Learning Indexing Functions for 3-D Model-Based Object
Recognition

Jeffrey 5. Beis and David G. Lowe
Dept. of Computer Science
University of British Columbia
Vancouver, B.C., Canada
email: beis@cs.ubc.ca

lowe@cs.ubc.ca

Abstract

Indexing is an efficient method of recovering match
hypotheses in model-based object recognition. Unlike
other methods, which search for viewpoint-invariant
shape descriptors to use as indices, we use a learning
method to model the smooth variation in appearance of
local feature sets (LFS). Indexing from LES effectively
deals with the problems of occlusion and missing fea-
tures. The indexing functions generated by the learn-
g method are probability distributions describing the
possible interpretations of each index value. During
recognition, this information can be used to select the
least ambiguous features for matching. A verification
stage follows so that the final reliability and accuracy
of the match s greater than that from indexing alone.
This approach has the potential to work with a wide
range of image features and model types.

1 Introduction

Model-based object recognition consists of match-
ing features between an image and a pre-stored object
model. The hypothesize-and-test paradigm uses min-
imal sets of features to form correspondence hypothe-
ses. From these, model pose is calculated, and model
presence 1s verified by back-projection into the image
and a search for further matches. The entire process
can be very expensive because each verification is ex-
pensive, and because of the computational complexity
of generating hypotheses through exhaustive compar-
ison.

Indexing is one way to combat the computational
burden. It is a 2-stage process. At compile-time, fea-
ture sets derived from object models are used to gener-
ate vectors corresponding to points in an index space.

These are stored in some appropriate data structure,
with pointers back to the appropriate models. At run-
time, the same process is used to generate index vec-
tors from test images. The data structure is then used
to quickly access nearby pre-stored points. Thus, cor-
respondence hypotheses are recovered without com-
paring all pairs of model/image feature sets.

Previous methods have largely ignored the poten-
tial ambiguity among indexed hypotheses. This sit-
uation arises when a single index vector from a test
image retrieves several conflicting match hypotheses,
and occurs in almost every case. To deal with this,
we can demand that our indexing mechanism supply
us with more information, i.e., not just with a set of
correspondence hypotheses, but also the probability
that any one of them 1s a correct interpretation for
the data.

We introduce wndexing functions which are de-
signed to estimate the probabilities. A learning-from-
examples approach is taken to build the functions, in
an off-line learning stage. The “examples” used are
groupings of features (“Local Feature Sets”) extracted
from sampled views of the objects in the database.
Grouping is an essential step which reduces the num-
ber of indices that will be considered. The indexing
functions interpolate between nearby views and model
the probability distribution over the possible interpre-
tations at each point in the index space.

At run-time, the first part of the indexing stage
efficiently recovers a set of nearest neighbors to each
index value. Then, the indexing functions interpolate
and smooth the local interpretations. The resulting
probabilities are used to rank the match hypotheses
before sending them to a verification stage. These
rankings will in general mean that correct interpreta-
tions can be investigated first, which leads to improved
over-all efficiency in the recognition process.

2 Previous work

We are interested in indexing 3-D models from sin-
gle 2-D images. Much work in the past on indexing
has dealt with the easier problems of 2-D models, e.g.
[KJ86] [SM92a], or 3-D models where more informa-
tion is available, such as with 3-D range data [SM92b]
or multiple images [MWS93].

When compiling an index, the most efficient storage
possible can be achieved by using shape descriptors
invariant with respect to viewpoint. For each under-
lying model feature set, only a single index value must
be stored. Tt has been shown (e.g. [CJ91]) however,
that no general, non-trivial invariant functions exist
for 3-D point sets under the various standard projec-
tion models. This explains the two major strains of
indexing approach that are present in the literature.

The first methodology involves adding constraints
to create a restricted domain of 3-D feature sets that
can be used to generate invariants. Forsythe, et al.,
[FMZB90] create invariant functions from grouped
planar curves, such as coplanar pairs of conics or sets
of at least 4 coplanar lines. Lambdan and Wolfson
[LW88] also restrict to planar faces. They generate
affine bases in which the coordinates of points on the
face are invariant. [RZMTF92] generalize this work to
deal with the more general perspective transforma-
tion.

Such invariants are very useful when available, but
many objects will not contain one of these. A second
approach ignores invariants, and attempts to store an
index value for each possible appearance of a feature
set. These methods generate indices for multiple views
of a model over some tesselation of the viewing sphere.

Thompson and Mundy [TM8&7] use simple group-
ings of pairs of vertices to retrieve hypothetical view-
ing transforms for their models. Because of the lack of
specificity in the indices, a voting scheme must be used
to collect the noisy pieces of information into mean-
ingful hypotheses. Clemens and Jacobs [CJ91] show
that the view variation of indices derived from point
sets generate 2-D sheets embedded in 4- (or higher)
dimensional index spaces. Jacobs [Jac92] provides a
more space-efficient construction which reduces the 2-
D sheets to two 1-D lines, each embedded in a 2-D
space.

These methods use hash tables to store and access
their indices. Attempting to cover all possible appear-
ances of a feature set by filling in a discrete look-up ta-
ble is a difficult task, especially in higher-dimensional
spaces. A better approach is to use interpolating func-
tions to approximate the regions between samples (i.e.
views). [PE90] suggested using Radial Basis Func-

tions (RBF) for this purpose. Although segmentation
and correspondence were achieved manually in their
system, they were able to model the full range of ap-
pearances of an object from a relatively small number
of examples.

3 General framework
3.1 Indexing

As just mentioned, a common factor in previous
indexing methods is that they discretize the indices
and fill hash tables with the quantized values. The
advantage 1s that the run-time indexing step can be
done in constant time. The disadvantage is that the
space requirements become excessive with even mod-
erately complex feature groupings and moderate noise
in the data. This arises due to the standard way these
methods have dealt with noisy images. During table
construction, an entry is made in each hash bin that
i1s within an error radius € of the actual model index
values that are to be stored. Then all relevant hy-
potheses can still be accessed by looking in just one
bin.

The number of entries is exponential in the index
dimension, and the base of the exponential increases
with noise and the required degree of specificity (more
specificity equals finer bin divisions.) The only other
way to deal with the noise issue is, for each image
index value, to search the e-volume of index space
around that index at run-time, and then to form the
union of the recovered hypotheses. This certainly mit-
igates the original advantage of the approach.

A second issue which is not adequately addressed by
other methods is the saliency of the indices. They gen-
erally treat all recovered hypotheses as being equally
likely to be correct interpretations. Because the veri-
fication stage 1s relatively expensive, a heavy burden
is placed on the indexing stage to provide only a small
number of hypotheses. A higher-dimensional and/or
more finely partitioned index space becomes a neces-
sity, exacerbating the storage problem. We can do
better by weighting each match hypothesis according
to the proximity of the index vector to the pre-stored
model feature vectors, and according to the unique-
ness of the possible interpretation.

Our approach addresses the above issues. During a
learning stage, index vectors are generated from mul-
tiple views of the models. These are stored in a k-d
tree [FBF77], which allows for efficient run-time de-
termination of nearest neighbors. In contrast to hash-
bin methods, no extra storage is needed to account

for noise: a single datum is stored for each view of a
model group. At the same time, a machine learning
algorithm is used to tailor indexing functions, which
will give us probability distributions over the set of po-
tential interpretations stored in the index structure.

At run-time, a set of neighbors is recovered for each
index vector computed from the test image. These are
fed to the indexing functions, and the resulting prob-
ability estimates used to rank the hypotheses for the
verification stage. An index vector with many of the
nearest neighbors corresponding to the same hypoth-
esis will generate a single, high-probability output,
while one with several nearby conflicting interpreta-
tions will produce many lower-probability hypotheses.

The ranking step allows us to limit, in a principled
manner, the time spent searching for objects in an im-
age. Ambiguous shapes (those which match too many
of the pre-stored indices) might be dropped from fur-
ther consideration by thresholding on the computed
probability estimates. Or, we could choose to look at
only a certain number of the most likely candidates
before stopping. Either way, ranking serves as an ex-
tra filter on hypothesis generation, leading the whole
recognition process to be more efficient.

3.2 Grouping

For indexing to be effective 1t is important that
some data-driven grouping mechanism produce sets of
features likely to come from a single object [Low85].
Grouping can be based on certain non-accidental
properties of images such as edge parallelism, co-
termination, and symmetry. Groupings are non-
accidental if there is a high probability that their com-
ponents stem from the same underlying cause, i.e.,
from the same object.

These types of grouping could be said to have “qual-
itative invariance” in that, for example, segments co-
terminating on a model will always project to co-
terminations in an image. We can use them to gener-
ate real-valued, multi-dimensional indices. Each index
dimension will correspond to either some property of
a particular feature in the grouping (e.g., a statistical
value for a texture region) or to a relationship between
two or more of the features (e.g., angle between two
edge segments - see Figure 1).

Features should be chosen to be invariant to as
many of the model’s degrees-of-freedom (DOF) as pos-
sible. Then the learning algorithm only has to model
the variation in the few remaining DOF of the pose.
In this case, angles and edge-length ratios are invari-
ant to translations, scaling, and image-plane rotations.
These features can also be measured very precisely,

Figure 1: N-segment chains as examples of Local Fea-
ture Sets (with N = 4). This type of grouping gener-
ates feature vectors X = (61, 02, 03, 12/11).

leading to accurate indexing. (Note that the exte-
rior edge lengths are not included, as they have much
greater uncertainty than the interior ones due to their
“free” ends.)

As a further requirement, we stipulate that our
groupings must be “local” within the images, where
“local” will be some function of the size and separa-
tion of features in the set. In general, several of these
groupings will be derived from each view of a model.
Because of this redundancy, using Local Feature Sets
(LFS) for indexing increases robustness to missing fea-
tures either from occlusion or due to the inadequacies
of feature detectors.

3.3 Learning

As mentioned above, while the qualitative prop-
erties which are used to form feature groupings are
viewpoint invariant, the feature vectors derived from
these groupings are not. Since we do not have invari-
ant descriptors, each underlying model grouping gen-
erates not a single index value but a range of values
occupying some volume of the index space. Changing
one’s viewpoint about a model grouping corresponds
to moving about within that volume.

As we do not have analytic expressions to describe
these volumes, we use a learning algorithm to approx-
imate them. Note that at any point in the space, sev-
eral volumes may be overlapping. Formally, if X is a
local feature vector derived from an image and m is
a correct match of features to a particular model, we

want to learn P(m|X) for each possible interpretation
m using a set of examples (X, P(m|X)).

Because the index values for a model grouping are a
complex, non-linear function of viewpoint and projec-
tion from 3-D to 2-D, we require a method that can
learn non-linear mappings. In the context of object
recognition, Radial Basis Functions have been used to
learn the continuous range of appearances of simple
wire-frame models [PE90] [PG89]. While successfully
demonstrating the interpolation ability of RBFs, these
systems are brittle. RBF output is a binary decision
on object presence/absence based on a single feature
vector derived from an image, and this fails in the case
of missing features.

There 18 a more robust way to apply RBFs, which
is as an indexing mechanism. With m from above, we

—

define indexing functions f:

P(mlg!) ~ (%) = 3 CrnG(R' — %)

where 1

is an image vector, (G are the (radial) basis
functions centered at the X,, and the C,,, are coefli-
cients determined by the learning algorithm. In this
paper, a simple form of RBF network is used: G are
taken to be Gaussians; the centers x,, are the full set
of training examples (7'); and the calculation of Cy,,
simply involves the pseudo-inverse of the matrix with
entries G; = G(X; —X;) for X;, X; € T (see [PG8Y] for
details). Note also the hidden parameters &, of dimen-
sion equal to the index space, which we set manually.

For the learning stage, images of 3-D object models
are taken from various viewpoints. The training vec-
tors are derived from the LFS groupings found in these
images. For recognition, we use real images and, from
each image vector)EZ{ (p = 1to P), we recover N near-
est neighbors X (n = 1 to N, and m can be different
for each n). The neighbors indicate which RBFs m
are likely to have a significant response. Then £, (5('{,)
is evaluated for the up to PN unique correspondence
hypotheses (i.e. for a given image vector p, several of
the N nearest neighbors may indicate the same inter-
pretation m).

The results are probability estimates for the image
grouping <> model grouping correspondences. These
are used to rank the hypotheses so that the least am-
biguous ones will be investigated first. A rigorous veri-
fication stage (iterations of back-projection and match
extension) ensures that the final reliability of interpre-
tation is much higher than that of the initial indexing.

One advantage of the RBF method is that the func-
tions smoothly interpolate between the training exam-
ples (to “fill in” sections of the viewing sphere where

no training views exist). This is in contrast to hash-
table methods, where the influence of stored index val-
ues abruptly terminates at bin boundaries. Another
plus is that often a single RBF center can effectively
replace several of the training examples, and thus re-
duce the amount of data that needs to be stored.

The drawback is that it 1s very difficult to determine
the optimal number and positioning of the centers. A
simpler scheme, that contains many fewer free param-
eters, i1s Parzen windows. It is a Gaussian-weighted,
k-nearest neighbors method:

Yongmennz) GE —X7)

B Zm Zn:inmENN(iI) G()EI -)EZ%)

)

P(m|") ~ £, (&)

where NN (%!) are the nearest neighbors to %!, and
the denominator is a normalizing factor, so that the
sum over all considered interpretations m equals 1.
One difference is that the only pre-stored vectors fac-
tored into the estimate are those recovered from the
NN search, whereas the RBF method looks at poten-
tially many more (i.e. for each m, all training vectors
associated with its RBF). Parzen windows are simple
to implement, and do not require the extra storage for
coefficient matrices that RBFs do.

4 Experiments

Experiments were run to test the absolute indexing
performance, the degradation of performance with size
of database, and to compare the two learning methods.
The model database consisted of 4 CAD-type models.
The training stage for a model consisted of projecting
it from 120 viewpoints over a hemisphere, then form-
ing the LFS from the projections and training vec-
tors from the LFS. Primitive features were straight-
line segments and LFS groupings were chains of 4 co-
terminating segments. For the RBF learning method,
coefficient matrices were then computed.

To simulate a larger database of 25 models, we ran-
domly generated 2-D, 4-segment chains which were
valid LFS. The average number of training vectors
from each of the 4 real models was about 7000, so
147,000 extra synthetic vectors were stored along with
the original 28,000 in a kd-tree.

The test set consisted of 25 images, each one con-
taining one of the objects (a notebox) from varying
points of view, distances, and with varying amounts
of occlusion (up to about one third hidden). A repre-
sentative example of the recognition process is shown
in Figure [2]. The average number of segments (group-
ings) per image was 276 (50). 10 NN were recovered

\\/\i/\/ N\
/v/) /{7\“/?\ 3

- , / X\/\/g
! \\L%

n
\

Figure 2: The upper box shows the processed image
with the groupings that correctly indexed the model
database. The lower box contains the final determina-
tion of object poses, overlayed on the original image.

for each vector corresponding to an image grouping,
and a ranked list of match hypotheses formed by appli-
cation of the indexing functions. Total time for group-
ing, indexing, and ranking was < 10 seconds (worst
case) on a SPARC 2 computer.

Table 2 gives results for average performance on
those images where indexing succeeded. Indexing can
fail for two reasons. It is possible that no correct
groupings are formed from detected object segments.
This was the case for 3 of the 25 images. It was ob-
served for these images that the use of other grouping
types, such as sets of parallel lines, would likely have
allowed for successful indexing.

The second possibility is that even if correct image
grouping(s) are formed, none of the recovered neigh-
bors is the correct model group match. In the 25

Models | 1 4 25
RBF 54 | 16.3 11
Parzen 7.3 1204 | 12.2

Figure 3: Average ranking of first correct index, over
all images where indexing was successful. This was 22
images for the 1 and 4 model cases, and 21 images for
the 25 model case.

model experiments (both methods) this occurred for 1
image. It suggests that a good idea may be to increase
the number of NN recovered with increasing database
size.

The absolute performance with both methods is
clearly good: all of the numbers are low. Furthermore,
for those images where indexing succeeded, there was
generally a large degree of redundancy, of perhaps 5
or 10 separate (often overlapping) LFS detected. In
these cases, larger amounts of occlusion could have
been tolerated.

There is a surprising improvement between the 4
and the 25 model cases. This is due to the addi-
tion of distractors, which in general prevented some
incorrect groupings from being detected as NN, while
leaving most of the correct ones unaffected. The im-
plementation of the distractors is such that each one
is effectively the only instantiation of some underlying
grouping, so none of them is likely to be weighted very
highly. Real 3-D models will add in some more highly-
weighted indices, the magnitude of the effect being in
proportion to how similar are the underlying shapes
between models.

The contrasts in the two learning methods point
out the main trade-off that needs to be made in order
to quantitatively assess an index for ranking. That is,
between similarity (how close are the neighbors?) and
non-ambiguity (of the neighbors, are there conflicting
interpretations?).

For example, in the Parzen windows scheme, a
shapewise dissimilar index can be ranked highly if it
is in a sparse region of index space (it is “unambigu-
ous”). Conversely, the RBF method as implemented
uses no negative examples, so incorrect matches, with
high similarity but in a dense region of the space, will
still be ranked highly (despite being ambiguous). In
fact, these behaviors are simply the down side of what
are generally the desirable properties of the system.
The optimal balance of when and how much to weight
each factor is an interesting topic for investigation.

5 Conclusion

We have presented a novel approach to indexing
into a database of object models. By introducing in-
dexing functions to associate probabilities of correct-
ness with indexed match hypotheses, we determine
which hypotheses are ambiguous (and can be ignored),
and which are the most salient (and should be verified
first). The learning methods chosen to generate these
indexing functions interpolate between the index vec-
tors sampled at various viewpoints about the stored
objects. Thus, probability estimates exist for the full
field of view of each model in our database.

We have demonstrated a recognition system that
can achieve good performance on a difficult indexing
problem. Importantly, the method remains efficient
as problem complexity increases. We are currently in-
vestigating extending the method to deal with curved
edge features, and non-geometric features such as tex-
ture and color.

References

[CT91] D.T. Clemens and D.W. Jacobs. Space
and time bounds on indexing 3-d mod-
els from 2-d images. IEEE Trans. PAMI,
13(10):1007-1017, 1991.

[FBF77] J.H. Friedman, J.L. Bentley, and R.A.
Finkel. An algorithm for finding best
matches in logarithmic expected time.

ACM Trans. Math. Software, 3:209-226,
1977.

[FMZB90] D. Forsyth, J.L. Mundy, A. Zisserman, and
C.M. Brown. Invariance - a new framework
for vision. In Proceedings ICCV 90, pages
598-605, 1990.

[Jac92] D.W. Jacobs. Space efficient 3d model in-

dexing. In Proceedings CVPR 92, pages

439-444, 1992.

[KJ86] T.F. Knoll and R.C. Jain. Recognizing

partially visible objects using feature in-

dexed hypothesis. IEEE J. Rob. Aut., RA-

2(1):3-13, 1986.

[Low85] D.G. Lowe. Perceptual organization and

visual recognition. Kluwer Academic,

Hingham, MA, 1985.

[LW88]

[MWS93]

[PE90]

[PG8Y)]

[RZMF92]

[SM92a]

[SM92b]

[TM87]

Y. Lamdan and H.J. Wolfson. Geomet-
ric hashing: a general and efficient model-
based recognition scheme. In Proceedings

ICCV ’88, pages 238-249, 1988.

R. Mohan, D. Weinshall, and R.R.
Sarukkai. 3d object recognition by in-
dexing structural invariants from multiple
views. In Proceedings ICCV 93, pages
264-268, 1993.

T. Poggio and S. Edelman. A network that
learns to recognize three-dimensional ob-

jects. Nature, 343:263-266, 1990.

T. Poggio and F. Girosi. A theory of
networks for approximation and learning.
Technical Report 1140, MIT AI Lab, July
1989.

C.A. Rothwell, A. Zisserman, J.L.. Mundy,
and D.A. Forsyth. Efficient model library
access by projectively invariant indexing
functions. In Proceedings CVPR '92, pages
109-114, 1992.

F. Stein and G. Medioni. Structural index-
ing: efficient 2-d object recognition. /[EEE
Trans. PAMI, 14(12):1198-1204, 1992.

F. Stein and G. Medioni. Structural index-
ing: efficient 3-d object recognition. IEEE
Trans. PAMI, 14(2):125-145, 1992.

D.W. Thompson and J.L.. Mundy. Three-
dimensional model matching from an un-
constrained viewpoint. In Proceedings Int.

Conf. Rob. Aut., pages 208-220, 1987.

