
Scalable Nearest Neighbor Algorithms
for High Dimensional Data

Marius Muja,Member, IEEE and David G. Lowe,Member, IEEE

Abstract—For many computer vision and machine learning problems, large training sets are key for good performance. However, the

most computationally expensive part of many computer vision and machine learning algorithms consists of finding nearest neighbor
matches to high dimensional vectors that represent the training data. We propose new algorithms for approximate nearest neighbor

matching and evaluate and compare them with previous algorithms. For matching high dimensional features, we find two algorithms to
be the most efficient: the randomized k-d forest and a new algorithm proposed in this paper, the priority search k-means tree. We also

propose a new algorithm for matching binary features by searching multiple hierarchical clustering trees and show it outperforms
methods typically used in the literature. We show that the optimal nearest neighbor algorithm and its parameters depend on the data

set characteristics and describe an automated configuration procedure for finding the best algorithm to search a particular data set. In
order to scale to very large data sets that would otherwise not fit in the memory of a single machine, we propose a distributed nearest

neighbor matching framework that can be used with any of the algorithms described in the paper. All this research has been released
as an open source library called fast library for approximate nearest neighbors (FLANN), which has been incorporated into OpenCV

and is now one of the most popular libraries for nearest neighbor matching.

Index Terms—Nearest neighbor search, big data, approximate search, algorithm configuration

Ç

1 INTRODUCTION

THE most computationally expensive part of many com-
puter vision algorithms consists of searching for the

most similar matches to high-dimensional vectors, also
referred to as nearest neighbor matching. Having an effi-
cient algorithm for performing fast nearest neighbor
matching in large data sets can bring speed improvements
of several orders of magnitude to many applications.
Examples of such problems include finding the best
matches for local image features in large data sets [1], [2]
clustering local features into visual words using the k-
means or similar algorithms [3], global image feature
matching for scene recognition [4], human pose estimation
[5], matching deformable shapes for object recognition [6]
or performing normalized cross-correlation (NCC) to com-
pare image patches in large data sets [7]. The nearest
neighbor search problem is also of major importance in
many other applications, including machine learning, doc-
ument retrieval, data compression, bio-informatics, and
data analysis.

It has been shown that using large training sets is key to
obtaining good real-life performance from many computer
vision methods [2], [4], [7]. Today the Internet is a vast
resource for such training data [8], but for large data sets

the performance of the algorithms employed quickly
becomes a key issue.

When working with high dimensional features, as with
most of those encountered in computer vision applications
(image patches, local descriptors, global image descriptors),
there is often no known nearest-neighbor search algorithm
that is exact and has acceptable performance. To obtain a
speed improvement, many practical applications are forced
to settle for an approximate search, in which not all the
neighbors returned are exact, meaning some are approxi-
mate but typically still close to the exact neighbors. In prac-
tice it is common for approximate nearest neighbor search
algorithms to provide more than 95 percent of the correct
neighbors and still be two or more orders of magnitude
faster than linear search. In many cases the nearest neighbor
search is just a part of a larger application containing other
approximations and there is very little loss in performance
from using approximate rather than exact neighbors.

In this paper we evaluate the most promising nearest-
neighbor search algorithms in the literature, propose new
algorithms and improvements to existing ones, present a
method for performing automatic algorithm selection and
parameter optimization, and discuss the problem of scal-
ing to very large data sets using compute clusters. We
have released all this work as an open source library
named fast library for approximate nearest neighbors
(FLANN).

1.1 Definitions and Notation
In this paper we are concerned with the problem of efficient
nearest neighbor search in metric spaces. The nearest neigh-
bor search in a metric space can be defined as follows: given
a set of points P ¼ fp1; p2; . . . ; png in a metric space M and a
query point q 2 M, find the element NNðq; P Þ 2 P that is the

$ M. Muja is with BitLit Media Inc, Vancouver, BC, Canada.
E-mail: mariusm@cs.ubc.ca.

$ D.G. Lowe is with the Computer Science Department, University of
British Columbia (UBC), 2366 Main Mall, Vancouver, BC V6T 1Z4,
Canada. E-mail: lowe@cs.ubc.ca.

Manuscript received 26 Aug. 2013; revised 14 Feb. 2014; accepted 1 Apr.
2014. Date of publication 30 Apr. 2014; date of current version 9 Oct. 2014.
Recommended for acceptance by T. Tuytelaars.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TPAMI.2014.2321376

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 36, NO. 11, NOVEMBER 2014 2227

0162-8828 ! 2014 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution
requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



closest to qwith respect to a metric distance d : M !M ! R:

NNðq; P Þ ¼ argminx2P dðq; xÞ:

The nearest neighbor problem consists of finding a method
to pre-process the set P such that the operation NNðq; P Þ
can be performed efficiently.

We are often interested in finding not just the first clos-
est neighbor, but several closest neighbors. In this case, the
search can be performed in several ways, depending on
the number of neighbors returned and their distance to the
query point: K-nearest neighbor (KNN) search where the goal
is to find the closest K points from the query point and
radius nearest neighbor search (RNN), where the goal is to
find all the points located closer than some distance R from
the query point.

We define the K-nearest neighbor search more formally in
the following manner:

KNNðq; P;KÞ ¼ A;

where A is a set that satisfies the following conditions:

jAj ¼ K;A % P

8x 2 A; y 2 P &A; dðq; xÞ ' dðq; yÞ:

The K-nearest neighbor search has the property that it
will always return exactly K neighbors (if there are at least
K points in P ).

The radius nearest neighbor search can be defined as follows:

RNNðq; P;RÞ ¼ fp 2 P; dðq; pÞ < Rg:

Depending on how the value R is chosen, the radius
search can return any number of points between zero and
the whole data set. In practice, passing a large value R to
radius search and having the search return a large number
of points is often very inefficient. Radius K-nearest neighbor
(RKNN) search, is a combination of K-nearest neighbor
search and radius search, where a limit can be placed on the
number of points that the radius search should return:

RKNNðq; P;K;RÞ ¼ A;

such that

jAj ' K;A % P

8x 2 A; y 2 P &A; dðq; xÞ < R and dðq; xÞ ' dðq; yÞ:

2 BACKGROUND

Nearest-neighbor search is a fundamental part of many
computer vision algorithms and of significant importance
in many other fields, so it has been widely studied. This sec-
tion presents a review of previous work in this area.

2.1 Nearest Neighbor Matching Algorithms
We review the most widely used nearest neighbor techni-
ques, classified in three categories: partitioning trees, hash-
ing techniques and neighboring graph techniques.

2.1.1 Partitioning Trees

The kd-tree [9], [10] is one of the best known nearest neigh-
bor algorithms. While very effective in low dimensionality
spaces, its performance quickly decreases for high dimen-
sional data.

Arya et al. [11] propose a variation of the k-d tree to
be used for approximate search by considering
ð1þ "Þ-approximate nearest neighbors, points for which
distðp; qÞ ' ð1þ "Þdistðp); qÞ where p) is the true nearest
neighbor. The authors also propose the use of a priority
queue to speed up the search. This method of approxi-
mating the nearest neighbor search is also referred to as
“error bound” approximate search.

Another way of approximating the nearest neighbor
search is by limiting the time spent during the search, or
“time bound” approximate search. This method is proposed
in [12] where the k-d tree search is stopped early after exam-
ining a fixed number of leaf nodes. In practice the time-con-
strained approximation criterion has been found to give
better results than the error-constrained approximate search.

Multiple randomized k-d trees are proposed in [13] as a
means to speed up approximate nearest-neighbor search.
In [14] we perform a wide range of comparisons showing
that the multiple randomized trees are one of the most
effective methods for matching high dimensional data.

Variations of the k-d tree using non-axis-aligned parti-
tioning hyperplanes have been proposed: the PCA-tree [15],
the RP-tree [16], and the trinary projection tree [17]. We
have not found such algorithms to be more efficient than a
randomized k-d tree decomposition, as the overhead of
evaluating multiple dimensions during search outweighed
the benefit of the better space decomposition.

Another class of partitioning trees decompose the space
using various clustering algorithms instead of using hyper-
planes as in the case of the k-d tree and its variants. Example
of such decompositions include the hierarchical k-means
tree [18], the GNAT [19], the anchors hierarchy [20], the vp-
tree [21], the cover tree [22] and the spill-tree [23]. Nister and
Stewenius [24] propose the vocabulary tree, which is
searched by accessing a single leaf of a hierarchical k-means
tree. Leibe et al. [25] propose a ball-tree data structure con-
structed using a mixed partitional-agglomerative clustering
algorithm. Schindler et al. [26] propose a new way of search-
ing the hierarchical k-means tree. Philbin et al. [2] conducted
experiments showing that an approximate flat vocabulary
outperforms a vocabulary tree in a recognition task. In this
paper we describe a modified k-means tree algorithm that
we have found to give the best results for some data sets,
while randomized k-d trees are best for others.

J!egou et al. [27] propose the product quantization
approach in which they decompose the space into low
dimensional subspaces and represent the data sets points
by compact codes computed as quantization indices in these
subspaces. The compact codes are efficiently compared to
the query points using an asymmetric approximate dis-
tance. Babenko and Lempitsky [28] propose the inverted
multi-index, obtained by replacing the standard quantiza-
tion in an inverted index with product quantization, obtain-
ing a denser subdivision of the search space. Both these
methods are shown to be efficient at searching large data

2228 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 36, NO. 11, NOVEMBER 2014



sets and they should be considered for further evaluation
and possible incorporation into FLANN.

2.1.2 Hashing Based Nearest Neighbor Techniques

Perhaps the best known hashing based nearest neighbor
technique is locality sensitive hashing (LSH) [29], which
uses a large number of hash functions with the property
that the hashes of elements that are close to each other are
also likely to be close. Variants of LSH such as multi-probe
LSH [30] improves the high storage costs by reducing the
number of hash tables, and LSH Forest [31] adapts better to
the data without requiring hand tuning of parameters.

The performance of hashing methods is highly depen-
dent on the quality of the hashing functions they use and a
large body of research has been targeted at improving hash-
ing methods by using data-dependent hashing functions
computed using various learning techniques: parameter
sensitive hashing [5], spectral hashing [32], randomized
LSH hashing from learned metrics [33], kernelized LSH
[34], learnt binary embeddings [35], shift-invariant kernel
hashing [36], semi-supervised hashing [37], optimized ker-
nel hashing [38] and complementary hashing [39].

The different LSH algorithms provide theoretical guaran-
tees on the search quality and have been successfully used in
a number of projects, however our experiments reported in
Section 4, show that in practice they are usually outperformed
by algorithms using space partitioning structures such as the
randomized k-d trees and the priority search k-means tree.

2.1.3 Nearest Neighbor Graph Techniques

Nearest neighbor graphmethodsbuild agraph structure inwhich
points are vertices and edges connect each point to its nearest
neighbors. The query points are used to explore this graph using
various strategies in order to get closer to their nearest neighbors.
In [40] the authors select a few well separated elements in the
graph as “seeds” and start the graph exploration from those seeds
in a best-first fashion. Similarly, the authors of [41] perform a best-
first exploration of the k-NN graph, but use a hill-climbing strat-
egy and pick the starting points at random. They present recent
experiments that compare favourably to randomizedKD-trees, so
the proposed algorithm should be considered for future evalua-
tion andpossible incorporation intoFLANN.

The nearest neighbor graph methods suffer from a quite
expensive construction of the k-NN graph structure. Wang
et al. [42] improve the construction cost by building an
approximate nearest neighbor graph.

2.2 Automatic Configuration of NN Algorithms
There have been hundreds of papers published on nearest
neighbor search algorithms, but there has been little system-
atic comparison to guide the choice among algorithms and
set their internal parameters. In practice, and in most of the
nearest neighbor literature, setting the algorithm parame-
ters is a manual process carried out by using various heuris-
tics and rarely make use of more systematic approaches.

Bawa et al. [31] show that the performance of the stan-
dard LSH algorithm is critically dependent on the length of
the hashing key and propose the LSH Forest, a self-tuning
algorithm that eliminates this data dependent parameter.

In a previous paper [14] we have proposed an auto-
matic nearest neighbor algorithm configuration method
by combining grid search with a finer grained Nelder-
Mead downhill simplex optimization process [43].

There has been extensive research on algorithm configura-
tion methods [44], [45], however we are not aware of papers
that apply such techniques to finding optimum parameters
for nearest neighbor algorithms. Bergstra and Bengio [46]
show that, except for small parameter spaces, random
search can be a more efficient strategy for parameter optimi-
zation than grid search.

3 FAST APPROXIMATE NN MATCHING

Exact search is too costly for many applications, so this has
generated interest in approximate nearest-neighbor search
algorithms which return non-optimal neighbors in some
cases, but can be orders ofmagnitude faster than exact search.

After evaluating many different algorithms for approxi-
mate nearest neighbor search on data sets with a wide range
of dimensionality [14], [47], we have found that one of
two algorithms gave the best performance: the priority search
k-means tree or the multiple randomized k-d trees. These algo-
rithms are described in the remainder of this section.

3.1 The Randomized k-d Tree Algorithm
The randomized k-d tree algorithm [13], is an approximate
nearest neighbor search algorithm that builds multiple ran-
domized k-d trees which are searched in parallel. The trees
are built in a similar manner to the classic k-d tree [9], [10],
with the difference that where the classic kd-tree algorithm
splits data on the dimension with the highest variance, for
the randomized k-d trees the split dimension is chosen
randomly from the top ND dimensions with the highest
variance. We used the fixed value ND ¼ 5 in our implemen-
tation, as this performs well across all our data sets and
does not benefit significantly from further tuning.

When searching the randomized k-d forest, a single pri-
ority queue is maintained across all the randomized trees.
The priority queue is ordered by increasing distance to the
decision boundary of each branch in the queue, so the
search will explore first the closest leaves from all the trees.
Once a data point has been examined (compared to the
query point) inside a tree, it is marked in order to not be re-
examined in another tree. The degree of approximation is
determined by the maximum number of leaves to be visited
(across all trees), returning the best nearest neighbor candi-
dates found up to that point.

Fig. 1 shows the value of searching in many randomized
kd-trees at the same time. It can be seen that the perfor-
mance improves with the number of randomized trees up
to a certain point (about 20 random trees in this case) and
that increasing the number of random trees further leads to
static or decreasing performance. The memory overhead of
using multiple random trees increases linearly with the
number of trees, so at some point the speedup may not jus-
tify the additional memory used.

Fig. 2 gives an intuition behind why exploring multiple
randomized kd-tree improves the search performance.
When the query point is close to one of the splitting
hyperplanes, its nearest neighbor lies with almost equal

MUJA AND LOWE: SCALABLE NEAREST NEIGHBOR ALGORITHMS FOR HIGH DIMENSIONAL DATA 2229



probability on either side of the hyperplane and if it lies on
the opposite side of the splitting hyperplane, further explo-
ration of the tree is required before the cell containing it
will be visited. Using multiple random decompositions
increases the probability that in one of them the query point
and its nearest neighbor will be in the same cell.

3.2 The Priority Search K-Means Tree Algorithm
We have found the randomized k-d forest to be very
effective in many situations, however on other data sets a
different algorithm, the priority search k-means tree, has been
more effective at finding approximate nearest neighbors,
especially when a high precision is required. The priority
search k-means tree tries to better exploit the natural struc-
ture existing in the data, by clustering the data points using
the full distance across all dimensions, in contrast to the
(randomized) k-d tree algorithm which only partitions the
data based on one dimension at a time.

Nearest-neighbor algorithms that use hierarchical parti-
tioning schemes based on clustering the data points have
been previously proposed in the literature [18], [19], [24].
These algorithms differ in the way they construct the parti-
tioning tree (whether using k-means, agglomerative or
some other form of clustering) and especially in the strate-
gies used for exploring the hierarchical tree. We have devel-
oped an improved version that explores the k-means tree
using a best-bin-first strategy, by analogy to what has been
found to significantly improve the performance of the
approximate kd-tree searches.

3.2.1 Algorithm Description

The priority search k-means tree is constructed by partition-
ing the data points at each level into K distinct regions
using k-means clustering, and then applying the same
method recursively to the points in each region. The recur-
sion is stopped when the number of points in a region is
smaller thanK (see Algorithm 1).

Fig. 2. Example of randomized kd-trees. The nearest neighbor is across
a decision boundary from the query point in the first decomposition, how-
ever is in the same cell in the second decomposition.

Fig. 1. Speedup obtained by using multiple randomized kd-trees (100K
SIFT features data set).

2230 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 36, NO. 11, NOVEMBER 2014



The tree is searched by initially traversing the tree
from the root to the closest leaf, following at each inner
node the branch with the closest cluster centre to the
query point, and adding all unexplored branches along
the path to a priority queue (see Algorithm 2). The prior-
ity queue is sorted in increasing distance from the query
point to the boundary of the branch being added to the
queue. After the initial tree traversal, the algorithm
resumes traversing the tree, always starting with the top
branch in the queue.

The number of clusters K to use when partitioning the
data at each node is a parameter of the algorithm, called the
branching factor and choosing K is important for obtaining

good search performance. In Section 3.4 we propose an
algorithm for finding the optimum algorithm parameters,
including the optimum branching factor. Fig. 3 contains a
visualisation of several hierarchical k-means decomposi-
tions with different branching factors.

Another parameter of the priority search k-means tree
is Imax, the maximum number of iterations to perform in the
k-means clustering loop. Performing fewer iterations can
substantially reduce the tree build time and results in a
slightly less than optimal clustering (if we consider the sum
of squared errors from the points to the cluster centres as
the measure of optimality). However, we have observed
that even when using a small number of iterations, the near-
est neighbor search performance is similar to that of the tree
constructed by running the clustering until convergence, as
illustrated by Fig. 4. It can be seen that using as few as seven
iterations we get more than 90 percent of the nearest-neigh-
bor performance of the tree constructed using full conver-
gence, but requiring less than 10 percent of the build time.

The algorithm to use when picking the initial centres in
the k-means clustering can be controlled by the Calg parame-
ter. In our experiments (and in the FLANN library) we have

Fig. 3. Projections of priority search k-means trees constructed using different branching factors: 4, 32, 128. The projections are constructed using
the same technique as in [26], gray values indicating the ratio between the distances to the nearest and the second-nearest cluster centre at each
tree level, so that the darkest values (ratio ! 1) fall near the boundaries between k-means regions.

Fig. 4. The influence that the number of k-means iterations has on the
search speed of the k-means tree. Figure shows the relative search time
compared to the case of using full convergence.

MUJA AND LOWE: SCALABLE NEAREST NEIGHBOR ALGORITHMS FOR HIGH DIMENSIONAL DATA 2231



used the following algorithms: random selection, Gonzales’
algorithm (selecting the centres to be spaced apart from
each other) and KMeans++ algorithm [48]. We have found
that the initial cluster selection made only a small difference
in terms of the overall search efficiency in most cases and
that the random initial cluster selection is usually a good
choice for the priority search k-means tree.

3.2.2 Analysis

When analysing the complexity of the priority search k-
means tree, we consider the tree construction time, search
time and the memory requirements for storing the tree.

Construction time complexity. During the construction of
the k-means tree, a k-means clustering operation has to be
performed for each inner node. Considering a node vwith nv

associated data points, and assuming amaximumnumber of
iterations I in the k-means clustering loop, the complexity of
the clustering operation is OðnvdKIÞ, where d represents the
data dimensionality. Taking into account all the inner nodes
on a level, we have

P
nv ¼ n, so the complexity of construct-

ing a level in the tree is OðndKIÞ. Assuming a balanced tree,
the height of the tree will be ðlog n=log KÞ, resulting in a total
tree construction cost ofOðndKIðlog n=log KÞÞ.

Search time complexity. In case of the time constrained approx-
imate nearest neighbor search, the algorithm stops after exam-
ining L data points. Considering a complete priority search k-
means tree with branching factor K, the number of top down
tree traversals required is L=K (each leaf node contains K
points in a complete k-means tree). During each top-down tra-
versal, the algorithm needs to check Oðlog n=log KÞ inner
nodes and one leaf node.

For each internal node, the algorithm has to find the
branch closest to the query point, so it needs to compute the
distances to all the cluster centres of the child nodes, an
OðKdÞ operation. The unexplored branches are added to a
priority queue, which can be accomplished in OðKÞ amor-
tized cost when using binomial heaps. For the leaf node the
distance between the query and all the points in the leaf
needs to be computed which takes OðKdÞ time. In summary
the overall search cost is OðLdðlog n=log KÞÞ.

3.3 The Hierarchical Clustering Tree
Matching binary features is of increasing interest in the com-
puter vision community with many binary visual descriptors
being recently proposed: BRIEF [49], ORB [50], BRISK [51].
Many algorithms suitable for matching vector based fea-
tures, such as the randomized kd-tree and priority search k-
means tree, are either not efficient or not suitable for match-
ing binary features (for example, the priority search k-means
tree requires the points to be in a vector space where their
dimensions can be independently averaged).

Binary descriptors are typically compared using the
Hamming distance, which for binary data can be computed
as a bitwise XOR operation followed by a bit count on the
result (very efficient on computers with hardware support
for counting the number of bits set in a word1).

This section briefly presents a new data structure and
algorithm, called the hierarchical clustering tree, which we

found to be very effective at matching binary features. For a
more detailed description of this algorithm the reader is
encouraged to consult [47] and [52].

The hierarchical clustering tree performs a decomposi-
tion of the search space by recursively clustering the input
data set using random data points as the cluster centers of
the non-leaf nodes (see Algorithm 3).

In contrast to the priority search k-means tree presented
above, forwhich usingmore than one tree did not bring signifi-
cant improvements, we have found that building multiple
hierarchical clustering trees and searching them in parallel
using a common priority queue (the same approach that has
been found toworkwell for randomizedkd-trees [13]) resulted
in significant improvements in the search performance.

3.4 Automatic Selection of the Optimal Algorithm
Our experiments have revealed that the optimal algorithm
for approximate nearest neighbor search is highly depen-
dent on several factors such as the data dimensionality, size
and structure of the data set (whether there is any correla-
tion between the features in the data set) and the desired
search precision. Additionally, each algorithm has a set of
parameters that have significant influence on the search per-
formance (e.g., number of randomized trees, branching fac-
tor, number of k-means iterations).

As we already mention in Section 2.2, the optimum
parameters for a nearest neighbor algorithm are typically
chosen manually, using various heuristics. In this section
we propose a method for automatic selection of the best
nearest neighbor algorithm to use for a particular data set
and for choosing its optimum parameters.

By considering the nearest neighbor algorithm itself as a
parameter of a generic nearest neighbor search routineA, the
problem is reduced to determining the parameters u 2 Q
that give the best solution, where Q is also known as the
parameter configuration space. This can be formulated as an
optimization problem in the parameter configuration space:

min
u2Q

cðuÞ

with c : Q ! R being a cost function indicating how well the
search algorithm A, configured with the parameters u, per-
forms on the given input data.1. The POPCNT instruction for modern x86_64 architectures.

2232 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 36, NO. 11, NOVEMBER 2014



We define the cost as a combination of the search time,
tree build time, and tree memory overhead. Depending on
the application, each of these three factors can have a differ-
ent importance: in some cases we don’t care much about the
tree build time (if we will build the tree only once and use it
for a large number of queries), while in other cases both the
tree build time and search time must be small (if the tree is
built on-line and searched a small number of times). There
are also situations when we wish to limit the memory over-
head if we work in memory constrained environments. We
define the cost function as follows:

cðuÞ ¼ sðuÞ þ wbbðuÞ
minu2QðsðuÞ þ wbbðuÞÞ

þ wmmðuÞ; (1)

where sðuÞ, bðuÞ and mðuÞ represent the search time, tree
build time and memory overhead for the tree(s) constructed
and queried with parameters u. The memory overhead is
measured as the ratio of the memory used by the tree(s) and
the memory used by the data:mðuÞ ¼ mtðuÞ=md.

The weights wb and wm are used to control the relative
importance of the build time and memory overhead in
the overall cost. The build-time weight (wb) controls the
importance of the tree build time relative to the search
time. Search time is defined as the time to search for the
same number of points as there are in the tree. The time
overhead is computed relative to the optimum time cost
minu2QðsðuÞ þ wbbðuÞÞ, which is defined as the optimal
search and build time if memory usage were not a factor.

We perform the above optimization in two steps: a global
exploration of the parameter space using grid search, fol-
lowed by a local optimization starting with the best solution
found in the first step. The grid search is a feasible and effec-
tive approach in the first step because the number of param-
eters is relatively low. In the second step we use the Nelder-
Mead downhill simplex method [43] to further locally
explore the parameter space and fine-tune the best solution
obtained in the first step. Although this does not guarantee
a global minimum, our experiments have shown that the
parameter values obtained are close to optimum in practice.

We use random sub-sampling cross-validation to gener-
ate the data and the query points when we run the optimiza-
tion. In FLANN the optimization can be run on the full data
set for the most accurate results or using just a fraction of the
data set to have a faster auto-tuning process. The parameter
selection needs to only be performed once for each type of
data set, and the optimum parameter values can be saved
and applied to all future data sets of the same type.

4 EXPERIMENTS

For the experiments presented in this section we used a
selection of data sets with a wide range of sizes and data
dimensionality. Among the data sets used are the Winder/
Brown patch data set [53], data sets of randomly sampled
data of different dimensionality, data sets of SIFT features
of different sizes obtained by sampling from the CD cover
data set of [24] as well as a data set of SIFT features
extracted from the overlapping images forming panoramas.

We measure the accuracy of an approximate nearest
neighbor algorithm using the search precision (or just preci-
sion), defined as the fraction of the neighbors returned by

the approximate algorithm which are exact nearest neigh-
bors. We measure the search performance of an algorithm
as the time required to perform a linear search divided by
the time required to perform the approximate search and
we refer to it as the search speedup or just speedup.

4.1 Fast Approximate Nearest Neighbor Search
We present several experiments we have conducted in
order to analyse the performance of the two algorithms
described in Section 3.

4.1.1 Data Dimensionality

Data dimensionality is one of the factors that has a great
impact on the nearest neighbor matching performance. The
top of Fig. 5 shows how the search performance degrades as
the dimensionality increases in the case of random vectors.
The data sets in this case each contain 105 vectors whose val-
ues are randomly sampled from the same uniform distribu-
tion. These random data sets are one of the most difficult
problems for nearest neighbor search, as no value gives any
predictive information about any other value.

Fig. 5. Search efficiency for data of varying dimensionality. We experi-
mented on both random vectors and image patches, with data sets of
size 100K. The random vectors (top figure) represent the hardest case
in which dimensions have no correlations, while most real-world prob-
lems behave more like the image patches (bottom figure).

MUJA AND LOWE: SCALABLE NEAREST NEIGHBOR ALGORITHMS FOR HIGH DIMENSIONAL DATA 2233



As can be seen in the top part of Fig. 5, the nearest-
neighbor searches have a low efficiency for higher
dimensional data (for 68 percent precision the approxi-
mate search speed is no better than linear search when
the number of dimensions is greater than 800).

The performance is markedly different for many real-
world data sets. The bottom part of Fig. 5 shows the
speedup as a function of dimensionality for the Winder/
Brown image patches2 resampled to achieve varying
dimensionality. In this case however, the speedup does not
decrease with dimensionality, it’s actually increasing for
some precisions. This can be explained by the fact that there
exists a strong correlation between the dimensions, so that
even for 64! 64 patches (4,096 dimensions), the similarity
between only a few dimensions provides strong evidence
for overall patch similarity.

Fig. 6 shows four examples of queries on the Trevi data
set of patches for different patch sizes.

4.1.2 Search Precision

We use several data sets of different sizes for the experi-
ments in Fig. 7. We construct 100K and 1 million SIFT
feature data sets by randomly sampling a data set of over
5 million SIFT features extracted from a collection of CD
cover images [24].3 We also use the 31 million SIFT fea-
ture data set from the same source.

The desired search precision determines the degree of
speedup that can be obtained with any approximate algo-
rithm. Looking at Fig. 7 (the sift1M data set) we see that if
we are willing to accept a precision as low as 60 percent,
meaning that 40 percent of the neighbors returned are not
the exact nearest neighbors, but just approximations, we
can achieve a speedup of three orders of magnitude over
linear search (using the multiple randomized kd-trees).
However, if we require a precision greater than 90 percent
the speedup is smaller, less than 2 orders of magnitude
(using the priority search k-means tree).

We compare the two algorithms we found to be the best
at finding fast approximate nearest neighbors (the multiple
randomized kd-trees and the priority search k-means tree)
with existing approaches, the ANN [11] and LSH algo-
rithms [29]4 on the first data set of 100,000 SIFT features.

Since the LSH implementation (the E2LSH package) solves
the R-near neighbor problem (finds the neighbors within a
radius R of the query point, not the nearest neighbors), to
find the nearest neighbors we have used the approach sug-
gested in the E2LSH’s user manual: we compute the R-near
neighbors for increasing values of R. The parameters for the
LSH algorithm were chosen using the parameter estimation
tool included in the E2LSH package. For each case we have
computed the precision achieved as the percentage of the
query points for which the nearest neighbors were correctly
found. Fig. 8 shows that the priority search k-means algo-
rithm outperforms both the ANN and LSH algorithms by
about an order of magnitude. The results for ANN are con-
sistent with the experiment in Fig. 1, as ANN uses only a
single kd-tree and does not benefit from the speedup due to
using multiple randomized trees.

Fig. 9 compares the performance of nearest neighbor
matching when the data set contains true matches for
each feature in the test set to the case when it contains
false matches. A true match is a match in which the
query and the nearest neighbor point represent the same
entity, for example, in case of SIFT features, they repre-
sent image patches of the same object. In this experiment
we used two 100K SIFT features data sets, one that has
ground truth determined from global image matching
and one that is randomly sampled from a 5 million SIFT
features data set and it contains only false matches for
each feature in the test set. Our experiments showed that
the randomized kd-trees have a significantly better per-
formance for true matches, when the query features are

Fig. 6. Example of nearest neighbor queries with different patch sizes. The Trevi Fountain patch data set was queried using different patch sizes. The
rows are arranged in decreasing order by patch size. The query patch is on the left of each panel, while the following five patches are the nearest
neighbors from a set of 100,000 patches. Incorrect matches with respect to ground truth are shown with an X.

Fig. 7. Search speedup for different data set sizes.

2. http://phototour.cs.washington.edu/patches/default.htm.
3. http://www.vis.uky.edu/stewe/ukbench/data/.
4. We have used the publicly available implementations of ANN

(http://www.cs.umd.edu/~mount/ANN/) and LSH (http://www.
mit.edu/~andoni/LSH/).

2234 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 36, NO. 11, NOVEMBER 2014



likely to be significantly closer than other neighbors.
Similar results were reported in [54].

Fig. 10 shows the difference in performance between the
randomized kd-trees and the priority search k-means tree
for one of the Winder/Brown patches data set. In this case,
the randomized kd-trees algorithm clearly outperforms the
priority search k-means algorithm everywhere except for
precisions close to 100 percent. It appears that the kd-tree
works much better in cases when the intrinsic dimensional-
ity of the data is much lower than the actual dimensionality,
presumably because it can better exploit the correlations
among dimensions. However, Fig. 7 shows that the k-means
tree can perform better for other data sets (especially for
high precisions). This shows the importance of performing
algorithm selection on each data set.

4.1.3 Automatic Selection of Optimal Algorithm

In Table 1, we show the results from running the parameter
selection procedure described in Section 3.4 on a data set
containing 100K randomly sampled SIFT features. We used
two different search precisions (60 and 90 percent) and sev-
eral combinations of the tradeoff factors wb and wm. For the
build time weight, wb, we used three different possible

values: 0 representing the case where we don’t care about
the tree build time, 1 for the case where the tree build time
and search time have the same importance and 0.01 repre-
senting the case where we care mainly about the search
time but we also want to avoid a large build time. Similarly,
the memory weight was chosen to be 0 for the case where
the memory usage is not a concern, 1 representing the case
where the memory use is the dominant concern and 1 as a
middle ground between the two cases.

4.2 Binary Features
This section evaluates the performance of the hierarchical
clustering tree described in Section 3.3.

We use the Winder/Brown patches data set [53] to com-
pare the nearest neighbor search performance of the hierar-
chical clustering tree to that of other well known nearest
neighbor search algorithms. For the comparison we use a
combination of both vector features such as SIFT, SURF,
image patches and binary features such as BRIEF and ORB.
The image patches have been downscaled to 16! 16 pixels
and are matched using normalized cross correlation. Fig. 11
shows the nearest neighbor search times for the different
feature types. Each point on the graph is computed using
the best performing algorithm for that particular feature
type (randomized kd-trees or priority search k-means tree
for SIFT, SURF, image patches and the hierarchical cluster-
ing algorithm for BRIEF and ORB). In each case the opti-
mum choice of parameters that maximizes the speedup for
a given precision is used.

In Fig. 12 we compare the hierarchical clustering tree
with a multi-probe locality sensitive hashing implementa-
tion [30]. For the comparison we used data sets of BRIEF
and ORB features extracted from the recognition benchmark
images data set of [24], containing close to 5 million fea-
tures. It can be seen that the hierarchical clustering index
outperforms the LSH implementation for this data set. The
LSH implementation also requires significantly more mem-
ory compared to the hierarchical clustering trees for when
high precision is required, as it needs to allocate a large
number of hash tables to achieve the high search precision.
In the experiment of Fig. 12, the multi-probe LSH required
six times more memory than the hierarchical search for
search precisions above 90 percent.

Fig. 9. Search speedup when the query points don’t have “true” matches
in the data set versus the case when they have.

Fig. 10. Search speedup for the Trevi Fountain patches data set.
Fig. 8. Comparison of the search efficiency for several nearest neighbor
algorithms.

MUJA AND LOWE: SCALABLE NEAREST NEIGHBOR ALGORITHMS FOR HIGH DIMENSIONAL DATA 2235



5 SCALING NEAREST NEIGHBOR SEARCH

Many papers have shown that using simple non-paramet-
ric methods in conjunction with large scale data sets can
lead to very good recognition performance [4], [7], [55],
[56]. Scaling to such large data sets is a difficult task, one
of the main challenges being the impossibility of loading
the data into the main memory of a single machine. For
example, the size of the raw tiny images data set of [7] is
about 240 GB, which is greater than what can be found on
most computers at present. Fitting the data in memory is
even more problematic for data sets of the size of those
used in [4], [8], [55].

When dealing with such large amounts of data, possible
solutions include performing some dimensionality reduc-
tion on the data, keeping the data on the disk and loading
only parts of it in the main memory or distributing the data
on several computers and using a distributed nearest neigh-
bor search algorithm.

Dimensionality reduction has been used in the literature
with good results ([7], [27], [28], [32], [57]), however even
with dimensionality reduction it can be challenging to fit

the data in the memory of a single machine for very large
data sets. Storing the data on the disk involves significant
performance penalties due to the performance gap between
memory and disk access times. In FLANN we used the
approach of performing distributed nearest neighbor search
across multiple machines.

5.1 Searching on a Compute Cluster
In order to scale to very large data sets, we use the approach
of distributing the data to multiple machines in a compute
cluster and perform the nearest neighbor search using all
the machines in parallel. The data is distributed equally
between the machines, such that for a cluster of N machines
each of them will only have to index and search 1=N of the
whole data set (although the ratios can be changed to have
more data on some machines than others). The final result
of the nearest neighbor search is obtained by merging the
partial results from all the machines in the cluster once they
have completed the search.

In order to distribute the nearest neighbor matching on a
compute cluster we implemented a Map-Reduce like algo-
rithmusing themessage passing interface (MPI) specification.

Algorithm 4 describes the procedure for building a dis-
tributed nearest neighbor matching index. Each process in
the cluster executes in parallel and reads from a distributed
filesystem a fraction of the data set. All processes build the
nearest neighbor search index in parallel using their respec-
tive data set fractions.

TABLE 1
The Algorithms Chosen by Our Automatic Algorithm and Parameter Selection Procedure (sift100K Data Set)

The “Algorithm Configuration” column shows the algorithm chosen and its optimum parameters (number of random trees in case of the kd-tree;
branching factor and number of iterations for the k-means tree), the “Dist Error” column shows the mean distance error compared to the exact near-
est neighbors, the “Search Speedup” shows the search speedup compared to linear search, the “Memory Used” shows the memory used by the
tree(s) as a fraction of the memory used by the data set and the “Build Time” column shows the tree build time as a fraction of the linear search time
for the test set.

Fig. 11. Absolute search time for different popular feature types (both
binary and vector).

2236 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 36, NO. 11, NOVEMBER 2014



In order to search the distributed index the query is sent
from a client to one of the computers in the MPI cluster,
which we call the master server (see Fig. 13). By convention
the master server is the process with rank 0 in the MPI clus-
ter, however any process in the MPI cluster can play the
role of master server.

The master server broadcasts the query to all of the pro-
cesses in the cluster and then each process can run the near-
est neighbor matching in parallel on its own fraction of the
data. When the search is complete an MPI reduce operation
is used to merge the results back to the master process and
the final result is returned to the client.

The master server is not a bottleneck when merging the
results. The MPI reduce operation is also distributed, as the
partial results are merged two by two in a hierarchical fash-
ion from the servers in the cluster to the master server.
Additionally, the merge operation is very efficient, since the
distances between the query and the neighbors don’t have
to be re-computed as they are returned by the nearest neigh-
bor search operations on each server.

When distributing a large data set for the purpose of near-
est neighbor search we chose to partition the data into multi-
ple disjoint subsets and construct independent indexes for
each of those subsets. During search the query is broadcast
to all the indexes and each of them performs the nearest
neighbor search within its associated data. In a different
approach, Aly et al. [58] introduce a distributed k-d tree

implementation where they place a root k-d tree on top of all
the other trees (leaf trees) with the role of selecting a subset
of trees to be searched and only send the query to those trees.
They show the distributed k-d tree has higher throughput
compared to using independent trees, due to the fact that
only a portion of the trees need to be searched by each query.

The partitioning of the data set into independent subsets,
as described above and implemented in FLANN, has the
advantage that it doesn’t depend on the type of index used
(randomized kd-trees, priority search k-means tree, hierar-
chical clustering, LSH) and can be applied to any current or
future nearest neighbor algorithm in FLANN. In the distrib-
uted k-d tree implementation of [58] the search does not
backtrack in the root node, so it is possible that subsets of
the data containing near points are not searched at all if the
root k-d tree doesn’t select the corresponding leaf k-d trees
at the beginning.

5.2 Evaluation of Distributed Search
In this section we present several experiments that demon-
strate the effectiveness of the distributed nearest neighbor
matching framework in FLANN. For these experiments we
have used the 80 million patch data set of [7].

In an MPI distributed system it’s possible to run multi-
ple parallel processes on the same machine, the recom-
mended approach is to run as many processes as CPU
cores on the machine. Fig. 14 presents the results of an
experiment in which we run multiple MPI processes on a
single machine with eight CPU cores. It can be seen that the
overall performance improves when increasing the num-
ber of processes from 1 to 4, however there is a decrease in
performance when moving from four to eight parallel pro-
cesses. This can be explained by the fact that increasing the
parallelism on the same machine also increases the number
of requests to the main memory (since all processes share
the same main memory), and at some point the bottleneck
moves from the CPU to the memory. Increasing the paral-
lelism past this point results in decreased performance.
Fig. 14 also shows the direct search performance obtained
by using FLANN directly without the MPI layer. As
expected, the direct search performance is identical to the
performance obtained when using the MPI layer with a

Fig. 12. Comparison between the hierarchical clustering index and LSH
for the Nister/Stewenius recognition benchmark images data set of
about 5 million features.

Fig. 13. Scaling nearest neighbor search on a compute cluster using
message passing interface standard.

MUJA AND LOWE: SCALABLE NEAREST NEIGHBOR ALGORITHMS FOR HIGH DIMENSIONAL DATA 2237



single process, showing no significant overhead from the
MPI runtime. For this experiment and the one in Fig. 15 we
used a subset of only 8 million tiny images to be able to run
the experiment on a single machine.

Fig. 15 shows the performance obtained by using eight
parallel processes on one, two or three machines. Even
though the same number of parallel processes are used, it
can be seen that the performance increases when those pro-
cesses are distributed on more machines. This can also be
explained by the memory access overhead, since when
more machines are used, fewer processes are running on
each machine, requiring fewer memory accesses.

Fig. 16 shows the search speedup for the data set of 80
million tiny images of [7]. The algorithm used is the

radomized k-d tree forest as it was determined by the auto-
tuning procedure to be the most efficient in this case. It can
be seen that the search performance scales well with the data
set size and it benefits from using multiple parallel processes.

All the previous experiments have shown that distribut-
ing the nearest neighbor search to multiple machines results
in an overall increase in performance in addition to the
advantage of being able to use more memory. Ideally, when
distributing the search to N machines the speedup would
be N times higher, however in practice for approximate
nearest neighbor search the speedup is smaller due to the
fact that the search on each of the machines has sub-linear
complexity in the size of the input data set.

6 THE FLANN LIBRARY

The work presented in this paper has been made publicly
available as an open source library named Fast Library for
Approximate Nearest Neighbors5 [59].

FLANN is used in a large number of both research and
industry projects (e.g., [60], [61], [62], [63], [64]) and is widely
used in the computer vision community, in part due to its
inclusion in OpenCV [65], the popular open source computer
vision library. FLANNalso is used by other well known open
source projects, such as the point cloud library (PCL) and the
robot operating system (ROS) [63]. FLANN has been pack-
aged by most of the mainstream Linux distributions such as
Debian, Ubuntu, Fedora, Arch, Gentoo and their derivatives.

7 CONCLUSIONS

This paper addresses the problem of fast nearest neighbor
search in high dimensional spaces, a core problem in many
computer vision and machine learning algorithms and
which is often the most computationally expensive part of
these algorithms. We present and compare the algorithms
we have found to work best at fast approximate search in
high dimensional spaces: the randomized k-d trees and a
newly introduced algorithm, the priority search k-means
tree. We introduce a new algorithm for fast approximate

Fig. 15. The advantage of distributing the search to multiple machines.
Even when using the same number of parallel processes, distributing
the computation to multiple machines still leads to an improvement in
performance due to less memory access overhead. “Direct search” cor-
responds to using FLANN without the MPI layer and is provided as a
comparison baseline.

Fig. 16. Matching 80 million tiny images directly using a compute cluster.Fig. 14. Distributing nearest neighbor search on a single multi-core
machine. When the degree of parallelism increases beyond a certain
point the memory access becomes a bottleneck. The “direct search” case
corresponds to using the FLANN library directly, without theMPI layer.

5. http://www.cs.ubc.ca/research/flann.

2238 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 36, NO. 11, NOVEMBER 2014



matching of binary features. We address the issues arising
when scaling to very large size data sets by proposing an
algorithm for distributed nearest neighbormatching on com-
pute clusters.

REFERENCES

[1] D. G. Lowe, “Distinctive image features from scale-invariant key-
points,” Int. J. Comput. Vis., vol. 60, no. 2, pp. 91–110, 2004.

[2] J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman, “Object
retrieval with large vocabularies and fast spatial matching,” in
Proc. IEEE Conf. Comput. Vis. Pattern Recog., 2007, pp. 1–8.

[3] J. Sivic and A. Zisserman, “Video Google: A text retrieval
approach to object matching in videos,” in Proc. IEEE 9th Int. Conf.
Comput. Vis., 2003, pp. 1470–1477.

[4] J. Hays and A. A. Efros, “Scene completion using millions of pho-
tographs,” ACM Trans. Graph., vol. 26, p. 4, 2007.

[5] G. Shakhnarovich, P. Viola, and T. Darrell, “Fast pose estimation
with parameter-sensitive hashing,” in Proc. IEEE 9th Int. Conf.
Comput. Vis., 2003, pp. 750–757.

[6] A. C. Berg, T. L. Berg, and J. Malik, “Shape matching and object
recognition using low distortion correspondences,” in Proc. IEEE
CS Conf. Comput. Vis. Pattern Recog., 2005, vol. 1, pp. 26–33.

[7] A. Torralba, R. Fergus, and W.T. Freeman, “80 million tiny
images: A large data set for nonparametric object and scene recog-
nition,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 30, no. 11,
pp. 1958–1970, Nov. 2008.

[8] J. Deng, W. Dong, R. Socher, L. J. Li, K. Li, and L. Fei Fei,
“ImageNet: A large-scale hierarchical image database,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recog., 2009, pp. 248–255.

[9] J. L. Bentley, “Multidimensional binary search trees used for asso-
ciative searching,” Commun. ACM, vol. 18, no. 9, pp. 509–517,
1975.

[10] J. H. Friedman, J. L. Bentley, and R. A. Finkel, “An algorithm for
finding best matches in logarithmic expected time,” ACM Trans.
Math. Softw., vol. 3, no. 3, pp. 209–226, 1977.

[11] S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and A. Y.
Wu, “An optimal algorithm for approximate nearest neighbor
searching in fixed dimensions,” J. ACM, vol. 45, no. 6, pp. 891–
923, 1998.

[12] J. S. Beis and D. G. Lowe, “Shape indexing using approximate
nearest-neighbour search in high-dimensional spaces,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recog., 1997, pp. 1000–1006.

[13] C. Silpa-Anan and R. Hartley, “Optimised KD-trees for fast image
descriptor matching,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recog., 2008, pp. 1–8.

[14] M. Muja and D.G. Lowe, “Fast approximate nearest neighbors
with automatic algorithm configuration,” in Proc. Int. Conf. Com-
puter Vis. Theory Appl., 2009, pp. 331–340.

[15] R. F. Sproull, “Refinements to nearest-neighbor searching in k-
dimensional trees,” Algorithmica, vol. 6, no. 1, pp. 579–589, 1991.

[16] S. Dasgupta and Y. Freund, “Random projection trees and low
dimensional manifolds,” in Proc. 40th Annu. ACM Symp. Theory
Comput., 2008, pp. 537–546.

[17] Y. Jia, J. Wang, G. Zeng, H. Zha, and X. S. Hua, “Optimizing kd-
trees for scalable visual descriptor indexing,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recog., 2010, pp. 3392–3399.

[18] K. Fukunaga and P. M. Narendra, “A branch and bound algo-
rithm for computing k-nearest neighbors,” IEEE Trans. Comput.,
vol. C-24, no. 7, pp. 750–753, Jul. 1975.

[19] S. Brin, “Near neighbor search in large metric spaces,” in Proc.
21th Int. Conf. Very Large Data Bases, 1995, pp. 574–584.

[20] A. W. Moore, “The anchors hierarchy: Using the triangle inequal-
ity to survive high dimensional data,” in Proc. 16th Conf. Uncer-
tainity Artif. Intell., 2000, pp. 397–405.

[21] P. N. Yianilos, “Data structures and algorithms for nearest neigh-
bor search in general metric spaces,” in Proc. ACM-SIAM Symp.
Discrete Algorithms, 1993, pp. 311–321.

[22] A. Beygelzimer, S. Kakade, and J. Langford, “Cover trees for near-
est neighbor,” in Proc. 23rd Int. Conf. Mach. Learning, 2006, pp. 97–
104.

[23] T. Liu, A. Moore, A. Gray, K. Yang,“ An investigation of practical
approximate nearest neighbor algorithms,” presented at the
Advances in Neural Information Processing Systems, Vancouver,
BC, Canada, 2004.

[24] D. Nister and H. Stewenius, “Scalable recognition with a vocabu-
lary tree,” in Proc. IEEE Conf. Comput. Vis. Pattern Recog., 2006,
pp. 2161–2168.

[25] B. Leibe, K. Mikolajczyk, and B. Schiele, “Efficient clustering and
matching for object class recognition,” in Proc. British Mach. Vis.
Conf., 2006, pp. 789–798.

[26] G. Schindler, M. Brown, and R. Szeliski, “City-Scale location rec-
ognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recog., 2007,
pp. 1–7.

[27] H. J!egou, M. Douze, and C. Schmid, “Product quantization for
nearest neighbor search,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 32, no. 1, pp. 1–15, Jan. 2010.

[28] A. Babenko and V. Lempitsky, “The inverted multi-index,” in
Proc. IEEE Conf. Comput. Vis. Pattern Recog., 2012, pp. 3069–3076.

[29] A. Andoni and P. Indyk, “Near-optimal hashing algorithms for
approximate nearest neighbor in high dimensions,” Commun.
ACM, vol. 51, no. 1, pp. 117–122, 2008.

[30] Q. Lv, W. Josephson, Z. Wang, M. Charikar, and K. Li, “Multi-
probe LSH: Efficient indexing for high-dimensional similarity
search,” in Proc. Int. Conf. Very Large Data Bases, 2007,
pp. 950–961.

[31] M. Bawa, T. Condie, and P. Ganesan, “LSH forest: Self-tuning
indexes for similarity search,” in Proc. 14th Int. Conf. World Wide
Web, 2005, pp. 651–660.

[32] Y. Weiss, A. Torralba, and R. Fergus, “Spectral hashing,” in Proc.
Adv. Neural Inf. Process. Syst., 2008, p. 6.

[33] P. Jain, B. Kulis, and K. Grauman, “Fast image search for learned
metrics,” in Proc. IEEE Conf. Comput. Vis. Pattern Recog., 2008,
pp. 1–8.

[34] B. Kulis and K. Grauman, “Kernelized locality-sensitive hashing
for scalable image search,” in Proc. IEEE 12th Int. Conf. Comput.
Vis., 2009, pp. 2130–2137.

[35] B. Kulis and T. Darrell, “Learning to hash with binary reconstruc-
tive embeddings,” in Proc. 23rd Adv. Neural Inf. Process. Syst., 2009,
vol. 22, pp. 1042–1050.

[36] M. Raginsky and S. Lazebnik, “Locality-sensitive binary codes
from shift-invariant kernels,” in Proc. Adv. Neural Inf. Process.
Syst., 2009, vol. 22, pp. 1509–1517.

[37] J. Wang, S. Kumar, and S. F. Chang, “Semi-supervised hashing for
scalable image retrieval,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recog., 2010, pp. 3424–3431.

[38] J. He, W. Liu, and S. F. Chang, “Scalable similarity search with
optimized kernel hashing,” in Proc. Int. Conf. Knowledge Discovery
Data Mining, 2010, pp. 1129–1138.

[39] H. Xu, J. Wang, Z. Li, G. Zeng, S. Li, and N. Yu, “Complementary
hashing for approximate nearest neighbor search,” in Proc. IEEE
Int. Conf. Comput. Vis., 2011, pp. 1631–1638.

[40] T. B. Sebastian and B. B. Kimia, “Metric-based shape retrieval in
large databases,” in Proc. IEEE Conf. Comput. Vis. Pattern Recog.,
2002, vol. 3, pp. 291–296.

[41] K. Hajebi, Y. Abbasi-Yadkori, H. Shahbazi, and H. Zhang, “Fast
approximate nearest-neighbor search with k-nearest neighbor
graph,” in Proc. 22nd Int. Joint Conf. Artif. Intell., 2011, pp. 1312–
1317.

[42] J. Wang, J. Wang, G. Zeng, Z. Tu, R. Gan, and S. Li, “Scalable k-
NN graph construction for visual descriptors,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recog., 2012, pp. 1106–1113.

[43] J. A. Nelder and R. Mead, “A simplex method for function mini-
mization,” Comput. J., vol. 7, no. 4, pp. 308–313, 1965.

[44] F. Hutter, “Automated configuration of algorithms for solving
hard computational problems,” Ph.D. dissertation, Comput. Sci.
Dept., Univ. British Columbia, Vancouver, BC, Canada, 2009.

[45] F. Hutter, H. H. Hoos, and K. Leyton-Brown, “ParamILS: An auto-
matic algorithm configuration framework,” J. Artif. Intell. Res.,
vol. 36, pp. 267–306, 2009.

[46] J. Bergstra and Y. Bengio, “Random search for hyper-parameter
optimization,” J. Mach. Learn. Res., vol. 13, pp. 281–305, 2012.

[47] M. Muja, “Scalable nearest neighbour methods for high dimen-
sional data,” Ph.D. dissertation, Comput. Sci. Dept., Univ. British
Columbia, Vancouver, BC, Canada, 2013.

[48] D. Arthur and S. Vassilvitskii, “K-Means++: The advantages of
careful seeding,” in Proc. Symp. Discrete Algorithms, 2007,
pp. 1027–1035.

[49] M. Calonder, V. Lepetit, C. Strecha, and P. Fua, “BRIEF: Binary
robust independent elementary features,” in Proc. 11th Eur. Conf.
Comput. Vis., 2010, pp. 778–792.

MUJA AND LOWE: SCALABLE NEAREST NEIGHBOR ALGORITHMS FOR HIGH DIMENSIONAL DATA 2239



[50] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, “ORB: An effi-
cient alternative to SIFT or SURF,” in Proc. IEEE Int. Conf. Comput.
Vis., Barcelona, Spain, 2011, pp. 2564–2571.

[51] S. Leutenegger, M. Chli, and R. Siegwart, “BRISK: Binary robust
invariant scalable keypoints,” in Proc. IEEE Int. Conf. Comput. Vis.,
2011, pp. 2548–2555.

[52] M. Muja and D. G. Lowe, “Fast matching of binary features,” in
Proc. 9th Conf. Comput. Robot Vis., 2012, pp. 404–410.

[53] S. Winder and M. Brown, “Learning local image descriptors,” in
Proc. IEEE Conf. Comput. Vis. Pattern Recog., 2007, pp. 1–8.

[54] K. Mikolajczyk and J. Matas, “Improving descriptors for fast tree
matching by optimal linear projection,” in Proc. IEEE 11th Int.
Conf. Comput. Vis., 2007, pp. 1–8.

[55] J. Hays and A. A. Efros, “IM2GPS: Estimating geographic infor-
mation from a single image,” in Proc. IEEE Conf. Comput. Vis. Pat-
tern Recog., 2008, pp. 1–8.

[56] A. Halevy, P. Norvig, and F. Pereira, “The unreasonable effective-
ness of data,” IEEE Intell. Syst., vol. 24, no. 2, pp. 8–12, Mar./Apr.
2009.

[57] A. Torralba, R. Fergus, and Y. Weiss, “Small codes and large
image databases for recognition,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recog., 2008, pp. 1–8.

[58] M. Aly, M. Munich, and P. Perona, “Distributed Kd-trees for
retrieval from very large image collections,” presented at the Brit-
ish Mach. Vis. Conf., DuDundee, U.K., 2011.

[59] M. Muja and D. G. Lowe, “FLANN: Fast library for approximate
nearest neighbors,” [Online]. Available: http://www.cs.ubc.ca/
research/flann

[60] M. Cummins and P. Newman, “Highly scalable appearance-only
SLAM-FAB-MAP 2.0,” presented at the Robotics: Science and Sys-
tems Conf., vol. 5, Seattle, Washington, USA, 2009.

[61] M. Havlena, A. Torii, M. Jancosek, and T. Pajdla, “Automatic
reconstruction of Mars artifacts,” in Proc. Eur. Planet. Sci. Congress,
2009, p. 280.

[62] M. Havlena, A. Torii, J. Knopp, and T. Pajdla, “Randomized struc-
ture from motion based on atomic 3D models from camera
triplets,” in Proc. IEEE Conf. Comput. Vis. Pattern Recog., 2009,
pp. 2874–2881.

[63] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. B. Foote, J. Leibs, R.
Wheeler, and A.Y. Ng, “ROS: An open-source robot operating sys-
tem,” in Proc. ICRA Open-Source Softw. Workshop, 2009.

[64] P. Turcot and D.G. Lowe, “Better matching with fewer features:
The selection of useful features in large database recognition prob-
lems,” in Proc. Comput. Vis. Workshops, 2009, pp. 2109–2116.

[65] G. Bradski and A. Kaehler, Learning OpenCV: Comput. Vision with
the OpenCV Library. Sebastopol, CA, USA: O’Reilly Media, 2008.

Marius Muja received the BSc degree in com-
puter science from “Politehnica” University of
Timisoara in 2005, and the PhD degree in com-
puter science from University of British Columbia
in 2013. He is currently the CTO and cofounder
of BitLit Media Inc., a company that develops rec-
ognition algorithms for allowing users to prove
the ownership of paper books in order to obtain
access to the electronic versions. His interests
include scalable nearest neighbor matching tech-
niques, large-scale image retrieval, and object

recognition. He is a member of the IEEE.

David G. Lowe received the BSc degree in com-
puter science from the University of British
Columbia in 1978, and the PhD degree in com-
puter science from Stanford University in 1984.
He is currently a professor of computer science
at the University of British Columbia and a fellow
of the Canadian Institute for Advanced Research.
He is also the chairman and the co-founder of
Cloudburst Research Inc., a company that devel-
ops computer vision apps for mobile devices. His
research interests include object recognition,

local image features, and computational models for human vision. He is
a member of the IEEE.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

2240 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 36, NO. 11, NOVEMBER 2014


