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Abstract

An algorithm is described which rapidly veri�es the potential rigidity of three dimensional
point correspondences from a pair of two dimensional views under perspective projection.
The output of the algorithm is a simple yes or no answer to the question \Could these
corresponding points from two views be the projection of a rigid con�guration?" Potential
applications include 3D object recognition from a single previous view and correspondence

matching for stereo or motion over widely separated views. Our analysis begins with the
observation that it is often the case that two views cannot provide an accurate structure-from-
motion estimate because of ambiguity and ill-conditioning. However, it is argued that an
accurate yes/no answer to the rigidity question is possible and experimental results support
this assertion with as few as six pairs of corresponding points over a wide range of scene

structures and viewing geometries. Rigidity checking veri�es point correspondences by using
3D recovery equations as a matching condition. The proposed algorithm improves upon other
methods that fall under this approach because it works with as few as six corresponding
points under full perspective projection, handles correspondences from widely separated

views, makes full use of the disparity of the correspondences, and is integrated with a linear

algorithm for 3D recovery due to Kontsevich. The rigidity decision is based on the residual

error of an integrated pair of linear and nonlinear structure-from-motion estimators. Results

are given for experiments with synthetic and real image data. A complete implementation
of this algorithm is being made publicly available.

Keywords
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1 Introduction

An algorithm is given for accurately and rapidly verifying the potential rigidity of three

dimensional point correspondences from a pair of two dimensional views under perspective

projection. Our motivation comes from the problem of �nding corresponding point features

between two or more disparate views of an object. The output of the method is a simple yes or

no answer based on the residual error of a minimumvariance estimator for a parameter space

of rigid transformations and structure. The rigidity veri�cation approach proposed here is

shared by other methods for verifying point correspondences using 3D recovery equations as

a matching condition. The algorithm, however, substantially improves upon other methods

because it works with as few as six corresponding points under full perspective projection,

handles correspondences from widely separated views, makes full use of the disparity of

the correspondences which necessarily involves the scene structure, and is integrated with a

linear estimator based on a weak perspective model.

The matching condition for verifying rigidity is based on a set of 3D scene recovery con-

straints whose satisfaction minimizes the residual error of an iterative nonlinear optimization

algorithm. Although iterative nonlinear methods can be computationally intensive, an ac-

curate answer to the rigidity question is computed quickly for two main reasons. First, a

reasonably good initial parameter estimate is computed from a linear algorithm, and sec-

ondly, the nonlinear model for 3D recovery makes full use of the image disparity. The 3D

recovery equations proposed here are derived from the collinearity condition of the scene and

image points under perspective projection which provides a natural and integrated approach

to the simultaneous estimation of relative motion and scene structure.

Matching point-feature patterns between images is fundamental to computational vision

as evidenced by the large body of literature addressing this problem. It is intrinsic to such

tasks as stereo, structure-from-motion and model based recognition. Investigation into the

correspondence problem for biological vision has a long history as well [5, 1]. This work is

inspired by recently published ideas for recognition by Bennett et al. [4] and Kontsevich

[17] and has similar goals to the work of Wei, He and Ma [38]. Three applications of the
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proposed method that are briey considered include the recognition of a 3D object from

a single previous view [4, 17], the detection of multiple moving objects from a sequence of

views [33] and stereo correspondence [8].

The algorithm proposed here embodies the rigidity assumption �rst postulated by Ull-

man [35]. The rigidity assumption forms an organizing principle for the analysis of changing

images due to the relative motion between the observer and the scene. The rigidity assump-

tion can also be an organizing principle for the analysis of stereoscopic images as suggested

by Kontsevich. Bennett cites evidence that the rigidity of motion is a key principle in or-

ganizing the world into discrete objects [4]. Marr provides a good overview of the utility of

the rigidity assumption and places its history in context up to circa 1982 [25]. There is a

body of work in the psychology literature which also deals with the perception of rigid and

nonrigid 3D point con�gurations (c.f. [6] and references therein).

The matching condition for verifying the correctness of point correspondences under the

rigidity assumption is based on a set of 3D recovery equations that are generally referred

to as structure-from-motion equations. Accurately estimating the structure-from-motion

parameters from a small set of point correspondences under perspective projection is a

di�cult problem. In general, if less than eight correspondences are available from two views

then nonlinear equations must be solved to yield the parameter values. The resulting system

of equations is inherently unstable given noisy observations, requires an initial estimate near

the global minimum, and yields multiple solutions. Also, if the point features are projected

approximately orthographically then a family of solutions exist for motion and structure. The

problem of verifying the potential rigidity of a con�guration of 3D points from a pair of views

is reduced to an algorithm which minimizes the residual of a nonlinear objective function

in the image space coordinates. By only considering the residual error of the estimator in

the veri�cation process, potential di�culties that could issue from the use of the estimated

parameter values are avoided. This veri�cation process we call rigidity checking and it is

worth noting that rigidity checking provides a mechanism for �nding geometric invariance

from 2D views.

It is assumed that images are formed by a perspective projection and the camera model
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assumes knowledge of a scale factor that is related to the camera's image size and angular �eld

of view. It is also assumed that the observation variances are known or can be measured. The

rigidity decision is based on the residual error of an iterative least-squares estimator based

on the Levenberg-Marquardt method. The convergence rate of the nonlinear estimator is

improved substantially by an initial estimate of the rotation about the optical axis and a

single parameter family of relative depths computed from a linear structure-from-motion

algorithm due to Kontsevich [17]. Kontsevich's algorithm assumes images are formed by a

scaled orthographic projection. Recent studies provide analysis and experimental evidence of

the reliability of estimating the component of rotation about the optical axis [28, 30, 13]. By

only relying on an image based residual error criterion to verify potential rigidity, with the

ability to handle ill-conditioned solutions and widely separated viewpoints, and by working

with a minimal number of correspondences, rigidity checking is seen to be di�erent from

traditional structure-from-motion.

2 Related Work In Structure-From-Motion

The rigidity checking method is based on a matching condition derived from a set of

structure-from-motion equations. This section reviews solutions to the problem of structure-

from-motion that are similar to the rigidity checking solution or are common to other meth-

ods for correspondence veri�cation.

2.1 Structure-from-motion and Orthographic Projection

The nonlinear optimization algorithm is initialized with a motion and structure estimate

provided by a linear algorithm based on Kontsevich's algorithm for a pair of scaled ortho-

graphically projected images [17]. Kontsevich's algorithm is similar to the one described by

Koenderink and Van Doorn [16] and Basri [2] in that they make the same geometric argu-

ments concerning recovery of scale and the rotation component in the image plane of the

motion between a pair of views. The main contribution of Kontsevich's algorithm is its simple

linear formulation for recovering the epipolar geometry as a change of basis transformation.

The algorithm avoids computing rotation angles and is easily implemented. Koenderink and
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van Doorn do not specify an algorithm but outline the geometric constraints that determines

a construction that will yield the scale and rotation parameters for the rotation component

in the image plane. Kontsevich and Koenderink and Van Doorn both derive the same expres-

sion for depth recovery. Basri derives the same set of linear constraints for orthographically

projected images as Kontsevich but determines the epipolar geometry by solving explicitly

for the planar rotation angles. Also, Basri is not concerned with depth recovery. Basri also

cites Ullman as having earlier derived essentially the same transformation as his but with a

minimum of �ve corresponding points rather than four. Other derivations for recovering the

epipolar geometry and scene structure from weak perspective views were reported by Huang

and Lee [14], Lee and Huang [19], Bennett et al. [3], Harris [10], Hu and Ahuja [13] and more

recently by Nishimura et al. [28]. Sudhir et al. [31] present related work for �nding point

correspondences under a�ne (not necessarily rigid) motion for weak perspective projection

and a minimum of three views.

Huttenlocher and Kleinberg have published an interesting theoretical result for the prob-

lem of deciding whether two views of a 3D point set are of the same rigid object under or-

thographic and central projection. Their veri�cation step for an hypothesized labeling of the

points is based on exactly the same constraint as Kontsevich's for orthographic projection

[15].

2.2 Structure-from-motion and Perspective Projection

Methods Based On Nonlinear Estimation

The nonlinear estimation process described here is based on the iterative least-squares

Levenberg-Marquardt algorithm with additional parameter stabilization that e�ectively im-

proves the reliability of the estimation process when the solution is minimally constrained

and the observations are noisy. This stabilization is most frequently necessary when there is

a large amount of perspective distortion and the views are nearly, or are, the same.

The basic nonlinear algorithm was developed earlier [26, 27]. Szeliski and Kang have re-

cently and independently developed an algorithm for structure-from-motion which is similar

to our method [32]. Their application is not the same as the one described here, however,
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in that they are seeking to recover object structure from many views and correspondences.

Their formulation di�ers from ours in several ways. They incorporate and solve for a param-

eter that describes the global o�set of the scene points from the camera coordinate frame.

They also solve for a global scale factor related to the focal length and global depth o�set

parameter. We assume a �xed value for the global depth o�set (as this cannot be determined

from the images) and a known image scale factor which is related to the focal length and

camera's �eld of view. They do not address the problems associated with having only a

small number of views and correspondences and the use of stabilization methods to improve

the algorithm's performance.

Other recent related work in nonlinear estimation of structure-from-motion is fromWeng

et al. [39, 40]. Their minimum variance optimal estimator minimizes an image based error

function for point correspondences similar to the one described here. The major di�erence

with the rigidity checking method concerns the structure parameters which are solved for

simultaneously with the motion parameters but are factored out into a separate optimization

step in their formulation. They argue for this decomposition because it reduces the compu-

tational load and more importantly because their minimum variance estimator only involves

the minimum number of parameters for the structure-from-motion problem. The dimension-

ality of the rigidity checking parameter space is not large because, rather than solving for 3D

scene coordinates, only the scene depths in a reference coordinate frame are determined in

addition to the motion parameters. Their results for the Levenberg-Marquardt batch solu-

tion method are generally better than their iterated extended Kalman �lter (IEKF) results.

The better performance of batch techniques over IEKF methods for structure-from-motion is

also supported by other experiments [18]. The proposed rigidity checking method is based on

a Levenberg-Marquardt batch solution. They also analyze the limitation of small interframe

motion and derive the Cramer-Rao lower error bound for the motion estimates. This lower

bound predicts the instability and large expected error in the estimation of the motion and

structure parameters from views that are close together. Briey discussed in a later section

is a stabilization method incorporated into the rigidity checking algorithm which addresses

exactly this issue.
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Methods Based On Linear Estimation

Another class of structure-from-motion algorithms for images under perspective projection

solve a system of linear equations for a set of motion parameters. These algorithms are

based on the coplanarity constraint of corresponding points from two views. The classic

linear algorithm was �rst developed by Longuet-Higgins and requires a minimum of eight

point correspondences to fully constrain the unknown parameters [21]. Wei et al. employ the

linear formulation developed by Tsai and Huang [34] to solve the correspondence problem

and estimate motion simultaneously. Their method, similar to the rigidity checking method,

uses an hypothesize and test approach to determine the correct correspondences with the 3D

recovery equations as a matching condition. Their method, however, requires a minimum of

nine correspondences for a least-squares estimate compared to six for the rigidity checking

method. The reliability of their matching constraint is reduced for images that are projected

nearly orthographically or are noisy for reasons described in the next paragraph.

Weng et al. [39] discuss the limitations of the epipolar constraint for accurately esti-

mating the motion and structure parameters. The main point of their discussion is that

the epipolar constraint recovers the motion parameters independently of the scene struc-

ture. This independence has the advantage of yielding a linear system for estimating the

motion parameters but has the disadvantage that the solution space accommodates a scene

structure space which includes many physically impossible scene solutions, i.e., the motion

solution leads to a violation of the \depths positive" criterion for the scene structure. The

violation of the \depths positive" criterion is a result of the ambiguity of the motion so-

lution in the presence of even a small amount of noise or when the images are projected

nearly orthographically. This large scene space that includes physically impossible scenes

accounts for the experimentally observed large false positive rate exhibited by epipolar con-

straint based methods for verifying correspondences. The rigidity checking method is based

on the collinearity constraint for perspective projection and therefore makes full use of the

image disparity which necessarily involves the scene structure. This constraint reduces the

ambiguity of the motion solution by improving the discriminatory power of the estimator

for rotation and translation by embedding local structure constraints on the image dispar-
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ities within the global motion constraints. Also, because the \depth's positive" criterion is

implicitly enforced in the simultaneous solution of motion and structure, the search in the

motion parameter space is also appropriately restrained to a valid region.

3 Derivation of the Rigidity Checking Equations

3.1 Imaging Model

The standard perspective projection model is assumed. There are two coordinate systems

relevant to this formulation, one camera-centered and the other object-centered. The object-

centered frame can also be thought of as a intermediate camera frame which is identi�ed

with a reference camera frame by a translation along the optical axis. The object structure is

recovered in this stable reference frame. Experiments show that estimating the motion and

structure in an object-centered coordinate system noticeably improves the stability of the

recovery method. This is especially true when the object motion is dominated by rotation.

Intuitively, working in an object-centered frame helps to decouple the e�ects of rotational

motion from translational motion since object rotations require smaller compensating trans-

lations. Recovering motion and structure in an object-centered coordinate frame is similar to

the model described by Kumar et al. [18] with the exception that we are solving for discrete

rigid body transformations rather than velocities. The transformation from the intermediate

camera frame to the camera centered frame is given by a translation tcz along the optical

axis.

The rigid body motion of point pj from the reference object frame to a subsequent

camera frame is given by

~Pj = Rpj + t + tc (1)

where tc maps the intermediate camera frame to the camera centered frame and is given by

tc = [0; 0; tcz]
T , R is a 3 by 3 orthonormal rotation matrix from the intermediate camera

frame to the frame of the second image, t is the translation vector and ~Pj is the j
th object

point in the second camera frame.
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Image coordinates of the jth point are given by

wj =

"
uj
vj

#
=
�f

Pjz

"
Pjx

Pjy

#
(2)

where f is a scale factor related to the image size and angular �eld of view of the camera.

3.2 Least-Squares Solution Of Nonlinear Equations

An image based error function e(w;w0;m) can be written that relates the position of the

projected feature points in di�erent views to the rigid body transformation parameters and

the depths of the points as follows

e(w;w0;m) = w0 � y(w;m) (3)

where m is the set of parameters for motion and the depths of the scene points in the

reference object frame, w is the coordinate vector of the point in the reference image frame

and w0 is the corresponding point in the second image frame.

The function y(w;m) maps the image coordinates in the reference image frame into the

nonreference image frame by �rst back-projecting the image coordinates into the reference

camera centered frame, i.e., �nd Px and Py from (2) according to the latest depth estimates.

This is followed by a transformation to the reference object frame by a translation along the

optical axis, then to the nonreference camera frame according to the latest motion estimate

by equation (1) and �nally projecting into the nonreference image frame by (2). Because of

the smoothness and well behaved properties of the nonlinear projection equation (2) applying

the Gauss-Newton method to the estimation of the transformation and depth parameters

is a good choice. Although the method requires an initial guess and there is a risk of

converging to a local minimum, we show below that by incorporating stabilization methods

and Levenberg-Marquardt extensions the use of the Gauss-Newton method can work well in

practice.

Rather than solving directly for the parameters m which minimizes (3), the Gauss-

Newton method computes a vector of corrections h which are added to the current parameter

estimates. The ith + 1 estimate is given by

mi+1 =mi + h: (4)
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Based on the assumption that (3) is locally linear, the e�ect of each parameter correction

hk on the error measurement is determined by multiplying the correction hk by the partial

derivative of the error with respect to that parameter. Therefore, we can solve for h in the

following matrix system

Jh = �E

where J is the Jacobian matrix Jik =
@Ei

@hk
. E is the vector of ej for correspondence j.

Computing The Partial Derivatives

The error measure is just the di�erence between the observed image point and the image

point from the reference view mapped into the nonreference (or current) view, w0

j� ~wj = ej,

where ~wj is a function of the depth of the point in the reference object-centered frame, and

the translation and rotation between the two views. The partial derivatives of ~wj are given

by

@~uj

@hk
=
�f

~P
jz

 
@ ~P

jx

@hk
�

~P
jx

~P
jz

@ ~P
jz

@hk

!
and

@~vj

@hk
=
�f

~P
jz

 
@ ~P

jy

@hk
�

~P
jy

~P
jz

@ ~P
jz

@hk

!
:

The partial derivatives of ~P
jx
; ~P

jy
and ~P

jz
with respect to hk are the components of a set

of directional derivatives in a camera centered frame. These parameters are the depth values

of the points in the reference frame, Pjz , the three translation parameters tx; ty and tz and

the parameterization of the rotation component. Determining the partial derivatives with

respect to rotation poses some di�culty, since rotation has only three degrees of freedom

and any formulation with a rotation operator necessarily involves more than three terms

which often then become the rotation parameters, e.g., the nine elements of an orthonormal

rotation matrix. Furthermore, the formulation makes no suggestion as to the appropriate

representation in terms of its underlying parameters. If we compose three rotations about

individual axes to compute an arbitrary 3D rotation, singularities can occur if the sequential

composition fails to specify independent directions of rotation. Therefore, we represent full

three-degree-of-freedom rotations with a 3 by 3 orthonormal rotation matrix and compute

corrections about each of the coordinate axes to be composed with this rotation. These

corrections are approximately independent for small angles. They are also extremely e�cient
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to compute. For example, the directional derivative of a point with respect to an incremental

rotation about the x axis is the vector (0; z;�y) for a change of basis convention for rotation,

where z and y refer to the coordinates of the vector from the origin of the rotation to the

point.

These derivatives are analytical closed form expressions. An important advantage of this

fact is that the Jacobian matrix can be computed very e�ciently and accurately. Hence, we

are not required to use computationally expensive �nite di�erence methods.

Partial Derivatives of ~u and ~v

The partial derivative of the image coordinate ~uj with respect to the depth parameter is

@~uj

@Pz

=
@~uj

@ ~Pz

@ ~Pz

@Pz

=
�f

~P 2
jz

 
~Pjz

@ ~Pjx

@ ~Pz

� ~Pjx

@ ~Pjz

@ ~Pz

!
@ ~Pz

@Pz

:

Now write ~Pjx and ~Pz as

~Pjx =
�
PjzR�Pj + t

�
x

~Pz =
�
PzR�P+ t

�
z

where �Pj is given by

�Pj =

2
664

�uj

f

�vj

f

1

3
775 :

Then,

@ ~Pjx

@ ~Pz

=

@ ~Pjx

@Pz

@ ~Pz

@Pz

=
(R�Pj)x

(R�Pj)z

when ~P = ~Pj else
@~Pj

@ ~Pz
= 0. Therefore

@~uj

@Pz

=
�f

~P 2
jz

�
~Pjz

�
R�Pj

�
x

� ~Pjx

�
R�Pj

�
z

�

when ~P = ~Pj else it equals 0.

Rotations are parameterized by incremental rotations about the coordinate axes. Let

these parameters be designated by �x; �y and �z. Then the partial derivative with respect

to �x is

@~uj

@�x
=
�f

~P 2
jz

 
~Pjz

@ ~Pjx

@�x
� ~Pjx

@ ~Pjz

@�x

!
=
�f ~Pjxp

0

jy

~P 2
jz
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where

p0
jy
= (Rpj)

T

2
64
0

1

0

3
75 :

The partial derivative with respect to �y is

@~uj

@�y
=
�f

~P 2
jz

 
~Pjz

@ ~Pjx

@�y
� ~Pjx

@ ~Pjz

@�y

!
= f

0
@ p0

jz

~Pjz

+
~Pjxp

0

jx

~P 2
jz

1
A

where

p0
jx
= (Rpj)

T

2
64
1

0

0

3
75 and p0

jz
= (Rpj)

T

2
64
0

0

1

3
75 :

The partial derivative with respect to �z is

@~uj

@�z
=
�f

~P 2
jz

 
~Pjz

@ ~Pjx

@�z
� ~Pjx

@ ~Pjz

@�z

!
=
�fp0

jy

~Pjz

:

The partial derivatives of ~uj with respect to the three translation components tx; ty and

tz are now given. The partial with respect to tx is

@~uj
@tx

=
�f

~P 2
jz

 
~Pjz

@ ~Pjx

@tx
� ~Pjx

@ ~Pjz

@tx

!
=
�f

~Pjz

:

Similarly, the partials with respect to ty and tz are

@~uj

@ty
= 0 and

@~uj

@tz
=

f ~Pjx

~P 2
jz

:

The partial derivatives of ~vj are derived similarly.

The solution for motion and depth can only be recovered up to a global scale factor.

To reduce the number of degrees of freedom it is convenient to �x the global scale by either

�xing one of the depth parameters or by constraining the translation to have a unit norm.

Here, the value of the �rst depth parameter is set to zero in the object frame. Hence, from a

simple counting argument for corresponding points, a minimum of two views and �ve points

are required to yield a system of equations of full rank where each match contributes two

independent constraints.
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4 Implementation Issues

4.1 Integrating The Linear and Nonlinear Algorithms

Kontsevich describes a fully linear algorithm for recovering the epipolar geometry of two sets

of corresponding points under scaled orthographic projection by formulating the problem

in terms of a change of basis in Euclidean coordinates [17]. The rigid 3D structure of

the con�guration is also recovered. The epipolar geometry is recovered under the rigidity

assumption. The change of basis transformation maps the two point sets into a common

object centered frame which is referenced to a rotation axis that corresponds to the rotation

component in depth. The translation component of the motion is excluded immediately by

considering the transformation of the edge vectors formed by joining the object points. The

change of basis transformation excludes the scaling component and the rotation component

about the viewing direction. The recovery problem is reduced to the standard problem of

binocular stereo where the unknown rotation component is about the vertical axis. A one

parameter family of object structure is recovered, parameterized by the angle of rotation

about the vertical axis. A minimum of four non-coplanar point correspondences are required

to satisfy the constraints.

The novel geometric interpretation of the constraint that determines the rotation compo-

nent about the viewing direction (a vector orthogonal to the image plane) is the observation

that the orthogonal projection of an edge onto an axis V (which is identi�ed with the moving

object) is invariant to rotation about the viewing direction. The axis V is the 3D rotation

axis orthogonally projected onto the image plane of the �rst view and is derived from the

decomposition of an arbitrary rotation into a rotation about some axis V in the image plane

and a rotation about an axis orthogonal to the image plane. The rotation component about

the viewing direction maps axis V in the �rst view to axis V' in the second view. The

projected edge on V is identical (up to a scale factor) to the corresponding edge projected

onto V'. Once the axes V and V' are determined the scale factor is also determined and

a basis transformation can be formed for each image which, when applied to the two edge

sets, results in a binocular stereo problem in an object centered frame for rotation about the
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vertical axis. The object structure is uniquely determined by the rotation angle about the

vertical axis which is a free variable, hence, there is a one parameter family of solutions for

object structure.

The axes V and V' can only be determined unambiguously (up to a sign) if the 3D

con�guration is non-coplanar and the two sets of image measurements are not related by

an a�ne transformation (which would be the case for a rotation only about the viewing

direction).

The constraint that the orthogonal projection of any edge onto axis V equals the pro-

jection of the corresponding edge onto axis V' can be used as a consistency criterion for

verifying point correspondences under scaled orthographic projection as described by Kont-

sevich. This consistency criterion has recently been described by Huttenlocher and Kleinberg

[15] (1994) in a paper that addresses the combinatoric problem of verifying point correspon-

dences under orthographic and central projection for noise free observations. Huttenlocher

and Kleinberg describe a new algorithm with a low order polynomial time complexity for the

problem of labeling and verifying the correspondences between two sets of projected points.

Their veri�cation criterion for orthographically projected point correspondences is identical

to Kontsevich's (note that Kontsevich's criterion is more general since it handles scaled or-

thographic images). Unfortunately, it is an open question if the complexity of Huttenlocher's

algorithm for noisy observations approaches the bounds for noise free observations.

Kontsevich's algorithm is applicable to multiple frames. In the case of three frames

it is su�cient to compare the structure estimates from two pairs of comparisons. If the

structure is unique then real scalars, � and �, can be found which satisfy the structure

equalities. There is a problem, however, with the solution strategy suggested by Kontsevich

for a special motion case. The special motion case occurs, for example, when there is no

rotation about the viewing direction between any pair of views. The details of the problem

will be omitted here since we are primarily concerned with the two view case, however, it

should be noted that the solution for the two scalars is not a simple linear problem. In

fact, solving for the scalars involves �nding the real roots of a fourth order polynomial. The

solution is further complicated when the image measurements are noisy.
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The linear estimation algorithm provides a single parameter family of solutions for depth

parameterized by the rotation angle about the vertical axis. For the purpose of initializing the

rotation estimate this value is arbitrarily set to 45 degrees. For the purpose of initializing the

depth values a rotation angle of approximately 10 degrees is chosen. This value overestimates

the scale of the depth solution if the actual rotation angle is greater than 10 degrees since

depth is proportional to the product of disparity and the inverse sine of the rotation angle.

The mean value of inverse sine over the range of 1 to 45 degrees corresponds to an angle of

about 10 degrees. The depth scaling corresponding to a 10 degree rotation angle was found

experimentally to give the best convergence results for images with small or large perspective

distortions.

4.2 Stabilizing The Nonlinear Solution

As long as there are signi�cantly more constraints on the solution than unknowns, the Gauss-

Newton method, as described earlier, will usually converge in a stable manner from a wide

range of starting positions. However, in motion analysis and structure recovery, it is often the

case that the observations can lead to an ill-conditioned solution even when the parameters

are over-constrained. Viewing situations that can lead to ill-conditioning include views

that are closely spaced together or that are projected approximately orthographically. This

treatment of regularizing the structure-from-motion problem is based on material presented

by Lowe for a model based vision problem [23].

Specifying Prior Constraints. Convergence problems can be ameliorated by intro-

ducing prior constraints on the desired solution that specify the corrections to make in the

absence of further data. For our problem the prior expectation will simply be to solve for

zero corrections to the current parameter estimates. This constraint can be seen at the

core of the Levenberg-Marquardt method. In its simplest form the Levenberg-Marquardt

method stabilizes the solution by including a global regularization parameter which does

not adequately address the issue of the appropriate relative weighting of the parameters and

the contribution of a parameter's error to the global error measure. Prior knowledge of the

expected value of the parameters, even if only in terms of order of magnitude, allows each
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parameter to be stabilized according to its contribution to the global error measure. One

appropriate measure of a parameter's contribution to the residual error is its variance. Each

parameter should be weighted so they all contribute equally according to their distance from

their expected value in standard deviations.

Prior constraints on the solution can be incorporated by adding rows to the linear system

constraining the value that is to be assigned to each parameter correction"
J

I

#
h =

"
�E

0

#
: (5)

The identity matrix I adds one row for specifying the value of each parameter correction,

and we specify a zero a priori value for the correction. Each iteration of the Gauss-Newton

method determines a new correction to be added to the current parameter estimate. The

prior constraint is set to zero and stipulates that the correction should be to leave the

parameter estimate at its current value in the absence of a strong constraint from the data.

The relative weighting of these constraints will be described in the next section.

Knowledge about the scene geometry can aid in setting bounds on the range of expected

parameter values which in turn can be used to specify standard deviations. Rotations for

example will have a standard deviation of at most �/2 and translations must be limited

to keeping the object in the �eld of view. We make an assumption about the approximate

location of the object-centered frame relative to the camera frame. The standard deviation

of the depth parameters is proportional to this distance as a function of the degree of sta-

bilization desired. A relatively small standard deviation corresponds to a greater degree of

stabilization which will cause the depth estimates to remain closer to their initial values.

These deviations may be large relative to the deviations arising from the image mea-

surements, but they still play an important role in stabilizing the solution for ill-conditioned

problems.

E�cient Computation of Stabilization. The prior estimates of the correction values

will be weighted by a diagonal matrix W in which each weight is inversely proportional to

the standard deviation �i for parameter i

Wii =
1

�i
:
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This matrix is used to scale each row of the prior values in the lower part of (5). We assume

that the constraints based on image measurements in the upper part of the equation have

already been scaled to a unit standard deviation.

"
J

W

#
h =

"
�E

0

#
:

We will minimize this system by solving the corresponding normal equations

h
JTWT

i " J

W

#
h =

h
JTWT

i " �E
0

#

which multiplies out to �
JTJ+WTW

�
h = �JTE:

SinceW is a diagonal matrix,WTW is also diagonal but with each element on the diagonal

squared. This means that the computational cost of the stabilization is negligible, as we can

�rst form JTJ and then simply add small constants to the diagonal that are the inverse of

the variance of each parameter.

Forcing Convergence. Even after incorporating this stabilization based on reason-

able assumptions of the expected values of the parameters, it is possible that the system

will fail to converge to a minimum due to the fact that this is a linear approximation of a

nonlinear system. The standard method to deal with this situation is to use the Levenberg-

Marquardt extension to iterative nonlinear least squares [20][24]. The Levenberg-Marquardt

scaling parameter � is used to increase the weight of stabilization whenever divergence occurs.

Increasing the value of � will essentially freeze the parameters having the lowest standard de-

viations and therefore solve �rst for those with higher standard deviations. For our problem,

this implies convergence for di�cult problems will proceed by solving �rst for translations

and rotations and then proceeding on subsequent iterations to solve for depths.

4.3 Scaling The Image Coordinates And The Global Depth O�-

set

The translation vector tc in equation (1) that transforms scene points from the object cen-

tered frame to the camera centered frame can be viewed as a global depth o�set. This o�set
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is unknown and cannot be determined from the image data. Its value essentially determines

the degree of \perspective". The closer the object is to the camera for a given object size

the greater the amount of perspective distortion in the object's image. The global depth

o�set is de�ned to be proportional to the focal length of the camera as are the scene depths.

It is important, therefore, that the initially estimated depths from the linear estimator be

proportional to the focal length as well. This is achieved through the scaling of the image

measurements by 1=f where f is the known image magni�cation factor (see equation (2)).

Experiments with synthesized data for a typical range of object sizes and distances reveals

that a value of 2 focal lengths for the global depth o�set is a good compromise. A value of

2 is a deliberate under-estimate because convergence is noticeably improved.

An issue related to the global o�set is the choice of the coordinate frame origin for

the structure estimated by the nonlinear algorithm. The idea is to determine which scene

point is closest to the camera in order not to solve for its depth. This implies that all

other estimated depths should be further away from the camera. This helps to reduce the

possibility that the structure estimate will violate the \depths positive" criterion due to a

poor initial estimate of the global o�set. Given the linearly estimated structure, the list of

correspondences is reordered to place the correspondence with the most positive depth �rst

(note that the optical axis is de�ned to be in the negative z direction). Since the nonlinear

estimator assigns a �xed depth value to the �rst correspondence on the list, the expected

depths relative to the �rst depth should all be farther away from the image plane.

4.4 Translation Initial Estimate

The default initial estimate for translation is zero except in the special case where the scale

factor estimated by the linear algorithm suggests that the scene receded from the camera.

In this case, the image scale factor is used to estimate the translation component in depth,

tz. The assumption is that the global scale factor between views estimated by Kontsevich's

algorithm is a reasonable indication of the motion of the object in depth. From Kontsevich's

algorithm, the scale factor s is given by sjrj = jr0j where r is a 3D edge vector and r0 is the

corresponding edge after the view transformation. The value of s is determined from the
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average ratio of the projected edge vector magnitudes before the view transformation to the

magnitudes after the view transformation.

To see the relationship between translation in depth and s under perspective projection,

the scale factor can be written in terms of, say, the u coordinates of a pair of corresponding

points as s = u
0

u
where u under perspective projection is given by equation (2). The u

component from equation (2) can be rewritten as

u =
�kx

�zo + 1

where k = f

tcz
, � = t�1

cz
, zo is the point's depth in the object frame, and tcz is the global

depth o�set. Now the scale factor can be rewritten as

s =
(�kx0) (�zo + 1)

(�kx) (�z0
o
+ 1)

: (6)

Under the assumption that the global scale change is due to a motion dominated by trans-

lation in depth (i.e., the rotation component is negligible), and assume that there is no

translation parallel to the image plane (the e�ect of translation parallel to the image plane

can be minimized by considering the distances between points), then x0 ' x and z0
o
' zo+ tz.

With these assumptions equation (6) simpli�es to

tz =
(�zo + 1) (1 � s)

s �
:

Under the assumption that � zo << 1, which holds reasonably well for distant compact

objects, the expression for tz reduces to

tz =
1 � s

s �
=

(1 � s)

s
tcz: (7)

Equation (7) is the expression that is used in the algorithm's implementation. The initial

estimate for tz is only bound to the given expression if s is less than one indicating the

object translated away from the camera. There are two reasons for this: the �rst is that

experimental results indicated that the nonlinear estimator had less trouble converging to

the correct solution if the object loomed rather than receded, and secondly, the global o�set

is set to a small value and initializing the motion to bring the object closer to the camera
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increased the risk of violating the \depths positive" criterion upon convergence. Monte Carlo

test results for the scenario with a large amount of perspective distortion indicated that the

correct veri�cation rate improved by approximately 7 percent with this initialization for tz

incorporated in the algorithm.

4.5 Extending The Set Of Matches

The description of the rigidity checking algorithm up to this point has stressed the method's

performance with only 6 point correspondences. The algorithm, however, readily accommo-

dates extending the set of matches by adding additional correspondences to the currently

veri�ed set and reverifying the new larger set. A larger set of correspondences improves the

accuracy of the veri�cation decision. With a su�ciently large number of correspondences

veri�ed, a modi�ed version of the rigidity checking method or some other method can be

used to determine the epipolar lines reliably. With the epipolar geometry reliably estimated,

the search space for more correspondences is reduced to a one dimensional search in the

image.

4.6 Nonlinear Estimation With Disparity Rather Than Depth

A study of the parameterization of the nonlinear estimator revealed a small improvement

in the stability and rapidity of convergence when inverse depth (which we call disparity)

was estimated rather than depth. Distant scene points have small disparity values which

improves the conditioning of the Hessian matrix. Harris and Pike also estimate inverse depth

to avoid a nearness bias for their estimation process due to their use of ellipsoids to model

structure uncertainty [11].

5 Experimental results

Monte Carlo simulations were run to determine the parameter space bounds over which the

algorithm is e�ective. The algorithm was also tested on real images with manually selected

matches.

For the simulated data, unless stated otherwise, the camera focal length was set to unity
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and the �eld of view was speci�ed by the size of the image frame, i.e., the image frame is s

by s where s is 0.7. The number of corresponding points is 6 over 2 frames. If the resolution

of the camera is m x m then the image coordinates vertically and horizontally are digitized

to m equally spaced intervals. In all synthetic data cases m was set to 512 pixels. Normally

distributed random values were added to the image coordinates to simulate the e�ects of

noise.

For synthetic and real image data, the elements of the stabilization value W for sta-

bilizing the disparity parameters was set to 50 focal lengths (corresponding to a disparity

standard deviation of 1/50 focal lengths). Disparity stabilization values at or near zero (i.e.

no stabilization) resulted in a small decrease in performance for the scene and camera ge-

ometry standard scenario discussed in the following section. For the standard scenario the

correct veri�cation rate typically decreases by about 3 percent with the absence of stabiliza-

tion. For the scenario which yields image data with large amounts of perspective distortion

the lack of disparity stabilization caused the correct veri�cation rate to decrease by about

10 percent. The stabilization values for the motion parameters were set to zero as it was

found to be unnecessary to stabilize these parameters.

The linear algorithm supplies two initial estimates because of the ambiguity in the

rotation sense for rotation in depth. The second initial estimate is only computed if the

nonlinear estimator fails to verify potential rigidity given the �rst linear estimate.

Stopping Criterion For Convergence

The algorithm iterates until one of the following stopping criterion is met.

1. The norm of the parameter correction vector h is less than 10�2.

2. The residuals do not decrease by more than the relative amount 10�3 over 2

successive iterations.

3. The number of iterations exceeds an upper bound of 10.
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4. The residual is less than a threshold value determined from a priori knowledge of

the observation variances. The threshold value is determined by the expression

TE = k
q
(N2m� n)�2

where N is the number of images (2 for the results described here), k is a factor

setting the con�dence level and is set to approximately 2 for the Monte Carlo

trials described below, �2 is the observation variance and is assumed to be equal

for all measurements, m is the number of correspondences and n is the number

of estimated parameters. This expression is from the unbiased estimator of the

variance of the data for a least squares estimator. The factor of N2m � n is the

number of degrees of freedom for the estimator. This follows from an interpreta-

tion of the estimator as determining the pose of the object in the N camera frames

relative to the object de�ned in a world coordinate frame whose 3D structure must

also be determined. Hence, each observation contributes 2 constraints (vertical

and horizontal position) for each of the N images. Now, by identifying the origin

and orientation of the world coordinate frame with one of the camera frames, the

pose transformation for that (reference) camera frame is the identity transforma-

tion R = I and t = 0: Thus, the number of pose (or motion) parameters to be

estimated is reduced by 6. Now, the actual number of independent constraints

is reduced by 2m which is the number of constraints from the reference image

since the structure is dependent on these observations by the back-projection cal-

culation. This dependency reduces the number of structure parameters for each

point from 3 to 1. The number of estimable depth parameters is m� 1 since one

of the depths is �xed to set the scale of the solution. Thus, the total number of

estimable parameters is

(N � 1)6 + (m� 1)

which is the value bound to the variable n in the expression above for TE. The

total number of independent constraints is (N�1)2m. However, the total residual

error upon convergence is contributed to by the N2m measurements for N views
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since the total residual error for the correct parameter values can be written as

vuuutN�1X
j=0

m�1X
i=0

k wij � y(xi0;mj) k
2

wherem0 is the identity pose transformation and correct depth parameter set for

the reference frame, xi0 is the ith noise free image point from the projection of

the correct scene point in the reference frame, wij is the i
th noisy observed image

point in the jth frame, and mj is the correct pose and scene depths for the jth

frame relative to the zeroth frame. This residual error has a total of N2m terms,

which is the value used to compute TE.

5.1 Monte Carlo Simulation

The rigidity checking algorithm requires the speci�cation of the global o�set of the interme-

diate camera (object) frame from the camera centered frame. Its value was set to 2 focal

lengths for reasons discussed earlier.

Monte Carlo Results

The standard scenario for camera and scene geometry. 10,000 trials for the following

scenario were run. The scene consists of 6 feature points. Translation was uniformly dis-

tributed between -500 and 500 focal lengths. Rotation about the optical axis was uniformly

distributed in the interval �180 degrees and rotation in depth was uniformly distributed

in the interval �90 degrees. Object size was in the range 10 to 5000 focal lengths with

the closest object point 2 to 5000 focal lengths away from the camera with both variables

uniformly distributed in their respective ranges. The motion is applied to the points in the

object centered frame. The global o�set that de�nes the scene coordinates in the object cen-

tered frame is a uniformly distributed random variable in the range 2 to 5000 focal lengths.

Image noise was simulated by adding normally distributed random values to the exact image

coordinates with a zero mean and a variance of 1 pixel.

On average, 1000 trials required a total of 3.9 seconds to verify at a convergence rate

of 97.9 percent with double precision oats on a Sparc 10 processor. The threshold TE
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was computed for an observation variance of 1 pixel for all correspondences. The nonlinear

estimation algorithm is typically bypassed for 50 to 60 percent of the trials for the standard

scenario described above because the residual for the linear algorithm is below the speci�ed

threshold. If bypassing the nonlinear estimator is prevented then the time would increase

proportionately.

The receiver operating characteristic (ROC) curve is given in �gure 1 for three image

noise levels. The curves for increasingly noisy observations shift progressively to the right.

100,000 trials for rigid con�gurations and 100,000 trials for nonrigid con�gurations were run

to generate each curve. The same camera and scene geometry random variables described

above were used. The noise is normally distributed with a mean of 0 and a standard deviation

of 1, 2 and 3 pixels. For the nonrigid trials image data was generated randomly for the two

views. The convergence rate for a separate test running 10,000 nonrigid trials was 1.3 percent

taking an average of 13.6 seconds to complete 1000 trials for the same threshold, TE, used

for the rigid trials.

It is important to note that the nonlinear estimator is never bypassed for the ROC

trials, since it was desired to assess the end to end performance of the method. For the rigid

trials, experiments show that if the linear estimator's residual error was below the rigidity

threshold, TE, than it was almost always the case that the nonlinear estimator's residual

value was also below TE upon convergence. For the nonrigid trials, the nonlinear estimator

almost never converged with a residual value below TE if the linear estimator's residual was

below TE. The performance improvement from not bypassing the nonlinear estimator for

nonrigid trials amounts to a decline of about 0.2 percent in the false positive rate which

coincides with the 0.2 percent proportion of nonrigid trials where the linear estimator's

residual error was below TE. The trade-o� clearly favors bypassing the nonlinear estimator

when the linear estimator's residual is below TE.

Images with large perspective distortions. Figures 2 and 3 are ROC plots for

images with large amounts of perspective information. The closest scene point is now �xed

in the range 2 to 50 focal lengths while the remaining points lie in a depth range between 10

and 5000 focal lengths from the closest depth. Some of the samples from this scenario may
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Figure 1: Receiver operating characteristic (ROC) for noisy observations with a variance of

1, 4 and 9 pixels. Motion and structure variables are for the standard scenario. Close up of
the curve's knee. The curve for the noisiest data is furthest to the right.

be somewhat unrealistic since some of the points probably would not be in focus given a real

camera with a 40 degree �eld of view (the value used here). Added noise has a variance of 1.

100,000 trials for rigid and nonrigid con�gurations were run for this curve. Approximately 15

percent of the rigid object trials resulted in the linear estimator's residual error falling below

the rigidity threshold for a noise variance of 1 pixel. Recall, however, that the nonlinear

estimator was not bypassed for these ROC plots.

5.2 Real image sequence

Two images of a Lego object on a motion table were taken by a monochrome camera with a

480 by 512 pixel image. The object's center was approximately 13 inches from the camera's

projection center. The image magni�cation factor was determined to be 609 pixels. The

total motion between the two views was a translation of 2.5 inches and a rotation of 15

degrees.

Figure 4 is the �rst framemarked with seven manually determined feature points. Figure
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Figure 2: Receiver operating characteristic

(ROC) for noisy observations with a variance

of 1 pixel. Large perspective distortion.
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Figure 3: Receiver operating characteristic

(ROC) for noisy observations with a variance

of 1 pixel. Close up of the curve's knee. Large

perspective distortion.
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Figure 4: First frame of Lego sequence with la-

beled correspondences.
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Figure 5: Second frame of Lego sequence with

labeled correspondences.
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5 is the second frame with the corresponding points marked.

As with the synthetic data the global o�set is set to 2 focal lengths. For the correctly

matched correspondences the nonlinear estimator was bypassed since the residual error from

the linear estimator was below the threshold for an assumed noise variance of 1 pixel. This

is a strong indication that the object projection is approximately orthographic.

For the �rst experiment only the correspondences labeled one to six in both views are

considered. Given the six correspondences in the �rst frame, the same label set for the cor-

respondences in the second image was permuted and veri�ed. Figure 6 shows a portion of

the bar graph of sorted residual errors for the 720 possible permutations of the label set in

the second image. The �gure shows the number of permutations that yielded residual errors

below 10 pixels. For an expected noise variance of 1 pixel, 34 incorrect correspondence label

sets fall below the rigidity threshold, a 4.7 percent false positive rate. The linear estimator's

residual for the correct correspondence was 1.0 pixels. Only one of the incorrect correspon-

dences yielded a residual below this value. The permutation with the lowest residual value

of 0.77 pixels is (5,3,4,6,1,2).

For the second experiment all seven correspondences from both views are considered.

Given the seven correspondences in the �rst image, the same label set for the correspondences

in the second image was permuted and veri�ed. Figure 7 shows a portion of the bar graph

of sorted residual errors for the 5040 possible permutations of the label set in the second

image. The �gure shows the number of permutations that yielded residual errors at or below

10 pixels. For an expected noise variance of 1 pixel, 24 incorrect correspondence label sets fall

below the rigidity threshold, a 0.48 percent false positive rate. The correct correspondence

yielded the lowest residual of 1.0 pixels. The next highest residual is 1.36 pixels for the

permutation (1,2,7,4,5,6,3), i.e., points 3 and 7 swapped. The epipolar lines for these two

points appear to be in close proximity and therefore a mismatch between them could lead

to a low residual solution.
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Figure 6: Bar graph of sorted residual error for

permutations of six corresponding points. Only

the lowest residual values are shown, approxi-

mately 10 pixels and less. For an expected noise

variance of 1 pixel, 35 permutations out of 720

(4.9 percent) are classi�ed as potentially rigid.

Filled bar is correct correspondence.
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Figure 7: Similar to the previous �gure, but

with seven correspondences. For an expected

noise variance of 1 pixel, 25 permutations out

of 5040 (0.5 percent) are classi�ed as potentially

rigid. Filled bar is correct correspondence.

6 A Comparison To Other Methods

6.1 Horn's Algorithm For Relative Orientation

A version of Horn's algorithm for determining the rotation and translation between a pair

of perspective views of a scene is parameterized in terms of quaternions [12]. The objective

function is based on the well known coplanarity constraint for corresponding points and is

formulated in terms of a scalar triple product appropriately weighted by a term based on

the estimated observation variances. It is interesting to note that Weng et. al.'s epipolar

improvement method [39] is based on the same objective function for a di�erent parameteri-

zation. Horn's algorithm was implemented in Matlab and tested. Figure 8 is the ROC curve

for Horn's method compared to the rigidity checking method for three di�erent image noise

levels and �gure 9 is a close up of the knee of the curves. The same standard scenario was

used as described earlier. Linear estimates are provided as initial guesses to Horn's iterative

algorithm. This contrasts with Horn's approach which involves running a large number of
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initial guesses to �nd all of the solutions. Ten iterations maximum were allowed for each

initial estimate. 10,000 trials for both rigid and nonrigid 3D con�gurations were run for each

of Horn's ROC curves.

The high false positive rate exhibited by Horn's method results from the property of the

epipolar constraint that allows for a larger space of motion solutions which are determined

independently of the physical plausibility of the corresponding structure estimate. In addi-

tion, the potential ambiguity of the motion estimate for nearly orthographic images or noisy

image measurements also contributes to the algorithm's weaker performance. A discussion

of the drawbacks of the epipolar constraint for rigidity veri�cation can be found in the earlier

section on related work.

In contrast to epipolar constraint based methods, the rigidity checking method converges

to fewer local minima with low residual values primarily because the collinearity constraint

formulation makes use of all the image measurement information. Rigidity checking searches

a rigid transformation space while implicitly enforcing a simultaneously consistent and physi-

cally plausible depth estimate. Deviation from rigidity is reliably signalled by a large residual

error.

Of the three sets of 10,000 nonrigid trials run on Horn's algorithm, approximately 55

percent of the trials in each set were discarded because the \depths positive" criterion was

violated. If this criterion was not applied the false positive rate would, in fact, be much

higher. This consideration accounts for the blip in the ROC curve at around the 0.45 false

positive rate.

6.2 Comparison to Essential Matrix Methods

Wei et al. employ the linear formulation developed by Tsai and Huang [34] to solve the cor-

respondence problem and estimate motion simultaneously. Preliminary Monte Carlo testing

with a Matlab implementation of their algorithm indicates a large false positive rate for the

standard Monte Carlo scenario described earlier. Monte Carlo testing for nine corresponding

points and a noise variance of one pixel yielded a true positive rate of approximately 36 per-

cent versus 99 percent for the rigidity checking method and 85 percent for Horn's method at
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Figure 8: A comparison with Horn's method.

ROC for noisy observations with a variance of 1,

4, and 9 pixels. Horn's method are the 3 dashed

curves. The curve for the noisiest data is fur-

thest to the right for each method. Motion and

structure variables are for the standard scenario.
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Figure 9: A comparison with Horn's method.

Close up of the knee of the ROC curves from the

previous �gure.

a false positive rate of 5 percent. The performance contrast is greater still considering that

the results for Horn's method and the rigidity checking method are for only six correspon-

dences. Note that Wei et al. do not check if the motion solution corresponds to a \depths

positive" reconstruction. Such a check would improve their performance.

7 Applications Of Rigidity Checking

7.1 Recognition From a Single View

Kontsevich discusses the application of his linear structure-from-motion algorithm for weak

perspective images to the problem of correspondence checking. As a corollary to the \view-

point consistency constraint" [22] or \generic view assumption" [7][37], he states the following

assumption for pairwise comparisons:

If, for some pair of projections, correct [rigid] correspondence exists, the projections

are views of the same object.

A relation is established, then, between veri�cation of potential rigid correspondence,

scene structure and object recognition. The relation between correspondence and structure
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referred to by Kontsevich as the \structural theory" (citing earlier work due to Ullman and,

Grzywacz and Yuille [9]) describes the mutually supporting processes of correspondence and

3D interpretation that operate simultaneously. The theory and performance of the rigidity

checking method can be viewed as a signi�cant improvement in the formulation of the rigidity

component of the \structural theory" hypothesis of Grzywacz and Yuille and extends the

implementation of the hypothesis to images formed under full perspective projection by

building on the work of Kontsevich. Object recognition can be viewed as a registration

problem between a model of the object and a representation of the object derived from a

novel view or set of views of the object. The di�erent approaches to recognition lie in the

representation of the object's model, the representation of the object from the novel view(s)

and the matching or registration process used to verify the presence of the object.

The signi�cance of the relation between a recognition process for point con�gurations

and structure-from-motion has been noted by Ullman and Basri [36] and Shashua [29]. Ull-

man and Basri describe a linear relation between two model views of an object and a novel

view under scaled orthographic projection where the transformation between views can be

modeled by a general linear transformation. Under a similarity transformation between

views and orthographic projection, three model views are required for recognizing a rigid

object. They note that it is possible to recover 3D structure and motion based on three

orthographic views using the linear equations they derived under a similarity transformation

between views. However, they presuppose the existence of correspondences when performing

recognition. They also present a novel scheme for performing recognition by linear combi-

nations of models using subsets of corresponding points that avoids the necessity of point

to point correspondence [36](1989 technical report). The idea of using the alignment con-

straints to simultaneously verify correspondences was not presented. However, they echo the

theme quoted above when they comment in their conclusion that \The linear combination

scheme reduces the recognition problem in a sense to the problem of establishing corre-

spondence between the viewed object and candidate models" [36](1989 technical report).

Shashua similarly draws a comparison between recognition and structure-from-motion for

objects undergoing an a�ne transformation in space. He is able to recover full correspon-
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dence between two orthographic views with at least four point correspondences by utilizing

the brightness constancy constraint for in�nitesimal motion. Shashua's results are applied

to the recognition problem under the paradigm of generating novel views from one or more

model views and veri�cation by alignment.

Bennett et al. derive recognition polynomials that assume point correspondences have

been established between a single 2D previous view of an object and a novel view under

orthographic projection [4]. Their polynomials can be constructed for di�erent transforma-

tions between views, e.g., similarity or a�ne. They have not, however, derived a polynomial

for perspective projection although they claim that, in principle, such a polynomial can be

constructed. Their method, which only requires one model view, contrasts with Ullman and

Basri's method which requires at least two model views or Shashua's method which assumes

brightness constancy. Their method could be used to establish correspondences and this is

implied when they discuss the extraction of rigid con�gurations from image sequences.

The rigidity checking method has characteristics common to the methods described

above. Like Ullman and Basri and Shashua the rigidity checking scheme is based on an

alignment paradigm that makes a veri�cation decision based on the distance between corre-

sponding features in a common image frame. The rigidity checking method, however, can

extend this recognition paradigm to images formed under full perspective projection as well

as handling scaled orthographically projected images. Rigidity veri�cation is a profound

matching constraint useful for recognition purposes. In combination with other matching

conditions, a reliable system for verifying point correspondences could be devised which

should prove to be an e�ective component in a system for recognizing 3D objects from a

single previous view.

7.2 Motion Segmentation And Stereo Correspondence

Motion Segmentation. The problem of detecting multiplemoving objects from a sequence

of images taken by a moving camera has been addressed by a variety of methods. The meth-

ods cited below depend on a matching condition that is de�ned by the epipolar constraint.

The rigidity checking method is based on a structure-from-motion matching condition and
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could be used as an alternative module for testing the consistency of hypothesized point

matches.

Thompson et al. look for outliers using least median squares to segment points inconsis-

tent with an orthographic structure-from-motion constraint [33]. Nishimura et al. also use

the epipolar constraint to segment out di�erently moving objects under weak perspective

projection [28]. They use a Hough transform method to detect clusters in a scaling and

frontoparallel rotation space which correspond to the di�erently moving objects.

The approach of Thompson et al. exploits the rigidity constraint under orthographic

projection to �nd sets of points that are inconsistent with the motion of the camera relative to

the static environment. They use Huang and Lee's algorithm [14] for structure-from-motion

as the matching condition for a set of hypothesized correspondences provided by a separate

frame-to-frame point matching and tracking process. Points that are inconsistent with the

rigid interpretation are segmented out as determined by the residual error in Huang and

Lee's structure-from-motion constraint. The actual structure and motion estimate are not

important: only the reliability of the algorithm's response to outliers is required to ensure

the detection of such outliers. They use least median squares to detect the outliers which

they admit is a computationally intensive method.

The rigidity checking method would �t well into their approach. Like Thompson, atten-

tion is not paid to the actual motion and structure estimates but only relies on the residual

error of the matching criterion. Rigidity checking would extend the domain of input images

from those formed by weak perspective projection to full perspective projection. Similarly,

rigidity checking could be substituted for Nishimura et al.'s scaled orthographic epipolar

constraint that is used to verify the rigidity of point correspondences.

Stereo Correspondence. In stereo correspondence, the use of the epipolar constraint

reduces the search space to a one dimensional search along the corresponding epipolar lines.

In the absence of extrinsic camera calibration, the problem of stereo correspondence is equiv-

alent to the 2D motion correspondence problem. Hence, if the epipolar geometry is unknown

or poorly estimated, then the rigidity checking method would be a suitable module for disam-

biguating true from false matches and together with other binocular matching rules should



Rigidity Checking of 3D Point Correspondences 35

prove to be a reliable approach to solving the stereo correspondence problem.

8 Conclusions

An algorithm has been described that reliably and rapidly veri�es the potential rigidity

of three dimensional point correspondences from a pair of two dimensional views under

perspective projection. The method, which we call rigidity checking, is useful for �nding

corresponding point features between two or more views of an object. The rigidity decision

is based on the residual error of an integrated pair of linear and nonlinear structure-from-

motion estimators. The matching condition is based on a set of 3D recovery equations

derived from the collinearity condition of points under perspective projection. This choice

for the 3D recovery model contributes signi�cantly to the performance improvement of the

algorithm relative to other methods because, unlike recovery based on the epipolar constraint,

the collinearity condition uses all of the information in the image measurements. This

improvement in performance comes at a small additional cost in computational complexity

due to the choice of parameterization. In Monte Carlo simulations over the entire set of rigid

and nonrigid trials, a single trial took in the order of 10 milliseconds to execute on a Sparc

10 processor. In summary, rigidity checking works with as few as six corresponding points

under weak or full perspective projection, handles correspondences from widely separated

views, makes full use of the disparity of the correspondences, and is integrated with an

initial parameter estimator based on a linear weak perspective algorithm. Results from

extensive Monte Carlo simulations and from real images were presented. A comparison was

made with methods based on the epipolar constraint such as Horn's nonlinear algorithm for

structure-from-motion and Wei et al.'s linear method that illustrated the disadvantages of

the epipolar constraint as a matching condition. Applications of this algorithm as a module

for performing rigidity checking are numerous; 3D recognition from a single previous view,

motion segmentation and stereo correspondence were briey discussed.
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Public Availability Of Implementation

This algorithm has been implemented in C and is freely available by anonymous FTP from

ftp.cs.ubc.ca in directory pub/local/danm.
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