
Learning Indexing Functions for 3-D Model-Based ObjectRecognitionJe�rey S. Beis and David G. LoweDept. of Computer ScienceUniversity of British ColumbiaVancouver, B.C., Canadaemail: beis@cs.ubc.calowe@cs.ubc.caAbstractIndexing is an e�cient method of recovering matchhypotheses in model-based object recognition. Unlikeother methods, which search for viewpoint-invariantshape descriptors to use as indices, we use a learningmethod to model the smooth variation in appearance oflocal feature sets (LFS). Indexing from LFS e�ectivelydeals with the problems of occlusion and missing fea-tures. The indexing functions generated by the learn-ing method are probability distributions describing thepossible interpretations of each index value. Duringrecognition, this information can be used to select theleast ambiguous features for matching. A veri�cationstage follows so that the �nal reliability and accuracyof the match is greater than that from indexing alone.This approach has the potential to work with a widerange of image features and model types.1 IntroductionModel-based object recognition consists of match-ing features between an image and a pre-stored objectmodel. The hypothesize-and-test paradigm uses min-imal sets of features to form correspondence hypothe-ses. From these, model pose is calculated, and modelpresence is veri�ed by back-projection into the imageand a search for further matches. The entire processcan be very expensive because each veri�cation is ex-pensive, and because of the computational complexityof generating hypotheses through exhaustive compar-ison.Indexing is one way to combat the computationalburden. It is a 2-stage process. At compile-time, fea-ture sets derived from object models are used to gener-ate vectors corresponding to points in an index space.

These are stored in some appropriate data structure,with pointers back to the appropriate models. At run-time, the same process is used to generate index vec-tors from test images. The data structure is then usedto quickly access nearby pre-stored points. Thus, cor-respondence hypotheses are recovered without com-paring all pairs of model/image feature sets.Previous methods have largely ignored the poten-tial ambiguity among indexed hypotheses. This sit-uation arises when a single index vector from a testimage retrieves several con
icting match hypotheses,and occurs in almost every case. To deal with this,we can demand that our indexing mechanism supplyus with more information, i.e., not just with a set ofcorrespondence hypotheses, but also the probabilitythat any one of them is a correct interpretation forthe data.We introduce indexing functions which are de-signed to estimate the probabilities. A learning-from-examples approach is taken to build the functions, inan o�-line learning stage. The \examples" used aregroupings of features (\Local Feature Sets") extractedfrom sampled views of the objects in the database.Grouping is an essential step which reduces the num-ber of indices that will be considered. The indexingfunctions interpolate between nearby views and modelthe probability distribution over the possible interpre-tations at each point in the index space.At run-time, the �rst part of the indexing stagee�ciently recovers a set of nearest neighbors to eachindex value. Then, the indexing functions interpolateand smooth the local interpretations. The resultingprobabilities are used to rank the match hypothesesbefore sending them to a veri�cation stage. Theserankings will in general mean that correct interpreta-tions can be investigated �rst, which leads to improvedover-all e�ciency in the recognition process.

2 Previous workWe are interested in indexing 3-D models from sin-gle 2-D images. Much work in the past on indexinghas dealt with the easier problems of 2-D models, e.g.[KJ86] [SM92a], or 3-D models where more informa-tion is available, such as with 3-D range data [SM92b]or multiple images [MWS93].When compiling an index, the most e�cient storagepossible can be achieved by using shape descriptorsinvariant with respect to viewpoint. For each under-lying model feature set, only a single index value mustbe stored. It has been shown (e.g. [CJ91]) however,that no general, non-trivial invariant functions existfor 3-D point sets under the various standard projec-tion models. This explains the two major strains ofindexing approach that are present in the literature.The �rst methodology involves adding constraintsto create a restricted domain of 3-D feature sets thatcan be used to generate invariants. Forsythe, et al.,[FMZB90] create invariant functions from groupedplanar curves, such as coplanar pairs of conics or setsof at least 4 coplanar lines. Lambdan and Wolfson[LW88] also restrict to planar faces. They generatea�ne bases in which the coordinates of points on theface are invariant. [RZMF92] generalize this work todeal with the more general perspective transforma-tion.Such invariants are very useful when available, butmany objects will not contain one of these. A secondapproach ignores invariants, and attempts to store anindex value for each possible appearance of a featureset. These methods generate indices for multiple viewsof a model over some tesselation of the viewing sphere.Thompson and Mundy [TM87] use simple group-ings of pairs of vertices to retrieve hypothetical view-ing transforms for their models. Because of the lack ofspeci�city in the indices, a voting scheme must be usedto collect the noisy pieces of information into mean-ingful hypotheses. Clemens and Jacobs [CJ91] showthat the view variation of indices derived from pointsets generate 2-D sheets embedded in 4- (or higher)dimensional index spaces. Jacobs [Jac92] provides amore space-e�cient construction which reduces the 2-D sheets to two 1-D lines, each embedded in a 2-Dspace.These methods use hash tables to store and accesstheir indices. Attempting to cover all possible appear-ances of a feature set by �lling in a discrete look-up ta-ble is a di�cult task, especially in higher-dimensionalspaces. A better approach is to use interpolating func-tions to approximate the regions between samples (i.e.views). [PE90] suggested using Radial Basis Func-

tions (RBF) for this purpose. Although segmentationand correspondence were achieved manually in theirsystem, they were able to model the full range of ap-pearances of an object from a relatively small numberof examples.3 General framework3.1 IndexingAs just mentioned, a common factor in previousindexing methods is that they discretize the indicesand �ll hash tables with the quantized values. Theadvantage is that the run-time indexing step can bedone in constant time. The disadvantage is that thespace requirements become excessive with even mod-erately complex feature groupings and moderate noisein the data. This arises due to the standard way thesemethods have dealt with noisy images. During tableconstruction, an entry is made in each hash bin thatis within an error radius � of the actual model indexvalues that are to be stored. Then all relevant hy-potheses can still be accessed by looking in just onebin.The number of entries is exponential in the indexdimension, and the base of the exponential increaseswith noise and the required degree of speci�city (morespeci�city equals �ner bin divisions.) The only otherway to deal with the noise issue is, for each imageindex value, to search the �-volume of index spacearound that index at run-time, and then to form theunion of the recovered hypotheses. This certainly mit-igates the original advantage of the approach.A second issue which is not adequately addressed byother methods is the saliency of the indices. They gen-erally treat all recovered hypotheses as being equallylikely to be correct interpretations. Because the veri-�cation stage is relatively expensive, a heavy burdenis placed on the indexing stage to provide only a smallnumber of hypotheses. A higher-dimensional and/ormore �nely partitioned index space becomes a neces-sity, exacerbating the storage problem. We can dobetter by weighting each match hypothesis accordingto the proximity of the index vector to the pre-storedmodel feature vectors, and according to the unique-ness of the possible interpretation.Our approach addresses the above issues. During alearning stage, index vectors are generated from mul-tiple views of the models. These are stored in a k-dtree [FBF77], which allows for e�cient run-time de-termination of nearest neighbors. In contrast to hash-bin methods, no extra storage is needed to account

for noise: a single datum is stored for each view of amodel group. At the same time, a machine learningalgorithm is used to tailor indexing functions, whichwill give us probability distributions over the set of po-tential interpretations stored in the index structure.At run-time, a set of neighbors is recovered for eachindex vector computed from the test image. These arefed to the indexing functions, and the resulting prob-ability estimates used to rank the hypotheses for theveri�cation stage. An index vector with many of thenearest neighbors corresponding to the same hypoth-esis will generate a single, high-probability output,while one with several nearby con
icting interpreta-tions will produce many lower-probability hypotheses.The ranking step allows us to limit, in a principledmanner, the time spent searching for objects in an im-age. Ambiguous shapes (those which match too manyof the pre-stored indices) might be dropped from fur-ther consideration by thresholding on the computedprobability estimates. Or, we could choose to look atonly a certain number of the most likely candidatesbefore stopping. Either way, ranking serves as an ex-tra �lter on hypothesis generation, leading the wholerecognition process to be more e�cient.3.2 GroupingFor indexing to be e�ective it is important thatsome data-driven grouping mechanism produce sets offeatures likely to come from a single object [Low85].Grouping can be based on certain non-accidentalproperties of images such as edge parallelism, co-termination, and symmetry. Groupings are non-accidental if there is a high probability that their com-ponents stem from the same underlying cause, i.e.,from the same object.These types of grouping could be said to have \qual-itative invariance" in that, for example, segments co-terminating on a model will always project to co-terminations in an image. We can use them to gener-ate real-valued, multi-dimensional indices. Each indexdimension will correspond to either some property ofa particular feature in the grouping (e.g., a statisticalvalue for a texture region) or to a relationship betweentwo or more of the features (e.g., angle between twoedge segments - see Figure 1).Features should be chosen to be invariant to asmany of the model's degrees-of-freedom (DOF) as pos-sible. Then the learning algorithm only has to modelthe variation in the few remaining DOF of the pose.In this case, angles and edge-length ratios are invari-ant to translations, scaling, and image-plane rotations.These features can also be measured very precisely,

θ1

θ2
θ3

l1
l 2

θ1 θ2

θ3

l1

l 2Figure 1: N -segment chains as examples of Local Fea-ture Sets (with N = 4). This type of grouping gener-ates feature vectors ~x = (�1; �2; �3; l2=l1).leading to accurate indexing. (Note that the exte-rior edge lengths are not included, as they have muchgreater uncertainty than the interior ones due to their\free" ends.)As a further requirement, we stipulate that ourgroupings must be \local" within the images, where\local" will be some function of the size and separa-tion of features in the set. In general, several of thesegroupings will be derived from each view of a model.Because of this redundancy, using Local Feature Sets(LFS) for indexing increases robustness to missing fea-tures either from occlusion or due to the inadequaciesof feature detectors.3.3 LearningAs mentioned above, while the qualitative prop-erties which are used to form feature groupings areviewpoint invariant, the feature vectors derived fromthese groupings are not. Since we do not have invari-ant descriptors, each underlying model grouping gen-erates not a single index value but a range of valuesoccupying some volume of the index space. Changingone's viewpoint about a model grouping correspondsto moving about within that volume.As we do not have analytic expressions to describethese volumes, we use a learning algorithm to approx-imate them. Note that at any point in the space, sev-eral volumes may be overlapping. Formally, if ~x is alocal feature vector derived from an image and m isa correct match of features to a particular model, we

want to learn P (mj~x) for each possible interpretationm using a set of examples (~x; P (mj~x)).Because the index values for a model grouping are acomplex, non-linear function of viewpoint and projec-tion from 3-D to 2-D, we require a method that canlearn non-linear mappings. In the context of objectrecognition, Radial Basis Functions have been used tolearn the continuous range of appearances of simplewire-frame models [PE90] [PG89]. While successfullydemonstrating the interpolation ability of RBFs, thesesystems are brittle. RBF output is a binary decisionon object presence/absence based on a single featurevector derived from an image, and this fails in the caseof missing features.There is a more robust way to apply RBFs, whichis as an indexing mechanism. With m from above, wede�ne indexing functions ~f :P (mj~xI) � ~fm(~xI) =Xn CmnG(~xI � ~xn)where ~xI is an image vector, G are the (radial) basisfunctions centered at the ~xn, and the Cmn are coe�-cients determined by the learning algorithm. In thispaper, a simple form of RBF network is used: G aretaken to be Gaussians; the centers ~xn are the full setof training examples (T); and the calculation of Cmnsimply involves the pseudo-inverse of the matrix withentries Gij = G(~xi�~xj) for ~xi, ~xj 2 T (see [PG89] fordetails). Note also the hidden parameters ~�, of dimen-sion equal to the index space, which we set manually.For the learning stage, images of 3-D object modelsare taken from various viewpoints. The training vec-tors are derived from the LFS groupings found in theseimages. For recognition, we use real images and, fromeach image vector ~xIp (p = 1 to P), we recover N near-est neighbors ~xmn (n = 1 to N , and m can be di�erentfor each n). The neighbors indicate which RBFs mare likely to have a signi�cant response. Then ~fm(~xIp)is evaluated for the up to PN unique correspondencehypotheses (i.e. for a given image vector p, several ofthe N nearest neighbors may indicate the same inter-pretation m).The results are probability estimates for the imagegrouping $ model grouping correspondences. Theseare used to rank the hypotheses so that the least am-biguous ones will be investigated �rst. A rigorous veri-�cation stage (iterations of back-projection and matchextension) ensures that the �nal reliability of interpre-tation is much higher than that of the initial indexing.One advantage of the RBF method is that the func-tions smoothly interpolate between the training exam-ples (to \�ll in" sections of the viewing sphere where

no training views exist). This is in contrast to hash-table methods, where the in
uence of stored index val-ues abruptly terminates at bin boundaries. Anotherplus is that often a single RBF center can e�ectivelyreplace several of the training examples, and thus re-duce the amount of data that needs to be stored.The drawback is that it is very di�cult to determinethe optimal number and positioning of the centers. Asimpler scheme, that contains many fewer free param-eters, is Parzen windows. It is a Gaussian-weighted,k-nearest neighbors method:P (mj~xI) � ~fm(~xI) = Pn:~xmn 2NN(~xI)G(~xI � ~xmn)PmPn:~xmn 2NN(~xI)G(~xI � ~xmn)where NN (~xI) are the nearest neighbors to ~xI , andthe denominator is a normalizing factor, so that thesum over all considered interpretations m equals 1.One di�erence is that the only pre-stored vectors fac-tored into the estimate are those recovered from theNN search, whereas the RBF method looks at poten-tially many more (i.e. for each m, all training vectorsassociated with its RBF). Parzen windows are simpleto implement, and do not require the extra storage forcoe�cient matrices that RBFs do.4 ExperimentsExperiments were run to test the absolute indexingperformance, the degradation of performance with sizeof database, and to compare the two learning methods.The model database consisted of 4 CAD-type models.The training stage for a model consisted of projectingit from 120 viewpoints over a hemisphere, then form-ing the LFS from the projections and training vec-tors from the LFS. Primitive features were straight-line segments and LFS groupings were chains of 4 co-terminating segments. For the RBF learning method,coe�cient matrices were then computed.To simulate a larger database of 25 models, we ran-domly generated 2-D, 4-segment chains which werevalid LFS. The average number of training vectorsfrom each of the 4 real models was about 7000, so147; 000 extra synthetic vectors were stored along withthe original 28; 000 in a kd-tree.The test set consisted of 25 images, each one con-taining one of the objects (a notebox) from varyingpoints of view, distances, and with varying amountsof occlusion (up to about one third hidden). A repre-sentative example of the recognition process is shownin Figure [2]. The average number of segments (group-ings) per image was 276 (50). 10 NN were recovered

Figure 2: The upper box shows the processed imagewith the groupings that correctly indexed the modeldatabase. The lower box contains the �nal determina-tion of object poses, overlayed on the original image.for each vector corresponding to an image grouping,and a ranked list of match hypotheses formed by appli-cation of the indexing functions. Total time for group-ing, indexing, and ranking was < 10 seconds (worstcase) on a SPARC 2 computer.Table 2 gives results for average performance onthose images where indexing succeeded. Indexing canfail for two reasons. It is possible that no correctgroupings are formed from detected object segments.This was the case for 3 of the 25 images. It was ob-served for these images that the use of other groupingtypes, such as sets of parallel lines, would likely haveallowed for successful indexing.The second possibility is that even if correct imagegrouping(s) are formed, none of the recovered neigh-bors is the correct model group match. In the 25

Models 1 4 25RBF 5.4 16.3 11Parzen 7.3 20.4 12.2Figure 3: Average ranking of �rst correct index, overall images where indexing was successful. This was 22images for the 1 and 4 model cases, and 21 images forthe 25 model case.model experiments (both methods) this occurred for 1image. It suggests that a good idea may be to increasethe number of NN recovered with increasing databasesize.The absolute performance with both methods isclearly good: all of the numbers are low. Furthermore,for those images where indexing succeeded, there wasgenerally a large degree of redundancy, of perhaps 5or 10 separate (often overlapping) LFS detected. Inthese cases, larger amounts of occlusion could havebeen tolerated.There is a surprising improvement between the 4and the 25 model cases. This is due to the addi-tion of distractors, which in general prevented someincorrect groupings from being detected as NN, whileleaving most of the correct ones una�ected. The im-plementation of the distractors is such that each oneis e�ectively the only instantiation of some underlyinggrouping, so none of them is likely to be weighted veryhighly. Real 3-D models will add in some more highly-weighted indices, the magnitude of the e�ect being inproportion to how similar are the underlying shapesbetween models.The contrasts in the two learning methods pointout the main trade-o� that needs to be made in orderto quantitatively assess an index for ranking. That is,between similarity (how close are the neighbors?) andnon-ambiguity (of the neighbors, are there con
ictinginterpretations?).For example, in the Parzen windows scheme, ashapewise dissimilar index can be ranked highly if itis in a sparse region of index space (it is \unambigu-ous"). Conversely, the RBF method as implementeduses no negative examples, so incorrect matches, withhigh similarity but in a dense region of the space, willstill be ranked highly (despite being ambiguous). Infact, these behaviors are simply the down side of whatare generally the desirable properties of the system.The optimal balance of when and how much to weighteach factor is an interesting topic for investigation.

5 ConclusionWe have presented a novel approach to indexinginto a database of object models. By introducing in-dexing functions to associate probabilities of correct-ness with indexed match hypotheses, we determinewhich hypotheses are ambiguous (and can be ignored),and which are the most salient (and should be veri�ed�rst). The learning methods chosen to generate theseindexing functions interpolate between the index vec-tors sampled at various viewpoints about the storedobjects. Thus, probability estimates exist for the full�eld of view of each model in our database.We have demonstrated a recognition system thatcan achieve good performance on a di�cult indexingproblem. Importantly, the method remains e�cientas problem complexity increases. We are currently in-vestigating extending the method to deal with curvededge features, and non-geometric features such as tex-ture and color.References[CJ91] D.T. Clemens and D.W. Jacobs. Spaceand time bounds on indexing 3-d mod-els from 2-d images. IEEE Trans. PAMI,13(10):1007{1017, 1991.[FBF77] J.H. Friedman, J.L. Bentley, and R.A.Finkel. An algorithm for �nding bestmatches in logarithmic expected time.ACM Trans. Math. Software, 3:209{226,1977.[FMZB90] D. Forsyth, J.L. Mundy, A. Zisserman, andC.M. Brown. Invariance - a new frameworkfor vision. In Proceedings ICCV '90, pages598{605, 1990.[Jac92] D.W. Jacobs. Space e�cient 3d model in-dexing. In Proceedings CVPR '92, pages439{444, 1992.[KJ86] T.F. Knoll and R.C. Jain. Recognizingpartially visible objects using feature in-dexed hypothesis. IEEE J. Rob. Aut., RA-2(1):3{13, 1986.[Low85] D.G. Lowe. Perceptual organization andvisual recognition. Kluwer Academic,Hingham, MA, 1985.

[LW88] Y. Lamdan and H.J. Wolfson. Geomet-ric hashing: a general and e�cient model-based recognition scheme. In ProceedingsICCV '88, pages 238{249, 1988.[MWS93] R. Mohan, D. Weinshall, and R.R.Sarukkai. 3d object recognition by in-dexing structural invariants from multipleviews. In Proceedings ICCV '93, pages264{268, 1993.[PE90] T. Poggio and S. Edelman. A network thatlearns to recognize three-dimensional ob-jects. Nature, 343:263{266, 1990.[PG89] T. Poggio and F. Girosi. A theory ofnetworks for approximation and learning.Technical Report 1140, MIT AI Lab, July1989.[RZMF92] C.A. Rothwell, A. Zisserman, J.L. Mundy,and D.A. Forsyth. E�cient model libraryaccess by projectively invariant indexingfunctions. In Proceedings CVPR '92, pages109{114, 1992.[SM92a] F. Stein and G. Medioni. Structural index-ing: e�cient 2-d object recognition. IEEETrans. PAMI, 14(12):1198{1204, 1992.[SM92b] F. Stein and G. Medioni. Structural index-ing: e�cient 3-d object recognition. IEEETrans. PAMI, 14(2):125{145, 1992.[TM87] D.W. Thompson and J.L. Mundy. Three-dimensional model matching from an un-constrained viewpoint. In Proceedings Int.Conf. Rob. Aut., pages 208{220, 1987.

