

The presented technology has potential as a framework for developing af-

fordable, low-maintenance AR applications for rapid deployment. It is suitable for

mobile AR in both indoor and outdoor settings, requires no environment modifica-

tion and very little hardware equipment, and imposes no limitations on the operating

environment, camera motion or the nature of virtual content.

6.1 Future Work

This section discusses a number of possible modifications to the current implemen-

tation that could, or perhaps should, be considered, in order to improve the system’s

performance or introduce new capabilities.

The feature extraction algorithm relies on the presence of texture in images.

Image examples, shown in this thesis, contain ample texture and as such yield from a

few hundred to a few thousand SIFT features per 640×480 image. This is more than

adequate for reliable feature matching. Several modifications and improvements can

be made to achieve good performance when dealing with image regions of lower

contrast. For example, a trivial adjustment is to lower the DOG threshold value for

peak localization, which would make feature extraction more sensitive to intensity

variations (although image noise may become more of a concern). SIFT features can

be combined with contour-based image descriptors (a few of which are mentioned

in Section 2.1.1), which would make the system respond equally well to both object

textures and shapes.

Currently, the implementation of the camera tracker runs at 3-4 fps on av-

erage, which is too slow for real-time operation. The main bottleneck in online

processing is acquisition of video frames and feature extraction. Future develop-

ment efforts should include overall system optimization, involving both hardware

and software improvements.

As mentioned in Section 5.1.1, accurate 360◦ shape recovery has been a

challenge due to gradual error accumulation, which bilinear alternation was unable

52

to correct. Future improvements should include the investigation of alternative

methods for incremental model construction and refinement.

The system has been able to achieve successful modelling and recognition of

scenes of varying size and complexity, from handheld objects to rooms and build-

ings. The next step in performance testing must focus on the system scalability

for operation in large environments, such as a campus or a museum. A potential

enhancement may involve modelling individual buildings, rooms or objects, and pro-

viding a mechanism for online switching between these models as the user travels

around his or her surroundings.

It should be pointed out that the discussed techniques do not provide support

for handling occlusion of inserted virtual content by real objects in the world. To

achieve this effect, a dense model of the observed scene is required. The construction

of fully textured models from images is an important subject of research in computer

vision, but it is beyond the scope of this thesis.

53

Bibliography

[1] Mirko Appel and Nassir Navab. Registration of technical drawings and cali-

brated images for industrial augmented reality. Machine Vision and Applica-

tions, 13(3):111–118, 2002.

[2] A. Azarbayejani, B. Horowitz, and A. Pentland. Recursive estimation of struc-

ture and motion using relative orientation constraints. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, pages 294–299,

1993.

[3] R. Azuma. A survey of augmented reality. Presence: Teleoperators and Virtual

Environments, 6(4):355–385, 1997.

[4] R. Azuma, Y. Baillot, R. Behringer, S. Feiner, S. Julier, and B. MacIntyre.

Recent advances in augmented reality. IEEE Computer Graphics and Applica-

tions, 21(6):34–47, 2001.

[5] Jeffrey S. Beis and David G. Lowe. Shape indexing using approximate nearest-

neighbour search in high-dimensional spaces. In Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition, pages 1000–1006, 1997.

[6] Peter N. Belhumeur, David J. Kriegman, and Alan L. Yuille. The bas-relief

ambiguity. In Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 1060–1066, 1997.

[7] Serge Belongie, Jitendra Malik, and Jan Puzicha. Matching shapes. In Pro-

ceedings of the 8th IEEE International Conference on Computer Vision, pages

454–463, 2001.

[8] M. Billinghurst, H. Kato, and I. Poupyrev. The MagicBook: a transitional AR

interface. Computers and Graphics, 25(5):745–753, 2001.

[9] C.S. Chen, C.K. Yu, and Y.P. Hung. New calibration-free approach for aug-

mented reality based on parameterized cuboid structure. In Proceedings of the

7th International Conference on Computer Vision, pages 30–37, 1999.

54

[10] Kar Wee Chia, Adrian David Cheok, and Simon J.D. Prince. Online 6 DOF

augmented reality registration from natural features. In Proceedings of the In-

ternational Symposium on Mixed and Augmented Reality, pages 305–313, 2002.

[11] Kurt Cornelis, Marc Pollefeys, Maarten Vergauwen, and Luc Van Gool. Aug-

mented reality using uncalibrated video sequences. Lecture Notes in Computer

Science, 2018:144–160, 2001.

[12] Olivier D. Faugeras. What can be seen in three dimensions with an uncalibrated

stereo rig? In Proceedings of the European Conference on Computer Vision,

pages 563–578, 1992.

[13] V. Ferrari, T. Tuytelaars, and L. Van Gool. Markerless augmented reality

with a real-time affine region tracker. In Proceedings of the IEEE and ACM

International Symposium on Augmented Reality, pages 87–96, 2001.

[14] M. Fischler and R. Bolles. RANdom SAmple Consensus: a paradigm for model

fitting with application to image analysis and automated cartography. Commu-

nications of the Association for Computing Machinery, 24(6):381–395, 1981.

[15] Andrew W. Fitzgibbon and Andrew Zisserman. Automatic camera recovery

for closed or open image sequences. In Proceedings of the European Conference

on Computer Vision, pages 311–326, 1998.

[16] M. Fjeld and B.M. Voegtli. Augmented Chemistry: an interactive educational

workbench. In Proceedings of the International Symposium on Mixed and Aug-

mented Reality, pages 259–321, 2002.

[17] Y. Genc, S. Riedel, F. Souvannavong, C. Akinlar, and N. Navab. Marker-less

tracking for AR: a learning-based approach. In Proceedings of the International

Symposium on Mixed and Augmented Reality, pages 295–304, 2002.

[18] Michael Grafe, Raphael Wortmann, and Holger Westphal. AR-based interactive

exploration of a museum exhibit. In Proceedings of the First IEEE International

Augmented Reality Toolkit Workshop, 2002.

[19] Mei Han and Takeo Kanade. Scene reconstruction from multiple uncalibrated

views. Technical Report CMU-RI-TR-00-09, Robotics Institute, Carnegie Mel-

lon University, Pittsburgh, PA, January 2000.

[20] C.J. Harris and M. Stephens. A combined corner and edge detector. In Pro-

ceedings of the 4th Alvey Vision Conference, pages 147–151, 1988.

55

[21] R. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision.

Cambridge University Press, 2000.

[22] William A. Hoff, Khoi Nguyen, and Torsten Lyon. Computer vision-based reg-

istration techniques for augmented reality. In Proceedings of Intelligent Robots

and Computer Vision XV, SPIE, pages 538–548, 1996.

[23] Hirokazu Kato and Mark Billinghurst. Marker tracking and HMD calibration

for a video-based augmented reality conferencing system. In Proceedings of

the 2nd IEEE and ACM International Workshop on Augmented Reality, pages

85–94, 1999.

[24] Georg Klein and Tom Drummond. Robust visual tracking for non-instrumented

augmented reality. In Proceedings of the 2nd IEEE and ACM International

Symposium on Mixed and Augmented Reality, pages 113–122, 2003.

[25] Kiriakos N. Kutulakos and James R. Vallino. Calibration-free augmented re-

ality. IEEE Transactions on Visualization and Computer Graphics, 4(1):1–20,

1998.

[26] M.S. Langer and H.H. Bülthoff. Measuring visual shape using computer graph-

ics psychophysics. In Proceedings of the Eurographics Workshop on Rendering

Techniques, pages 1–10, 2000.

[27] Vincent Lepetit, Luca Vacchetti, Daniel Thalmann, and Pascal Fua. Fully

automated and stable registration for augmented reality applications. In Pro-

ceedings of the 2nd IEEE and ACM International Symposium on Mixed and

Augmented Reality, pages 93–102, 2003.

[28] H.C. Longuet-Higgins. A computer algorithm for reconstructing a scene from

two projections. Nature, 293(10):133–135, 1981.

[29] David G. Lowe. Object recognition from local scale-invariant features. In

Proceedings of the 7th International Conference on Computer Vision, pages

1150–1157, 1999.

[30] David G. Lowe. Distinctive image features from scale-invariant keypoints. In-

ternational Journal of Computer Vision, 60(2):91–110, 2004.

[31] B.D. Lucas and T. Kanade. An iterative image registration technique with

an application to stereo vision. In Proceedings of the 7th International Joint

Conference on Artificial Intelligence, pages 674–679, 1981.

56

[32] Shyjan Mahamud, Martial Hebert, Yasuhiro Omori, and Jean Ponce. Provably-

convergent iterative methods for projective structure from motion. In Proceed-

ings of the Conference on Computer Vision and Pattern Recognition, pages

1018–1025, 2001.

[33] J. Matas, O. Chum, M. Urban, and T. Pajdla. Robust wide baseline stereo

from maximally stable extremal regions. In Proceedings of the British Machine

Vision Conference, pages 384–393, 2002.

[34] P.F. McLauchlan, I.D. Reid, and D.W. Murray. Recursive affine structure and

motion from image sequences. In Proceedings of the European Conference on

Computer Vision, pages 217–224, 1994.

[35] Krystian Mikolajczyk and Cordelia Schmid. An affine invariant interest point

detector. In Proceedings of the European Conference on Computer Vision, pages

128–142, 2002.

[36] Randal C. Nelson and Andrea Selinger. Large-scale tests of a keyed, appearance-

based 3-d object recognition system. Vision Research, 38(15):2469–88, 1998.

[37] Marc Pollefeys. 3D modeling from images. Tutorial in conjunction with the

European Conference on Computer Vision, 2000.

[38] Marc Pollefeys, Reinhard Koch, and Luc Van Gool. Self-calibration and metric

reconstruction inspite of varying and unknown intrinsic camera parameters.

International Journal of Computer Vision, 32(1):7–25, 1999.

[39] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery. Numerical

Recipes in C: The Art of Scientific Computing. Cambridge University Press,

1992.

[40] Fred Rothganger, Svetlana Lazebnik, Cordelia Schmid, and Jean Ponce. 3D

object modeling and recognition using local affine-invariant image descriptors

and multi-view spatial constraints. Submitted to the International Journal of

Computer Vision, 2004.

[41] Harpreet S. Sawhney, Y. Guo, J. Asmuth, and Rakesh Kumar. Multi-view

3D estimation and applications to Match Move. In Proceedings of the IEEE

Workshop on Multi-View Modeling and Analysis of Visual Scenes, pages 21–28,

1999.

[42] F. Schaffalitzky and A. Zisserman. Multi-view matching for unordered image

sets, or ”How do I organize my holiday snaps?”. In Proceedings of the 7th

European Conference on Computer Vision, pages 414–431, 2002.

57

[43] M. Schnaider, B. Schwald, H. Seibert, and T. Weller. Medarpa - a medical

augmented reality system for minimal-invasive interventions. In Proceedings of

the 11th Medicine Meets Virtual Reality Conference - NextMed: Health Horizon,

pages 312–314, 2003.

[44] Steven M. Seitz and Charles R. Dyer. Complete scene structure from four

point correspondences. In Proceedings of the 5th International Conference on

Computer Vision, pages 330–337, 1995.

[45] Yongduek Seo and Ki Sang Hong. Calibration-free augmented reality in

perspective. IEEE Transactions on Visualization and Computer Graphics,

6(4):346–359, 2000.

[46] Ivan E. Sutherland. A head-mounted three-dimensional display. In Proceedings

of the Fall Joint Computer Conference, pages 757–764, 1968.

[47] Richard Szeliski and Sing Bing Kang. Recovering 3D shape and motion from

image streams using non-linear least squares. Technical report, Cambridge

Research Laboratory, 1993.

[48] Carlo Tomasi and Takeo Kanade. Shape and motion from image streams: a

factorization method, full report on the orthographic case. Technical Report

CMU-CS-92-104, CMU, March 1992.

[49] Bill Triggs, Philip McLauchlan, Richard Hartley, and Andrew Fitzgibbon.

Bundle adjustment – a modern synthesis. In W. Triggs, A. Zisserman, and

R. Szeliski, editors, Vision Algorithms: Theory and Practice, LNCS, pages

298–375. Springer Verlag, 2000.

[50] Mihran Tuceryan, Douglas S. Greer, Ross T. Whitaker, David E. Breen, Chris

Crampton, Eric Rose, and Klaus H. Ahlers. Calibration requirements and

procedures for a monitor-based augmented reality system. IEEE Transactions

on Visualization and Computer Graphics, 1(3):255–273, September 1995.

[51] V. Vlahakis, N. Ioannidis, J. Karigiannis, M. Tsotros, M. Gounaris, D. Stricker,

T. Gleue, P. Daehne, and L. Almeida. Archeoguide: an augmented reality guide

for archaeological sites. IEEE Computer Graphics and Applications, 22(5):52–

60, 2002.

[52] Annie Yao and Andrew Calway. Robust estimation of 3-D camera motion for

uncalibrated augmented reality. Technical Report CSTR-02-001, Department

of Computer Science, University of Bristol, March 2002.

58

