
Shape Indexing Using Approximate Nearest-Neighbour Search in
High-Dimensional Spaces

Jeffrey S. Beis and David G. Lowe
Department of Computer Science
University of British Columbia

Vancouver, B.C., Canada V6T 1Z4
beis/lowe@cs.ubc.ca

Abstract

Shape indexing is a way of making rapid associations
between features detected in an image and object models
that could have produced them. When model databases are
large, the use of high-dimensional features is critical, due to
the improved level of discrimination they can provide. Un-
fortunately, finding the nearest neighbour to a query point
rapidly becomes inefficient as the dimensionality of the fea-
ture space increases. Past indexing methods have used hash
tables for hypothesis recovery, but only in low-dimensional
situations. In this paper, we show that a new variant of
the k-d tree search algorithm makes indexing in higher-
dimensional spaces practical. This Best Bin First, or BBF,
search is an approximate algorithm which finds the near-
est neighbour for a large fraction of the queries, and a very
close neighbour in the remaining cases. The technique has
been integrated into a fully developed recognition system,
which is able to detect complex objects in real, cluttered
scenes in just a few seconds.

1. Introduction

Shape-based indexing uses feature vectors from an im-
age to access an index structure, rapidly recovering possible
matches to a database of object models. This procedure is
much more efficient than the alternative of exhaustive com-
parison, at a cost of some offline preprocessing to create the
index, and the extra memory required to store it.

The goal of indexing is to recover from the index the most
similar model shapes to a given image shape. In terms of
feature vectors, or points in a feature space, this corresponds
to finding a set of nearest neighbours (NN) to a query point.
Virtually all previous indexing approaches in model-based
vision [4, 5, 9, 10, 16, 18, 19] have used hash tables for this
task. This is somewhat surprising since it is well-known

in other communities (e.g. pattern recognition, algorithms)
that tree structures do the job much more efficiently.

In large part this oversight can be explained by the
fact that indexing techniques are generally applied in low-
dimensional spaces, where hash table search can be quite
efficient. Such spaces are adequate when the number of
objects is small, but higher-dimensional feature vectors are
essential when the model database becomes large, because
they provide a much greater degree of discrimination. Un-
fortunately, nearest-neighbour search times depend expo-
nentially on the dimension of the space.

One data structure that has been used extensively for NN
lookup is the k-d tree [6]. While the “curse of dimension-
ality” is also a problem for k-d trees, the effects are not as
severe. Hash table inefficiency is mainly due to the fact that
bin sizes are fixed, whereas those in a k-d tree are adaptive
to the local density of stored points. Thus, in some cases
(high-density region), a hashing approach will have to do a
long linear search through many points contained in the bin
in which the query point lands; in other cases (low-density),
an extensive search through adjacent bins may be required
before the best neighbour can be determined. In addition,
there is the difficulty of choosing an appropriate bin size.

In a previous paper [2], we presented an indexing method
which uses k-d trees to recover a small set of nearest neigh-
bours to an image feature vector. The neighbours are used to
compute probabilities for each model-image match hypoth-
esis, which allows the hypotheses to be ranked so that the
most likely of them can be verified first. This process was
shown to be effective in a 4D feature space, with a small
model database of 4 objects. In this paper we will demon-
strate that the technique is feasible in spaces with up to 10 or
20 dimensions. The combination of highly specific feature
vectors and probabilistichypothesis generation provides ex-
tremely efficient indexing.

Our method relies on the rapid recovery of nearest neigh-
bours from the index. In high-dimensional spaces, standard



k-d tree search often performs poorly, having to examine a
large fraction of the points in the space to find the exact near-
est neighbour. However, a variant of this search which effi-
ciently finds approximate neighbours will be used to limit
the search time. The algorithm, which we have called Best
Bin First (BBF) search, finds the nearest neighbour for a
large fraction of queries, and finds a very good neighbour
the remaining times. This type of search has wider appli-
cation than for shape indexing alone: another vision-related
use would be for closest point matching in appearance-based
recognition (see e.g. [15]).

2. Previous work

We first discuss several prominent indexing methods
which have used hash tables for indexing. Forsythe, et
al.[5], outlined several types of projective invariant features
for indexing planar objects viewed in arbitrary 3D orienta-
tions. However, their experiments were carried out using a
2D index space generated by pairs of conics. Rothwell, et
al.[16], used 4D indices defined by area moments of planar
curves, that were first transformed into canonical reference
frames. Clemens and Jacobs [4] generated 4D and 6D index
spaces from hand-grouped point sets. For each of the meth-
ods above, the dimensionality of the spaces and the number
of models were too low for the inefficiency of hashing to be
critical.

The geometric hashing indexing technique (e.g. [10]) is
also generally applied in low- (2- or 3-) dimensional index
spaces. While this technique differs substantially from other
indexing methods in that voting overcomes some of the dif-
ficulty with bin boundaries, Grimson [7] notes that perfor-
mance is poor even with small amounts of noise and clutter.
This is due to the hash table becoming overloaded with en-
tries, and indicates that the use of higher-dimensional spaces
is important. In [9], geometric hashing is applied with larger
(8D) indices generated from planar curves (“footprints”).
However, the experiments did not truly test indexing per-
formance because only a few models were used, with 3 or
4 features each.

Stein and Medioni presented a method for 2D-from-2D
[18] and 3D-from-3D [19] indexing that also used hash ta-
ble lookup. While the former method used index spaces
of between 3 and 6 dimensions, the latter work considered
higher- (up to about 14-) dimensional spaces. They avoided
the exponential (with dimension) search for NN by using ex-
tremely coarse quantization of the bins (e.g., 60� for angle
features), and looking only in the single bin containing the
query point. This leads to the recovery of a large number
of hypotheses, with a low signal-to-noise ratio, since highly
dissimilar shapes are allowed to match. Nor does it preclude
missing a significant percentage of good hypotheses which
lie just across one of the many bin boundaries.

In [3], Califano and Mohan argue for the use of higher-
dimensional spaces. Their analysis indicates a dramatic
speedup from increasing the size of the feature vectors used
for indexing. However, they again use hash tables for the
lookup and do no search. Thus, in their method a pose clus-
tering stage is required to accumulate results, presumably
because of the high likelihood that a query will land in a dif-
ferent bin than that of the best neighbour.

In the pattern classification literature, various types of
tree have been used to find nearest neighbours. Just as in
hashing, these methods divide the space into bins; unlike
hashing, the methods are adaptive in that the partition of the
data space depends on the data points to be stored.

The best-known and most widely used of these is the k-
d tree [6], a complete binary tree having smaller bins in the
higher-density regions of the space. The analysis in the orig-
inal paper shows expected logarithmic time lookup, but ex-
periments in higher dimensions [17] have shown that the
method often suffers from inefficient search, in many cases
having to examine a large fraction of the stored points to de-
termine the exact nearest neighbour. Other trees specialized
to fast NN lookupexist (e.g. [8, 14]), but are sub-optimal be-
cause more constraints are set on where bin boundaries can
be placed.

Instead of finding the exact nearest neighbour, if we are
willing to accept an approximate neighbour in some fraction
of the cases, then processing time can be greatly reduced.
One early method [13] uses a hierarchical tree data struc-
ture in which internal nodes are the centers of mass of the
nodes at the next lower level. The point recovered from the
first leaf node encountered provides an approximate NN in
a very short search time, but the quality of this neighbour is
relatively low.

In [1], Arya presents an approach based on neighborhood
graphs. While his main results concern the asymptotic be-
havior of one particular algorithm, which contains imprac-
tically large constant factors, he does give a practical vari-
ant (RNG�) that demonstrates good results for moderate di-
mensionalities (8-16). Independent of our own work, he also
develops the equivalent of BBF search which he terms “pri-
ority k-d tree search.” Comparisons between RNG� and the
priority algorithm show comparable performance for mod-
erate dimensionalities.

Most recently, Nene and Nayar [15] have used a differ-
ent type of approximation to NN lookup. They only guar-
antee recovery of the best neighbour if it is within � of the
query point, by using a set of sorted lists of the coordinates
of the stored points, and successively eliminating points fur-
ther away than �, one dimension at a time. This method is
effective if � can be kept small (� 0:25 when each dimen-
sion has unit extent), but in higher-dimensional spaces that is
only possible when the number of points is extremely large,
on the order of (1

�
)k.



Figure 1. Examples of feature groupings, including a parallel
segment grouping (upper left) and a segment chain grouping (lower
right). Each model segment may be redundantly included in several
groupings, which may be of various cardinalities and extend to dif-
ferent areas of the object.

3. Shape-based indexing

We now outline our method of shape-based indexing [2],
withinwhich the BBF algorithm provides an important com-
ponent. To create a shape index, a preprocessing stage is re-
quired in which a set of feature vectors is extracted from the
database of object models. These are stored in the index,
each with a pointer to the model feature set that generated
it. At runtime, feature vectors are extracted from an image
and used to access the index, recovering a set of neighbours
to each image vector that provide model-image match hy-
potheses.

Our approach is somewhat unusual in that most other
methods have used feature vectors that are invariant to the
full set of model transformations (rotation, translation, scal-
ing, and projection). Presumably this has been due to fears
of excessive memory usage or lookup time. We have found
that neither fear is justified, and that requiring objects to in-
clude invariant feature sets is too restrictive.

Our method instead uses features that are partially in-
variant (i.e. to translation, scaling, and image plane rota-
tion), but vary with out-of-plane rotations. Simple percep-
tual grouping methods [11] that use the properties of paral-
lelism and cotermination in various combinations have been
used to build complex feature sets, with straight edge fea-
tures serving as the primitives (Figure 1). Angles and edge
length ratios, both of which satisfy the partial invariance
property, are extracted from these groupings and used to
form high-dimensional feature vectors.

Each view of an object in general contains several, pos-
sibly overlapping feature groupings. As well, all groupings
satisfy the additional perceptual grouping property of prox-
imity. This combination of locality and redundancy of the
feature sets means that indexing can succeed even with sig-
nificant occlusion and noise. A second form of redundancy,
the use of several different cardinalities of groupingsimulta-

Figure 2. Example of recognition system showing correct and
incorrect indexing hypotheses, and properly determined pose for
the correct hypotheses. The initial shape match hypotheses are
highlighted (bold lines).

neously, provides robustness for those cases where none of
the larger segment groupings are faithfully detected.

To deal with the variation of shape with viewpoint, it
is necessary to store feature vectors for a set of views that
provides a good coverage of the viewing sphere. This in-
troduces two problems: (a) the need to interpolate between
nearby views; and (b) the possibility that so many views will
be required that memory or NN lookup times will be exces-
sive.

We solve these problems as follows. At runtime, a set
of nearest neighbours is found using a new form of k-d tree
search (BBF) which sets an absolute time limit on the search.
Then, a kernel-based density estimation method (weighted
k-NN) uses the recovered neighbours to interpolate between
views, at the same time generating a posteriori probability
estimates for the likelihood that a given match hypothesis is
correct. Hypotheses can thus be prioritized so that the least
ambiguous are verified first, an important aspect of any ef-
ficient recognition system [20].

From each match hypothesis, it is possible to estimate ob-
ject pose [12]. False positives are then rejected using an iter-
ative back-projection procedure. At each stage, the image is
examined for further matches near the predicted object fea-
ture locations, and a least-squares fit of predicted versus ac-
tual image locations is computed. This is over-constrained,
so it is highly unlikely that an incorrect initial match will
lead to many additional feature correspondences. Therefore,
the final recognition can be robust and accurate despite the
fact that the initial indexing is probabilistic.

All of the above components (grouping, indexing, hy-
pothesis ranking, and verification) have been integrated into
a fully functioning recognition system. Rapid recovery of
nearest neighbours is a key to making the entire process ef-



0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Data points
Query point

Remaining search hypersphere

Figure 3. k-d tree with 8 points, k=2. In BBF search, we exam-
ine the bins closest to the query point q first. More than the standard
search, this is likely to maximize the overlap of (A) the hypersphere
centered on q with radius Dcur , and (B) the hyperrectangle of the
bin to be searched. In the case above, BBF would reduce the num-
ber of leaf nodes examined since the NN is in the closest adjacent
bin in space (directly below q), rather than the closest bin in the tree
structure (to the left of q).

ficient. The NN search described below keeps lookup time
manageable, with the proviso that a neighbour will occa-
sionally be missed. The large degree of redundancy built
into our method means that this is rarely a problem. Our
current system is capable of recognizing 3D objects from
a small (10) model database, in real images of complex
scenes with clutter and occlusion, in a few seconds (e.g. Fig-
ure 2). Experiments with synthetic data show that perfor-
mance should scale well to a larger number of models.

4. k-d tree lookup of nearest neighbours

Before introducing the BBF search algorithm, we first re-
view the standard version of the k-d tree, which is built as
follows. Beginning with a complete set of N points in <k,
the data space is split on the dimension i in which the data
exhibits the greatest variance. A cut is made at the median
valuem of the data in that dimension, so that an equal num-
ber of points fall to one side or the other. An internal node is
created to store i and m, and the process iterates with both
halves of the data. This creates a balanced binary tree with
depth d = dlog2Ne.

The leaves of a k-d tree form a complete partition of the
data space, with the interestingproperty that bins are smaller
in higher-density regions and larger in lower density areas.
This means that there is never an undue accumulation of
points in any single bin, and that the NN to any query should
lie, with high probability, in the bin where the query falls, or

0

0.2

0.4

0.6

0.8

1

4 6 8 10 12 14 16 18 20

F
ra

ct
io

n 
of

 c
lo

se
st

 n
ei

gh
bo

ur
s 

fo
un

d

Dimension of space

BBF search
Restricted search

Figure 4. Approximate NN lookup vs dimension of space: Frac-
tion of neighbours found. (Uniform distribution; 100;000 stored
points; Emax(BBF )=200; Emax(restricted)=480; averaged
over 1000 queries.)

in an adjacent bin.
To look up the NN to a query point q, a backtracking,

branch-and-bound search is used. First the tree is traversed
to find the bin containing the query point. This requires only
d scalar comparisons, and in general the point recovered
from the bin is a good approximation to the nearest neigh-
bour. In the backtracking stage, whole branches of the tree
can be pruned if the region of space they represent is further
from the query point than Dcur (the distance from q to the
closest neighbour yet seen). Search terminates when all un-
explored branches have been pruned.

This process can be very effective in low-dimensional
spaces, but in higher dimensions there are many more bins
adjacent to the central one that must be examined, and per-
formance degrades rapidly. Interestingly, a great deal of this
search is spent examining bins in which only a small frac-
tion of their volume could possibly supply the nearest neigh-
bour (see Figure 3). If we are willing to settle for an ap-
proximate NN, then we can avoid prolonged search by lim-
iting the number of leaf nodes we are willing to examine (to
Emax), and settling for the best neighbour found up to that
point.

This modification extends the domain of k-d trees for fast
NN recovery a small amount. However, the backtracking
search described above is still inefficient because the order
of examining leaf nodes is according to the tree structure,
which depends only on the stored points, and does not take
into account the position of the query point. A simple idea
for a more optimal search is to look in bins in order of in-
creasing distance from the query point. The distance to a
bin is defined to be the minimum distance between q and any
point on the bin boundary.

Such a search can be easily implemented with a small
amount of overhead using a priority queue. During NN
lookup, when a decision is made at an internal node to



0.98

1

1.02

1.04

1.06

1.08

1.1

1.12

4 6 8 10 12 14 16 18 20

D
is

ta
nc

e 
ra

tio

Dimension of space

BBF search
Restricted search

Figure 5. Approximate NN lookup vs dimension of space:
Average of ratios of approximate to actual NN distance. (Uni-
form distribution; 100;000 stored points; Emax(BBF )=200;
Emax(restricted)=480; averaged over 1000 queries.)

branch in one direction, an entry is added to the priority
queue to hold information about the option not taken. This
includes the current tree position and the distance of the
query point from the node. After a leaf node has been ex-
amined, the top entry in the priority queue is removed and
used to continue the search at the branch containing the next
closest bin.

This Best Bin First (BBF) search strategy provides a dra-
matic improvement in the NN search for moderate dimen-
sionality (e.g. 8-15), making indexing in these regimes prac-
tical. For fairly small values ofEmax, the method discovers
the exact NN a large percentage of the time, and a very close
neighbour in the remaining cases. The next section provides
experimental evidence to support this claim.

5. Experimental results

5.1. Uniform distribution

We perform experiments with points randomly drawn
from a uniform distribution in the unit hypercube, and
present results for the 1-NN problem, which are indicative
of the performance of the methods for k-NN lookup. Rather
than providing complete coverage of the three variables of
interest (dimension of index space D, the number of stored
points N , and Emax), in each experiment two of the three
are fixed and the other allowed to vary. In each case, chang-
ing the fixed values only changes the absolute numbers on
the curves, while the trends remain the same as those shown.
The values of the parameters when fixed are D = 12, N =
105, andEmax=200. This point is on all curves, and we be-
lieve it provides a challenging scenario for current indexing
systems.

We refer to the standard k-d tree search as “exact” search,

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

50 100 150 200 250 300 350 400

F
ra

ct
io

n 
of

 c
lo

se
st

 n
ei

gh
bo

ur
s 

fo
un

d

Emax (BBF)

BBF search
Restricted search

Figure 6. Approximate NN lookup vs Emax . (Uniform dis-
tribution; 100;000 stored points; dimension of space= 12; av-
eraged over 1000 queries. Emax(restricted) was 2:4 times
Emax(BBF).)

and define “restricted” search to be standard k-d tree search
terminated after examining at most Emax leaves. Because
of the overhead involved in keeping the priority queue for
BBF search, it would be unfair to make a straight compari-
son with the restricted search. Based on timing experiments
which covered the entire range of parameters used below,
the number of leaves that standard k-d tree search is able to
visit in the same time that BBF completes its search is a fac-
tor of between 1:8 and 2:4 times the number that BBF sees.
Therefore, we adopt the conservative approach of allowing
restricted search to visit 2:4 times the number of leaves that
BBF does in the experiments that follow.

Figure 4 sketches the performance of approximate search
with respect to the dimension of the space. Restricted search
becomes poor quickly after D=8 whereas BBF degrades
smoothly. In some sense this curve is the most important
to indicate that indexing in moderate dimensionalities is
practical. In 12 dimensions, for example, BBF recovers
the closest neighbour 94% of the time (versus 59% for re-
stricted search) while on average examining only 200 of the
100; 000 leaf nodes. For this same case, the “exact” search
has to examine over 2400 leaves.

Figure 5 shows that even when the method does not dis-
cover the exact nearest neighbour, it does not fail by much.
Even up to dimension 20, the average distance of recovered
neighbours is only 2% greater than the true NN distances.
This is important when considering our method of index-
ing (Section 3), which uses the distance-weighted support
of several neighbours, recovered with k-NN search. Even
if the exact NN is not among this set, it is likely that some
other close neighbours, corresponding to other nearby train-
ing views of the same object, will contribute to the correct
classification (i.e. match hypothesis).

Figure 6 gives performance with respect to Emax. For
this graph, the x-axis values are for BBF only, and the val-



0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1000 10000 100000

F
ra

ct
io

n 
of

 c
lo

se
st

 n
ei

gh
bo

ur
s 

fo
un

d

Number of stored points

BBF search
Restricted search

Figure 7. Approximate NN lookup vs Number of
Stored Points. (Uniform distribution; Emax(BBF )=200;
Emax(restricted)=480; dimension of space=12; averaged over
1000 queries.)

0

0.1

0.2

0.3

0.4

0.5

0.6

5 10 15 20 25

Q
ue

ry
 ti

m
e 

(s
ec

)

Dimension of space

BBF search
Exact k-d tree search

Exhaustive search

Figure 8. Timing comparison of NN lookup methods. (Uni-
form distribution; 30,000 stored points; Emax(BBF ) set to re-
cover 95% of exact neighbours; Averaged over 1000 queries.)

ues for restricted search are those for BBF multipliedby 2:4.
For reasonable values of Emax(BBF ) (150-400) the clos-
est neighbour is found by BBF more than 90% of the time.

Figure 7 shows that performance of BBF varies remark-
ably slowly with the number of stored points. In this 12D
space, the algorithm uncovers better than 92% of the exact
neighbours for up to 300; 000 points. In the latter case, BBF
examines only one out of every 1500 points, as compared to
one out of every 100 points for exact k-d tree search.

In order to demonstrate that the overhead involved in
BBF search is not large, we performed some timing experi-
ments in which we compared the algorithm both to exhaus-
tive search and to the exact k-d tree search algorithm (Fig-
ure 8). Emax was set to recover 95% of the exact neigh-
bours, determined by running the experiment for several val-
ues of Emax at each dimensionality. In dimension 10, for

#bins

dim
3 4 5

Fraction NN found 0.318 0.177 0.072

Table 1. Hash table lookup: fraction of nearest neighboursfound
in “single bin” access. (Uniform distribution; 62,536 stored points;
dimension of space = 8; averaged over 1000 queries.)

example, BBF provides speedup by a factor of 60 over ex-
haustive search, and in dimension 20 it is still an order of
magnitude faster.

5.2. Hash table lookup

While the above experiments demonstrate the advantages
of BBF search over restricted k-d tree search, it is important
to note that k-d trees are already a significant improvement
over hash table lookup. In this section we compare with the
method used in [3, 18, 19], in which only a single hash bin
is accessed. This can be considered another form of approx-
imate NN search, but one which performs very poorly in
high-dimensional spaces. More extensive hash searches that
would perform better are infeasible: searching to either side
of the query bin in each dimension would mean accessing
3k bins; and the computations required to do a more intelli-
gent search, similar to BBF (i.e. to determine the next clos-
est hash bin to check during a search of adjacent bins) are
too expensive.

For this “single bin” hash lookup we have chosen a sit-
uation quite favorable to the method: the dimension of the
space is not extreme (8D); the distribution of points is uni-
form (best case for hashing), in the unit hypercube; and the
bin sizes are relatively large (as suggested by [3, 19]). The
number of points (48 = 62; 536) is chosen to give 1point

bin

in the moderate-density regime, when #bins

dim
= 4. This

leads to 10points
bin

when #bins
dim

= 3 (“high-density”), and
to 0:17points

bin
when #bins

dim
= 5 (“low-density”). Table 1

shows that, no matter how coarsely the bins are quantized,
the method performs poorly. As a comparison, for the same
problem BBF requires Emax=57 to recover an average of
95% of the exact neighbours.

As the dimensionality increases, the numbers for hash-
ing become even worse very quickly, for two reasons. First,
there is the inevitable decline due to the fact that a larger
fraction of the points become potential nearest neighbours.
Secondly, unless the number of points is increased exponen-
tially with dimension, even with the coarsest possible quan-
tization (2 bins

dim
) the average bin will be very unlikely to con-

tain any points. Then the performance will look more like
the low-density entry of Table 1 than either of the others.

5.3. Synthetic model database

We also performed an experiment using non-uniform
data, provided by our database of object models (Figure 9).



Figure 9. Database of 10 models.

From each of the 10 models we extracted 10; 000 feature
vectors by taking synthetic images from random viewpoints,
which required an average of 103 images per object. The
feature groupings we used were 6-segment chains, which
provided a 10D feature space consisting of 5 angles and 5
edge-length ratios.

Recall from Section 3 that in our indexing method, rather
than using a single NN, hypotheses are formed using a
distance-weighted combination of a small number of recov-
ered neighbours, in this case 10. Hypotheses are then sorted
into a list, based on the weightings. In this experiment
we compare the “approximate” lists generated by BBF with
very small Emax (50), to the “true” lists as determined by
the exact algorithm. We averaged results over 1000 test im-
ages, each one comprised of a single database model chosen
at random, and viewed from a random viewpoint. The aver-
age length of a “true list” generated from an image was 93
hypotheses.

The speedup from using BBF over exact k-d tree search
was a factor of 14. Even though only 50 of the 100; 000
stored points were being examined, BBF missed less than
4% of the hypotheses, and even more significantly, the av-
erage ranking of the first missing hypothesis was 80th out of
93. As well, the average difference in the rank of a hypothe-
sis between the lists was less than 2 positions. As mentioned
earlier, these results are partially due to the fact that most of
the good hypotheses have the support of a few neighbours
(which correspond to the same groupingas seen from nearby
viewpoints in the training set), so if only one of these is miss-
ing, indexing is still able to succeed.

6. Summary and conclusions

We have argued for the use of k-d trees in shape-based
indexing. To this end, we presented an efficient, approxi-
mate nearest neighbour algorithm which makes indexing in
high-dimensional spaces practical. High-dimensional fea-
ture spaces provide a degree of discrimination that is es-
sential for large model databases, which is the natural do-
main of application for indexing techniques. Our experi-
ments demonstrated that BBF search is capable of finding
close neighbours over a wide range of dimensions and for

very large numbers of stored points, by examining only a
small fraction of the points. We also presented some results
indicating that the hash table method most commonly used
for indexing breaks down in higher dimensions.

The BBF method may also be applicable to other ar-
eas such as appearance-based recognition. There, objects
are represented as low-dimensional manifolds embedded in
high-dimensional spaces, and stored as point sets sampled
from the manifolds. Object classification is achieved using
NN lookup in the large-dimensional spaces, and BBF ap-
pears to be more efficient than the methods currently used
for this task (e.g. [15]).

Acknowledgements
Three of the database models were from http://www.eecs.wsu.edu

/IRL/3DDB/Models: thanks to Pat Flynn for the repository and USF vision
research group for the models.

References

[1] S. Arya. Nearest neighbor searching and applications. Technical Re-
port CAR-TR-777, Center for Automation Research, University of
Maryland, June 1995.

[2] J. Beis and D. Lowe. Learning indexing functions for 3-d model-
based object recognition. In Proceedings CVPR ’94, pages 275–280,
Seattle, Washington, June 1994.

[3] A. Califano and R. Mohan. Multidimensional indexing for recogniz-
ing visual shapes. IEEE Trans. PAMI, 16(4):373–392, 1994.

[4] D. Clemens and D. Jacobs. Space and time bounds on indexing 3-
d models from 2-d images. IEEE Trans. PAMI, 13(10):1007–1017,
1991.

[5] D. Forsyth, J. Mundy, A. Zisserman, and C. Brown. Invariance - a
new framework for vision. In Proceedings ICCV ’90, pages 598–605,
1990.

[6] J. Friedman, J. Bentley, and R. Finkel. An algorithm for finding best
matches in logarithmic expected time. ACM Trans. Math. Software,
3:209–226, 1977.

[7] W. Grimson and D. Huttenlocher. On the sensitivity of geometric
hashing. In Proceedings 3rd ICCV, pages 334–338, 1990.

[8] B. Kim and S. Park. A fastk nearest neighborfinding algorithm based
on the ordered partition. IEEE Trans. PAMI, PAMI-8(6):761–766,
1986.

[9] Y. Lamdan, J. Schwartz, and H. Wolfson. Affine invariant model-
based object recognition. IEEE Trans. Rob. Aut., 6(5):578–589,1990.

[10] Y. Lamdan and H. Wolfson. Geometric hashing: a general and ef-
ficient model-based recognition scheme. In Proceedings ICCV ’88,
pages 238–249, 1988.

[11] D. Lowe. Perceptual Organization and Visual Recognition. Kluwer
Academic, Hingham, MA, 1985.

[12] D. Lowe. Fitting parametrized three-dimensional models to images.
IEEE Trans. PAMI, 13(5):441–450, 1991.

[13] L. Miclet and M. Dabouz. Approximative fast nearest neighbor
recognition. Pattern Recognition Letters, 1:277–285, 1983.

[14] H. Neimann and G. Goppert. An efficient branch-and-bound nearest
neighbour classifier. Pattern Recognition Letters, 7:67–72, 1988.

[15] S. Nene and S. Nayar. Closest point search in high dimensions. In
Proceedings CVPR ’96, pages 859–865, 1996.

[16] C. Rothwell, A. Zisserman, J. Mundy,and D. Forsyth. Efficient model
library access by projectively invariant indexing functions. In Pro-
ceedings CVPR ’92, pages 109–114, 1992.

[17] R. Sproull. Refinements to nearest-neighbor searching in k-
dimensional trees. Algorithmica, 6:579–589, 1991.

[18] F. Stein and G. Medioni. Structural indexing: efficient 2-d object
recognition. IEEE Trans. PAMI, 14(12):1198–1204, 1992.

[19] F. Stein and G. Medioni. Structural indexing: efficient 3-d object
recognition. IEEE Trans. PAMI, 14(2):125–145, 1992.

[20] M. Wheeler and K. Ikeuchi. Sensor modelling, probabilistic hypoth-
esis generation, and robust localization for object recognition. IEEE
Trans. PAMI, 17(3):252–265, 1995.


