
Efficient Detection for Spatially Local Coding

Sancho McCann and David G. Lowe

University of British Columbia

Abstract. In this paper, we present an efficient detector for the Spa-
tially Local Coding (SLC) object model. SLC is a recent, high performing
object classifier that has yet to be applied in a detection (object local-
ization) setting. SLC uses features that jointly code for both appearance
and location, making it difficult to apply the existing approaches to ef-
ficient detection. We design an approximate Hough transform for the
SLC model that uses a cascade of thresholds followed by gradient de-
scent to achieve efficiency as well as accurate localization. We evaluate
the resulting detector on the Daimler Monocular Pedestrian dataset.

1 Introduction

Spatially Local Coding (SLC) [1] has been recently proposed as an alternative
way of including spatial information for object recognition. By using features
that code for both appearance and location, SLC avoids the need to use fixed
grids in the spatial pyramid model and uses a simple, whole-image region during
the pooling stage. It outperforms modern variants of the spatial pyramid at
equivalent model dimensionalities, and achieved better classification performance
than all previous single-feature methods when tested on the Caltech 101 and 256
object recognition datasets [1].

Given SLC’s high performance as a classifier, it is natural to adopt it for use
as a detector to find the location of objects within images of natural scenes.

Our contribution in this exploratory paper is the design and evaluation of
an efficient detector for Spatially Local Coding. Given the novel way that SLC
includes location information, designing this detector is not a straight-forward
application of an existing detector framework. We demonstrate the promise of
this detector by evaluating on the Daimler monocular pedestrian dataset [2].

We start with a short review of previous detector work, then review the SLC
model in detail, describe the design and optimization of our detector, and finish
with evaluation and discussion.

2 Related work

There is a large diversity of approaches to object detection, and we review in
this section a small sampling to highlight the range of methods that have shown
success.



2 Sancho McCann and David G. Lowe

One family of approaches starts with local feature patches such as SIFT [3]
and combines them in bags-of-words [4] or spatial pyramids [5] for classifications
of image sub-windows. These have been applied to detection through the use of
the spatial pyramid as an exemplar model [6].

Another line of work starts with larger-scale features representing the over-
all object appearance or parts. Examples here include histograms of oriented
gradients (HOG) [7] and the deformable parts model [8].

Any classifier can be used as a detector by treating the detection problem as
localized classification: sliding the classifier across the image at different scales
and finding maxima of the classification function. However, this can be expen-
sive, especially as one increases the resolution of the search space. More efficient
alternatives has been proposed. Efficient sub-window search [9, 10] avoids ex-
haustive evaluation of every sub-window by using a branch-and-bound search.

Most related to our proposed method is the implicit shape model (ISM) [11],
which uses a generalized Hough transform to vote for object centers. ISM’s object
model is generative, and its probabilistic Hough voting is part of the model. In
our detector, the Hough voting (see Section 5) is only an approximation to the
SLC model.

Higher order information such as object interrelationships [12] and track-
ing (in the case of video or image sequences) could also be leveraged to aid in
detection performance, but these approaches are orthogonal to basic detector
design.

Recent work on deep learning [13, 14] has demonstrated excellent classifica-
tion performance when very large training sets and computational resources are
used to learn diverse sets of features for recognition. When such large train-
ing sets are unavailable, there continues to be a need for systems that can use
existing standard feature sets such as are explored in this paper.

3 Spatially local coding

We now review the Spatially Local Coding (SLC) classifier [1] with a focus
on the aspects relevant to detection. We present SLC as a variant within the
coding/pooling framework of Boureau et al. [15].

Given an image I, let feature extraction be represented as:

Φ(I) : I 7→ {(φ1, x1, y1), . . . (φnI , xnI , ynI )},

with feature i having a local appearance described by φi, and centered at (xi, yi).
Features are coded through a coding function g((φi, xi, yi)). In bags-of-words

[4] and spatial pyramid [5] approaches, coding functions code only the appear-
ance portion of the descriptor φi, such that g((φi, xi, yi)) = ĝ(φi). Any location
information is included later, at the pooling stage.

SLC differs from previous coding/pooling methods in that it uses a cod-
ing function g that directly handles spatial locality, and uses a single, whole-
image pooling region during the pooling stage. Instead of choosing g(φi, xi, yi) =



Efficient Detection for Spatially Local Coding 3

ĝ(φi), SLC simultaneously codes φi and the location (xi, yi) by using a location-

augmented descriptor: φ
(λ)
i = [φi1, φi2, . . . , φid, λxi, λyi], where λ ∈ R is a loca-

tion weighting factor giving the importance of the location in feature matching.
SLC chooses localized soft-assignment [16] for ĝ to map each feature onto

codewords. Let NN(κ)(φi) be the set of κ nearest neighbors to φi in a dictionary

D(λ) of location-weighted codewords. Then, the localized soft assignment coding
is:

ĝ(φ
(λ)
i ) = ui = [ui1, ui2, . . . , uik] : (1)

uij =
exp(−βd(φ

(λ)
i ,D

(λ)
j )∑k

a=1 exp(−βd(φ
(λ)
i ,D

(λ)
a ))

d(φ
(λ)
i ,D

(λ)
j ) =

{
‖φ(λ)i −D

(λ)
j ‖2 if D

(λ)
j ∈ NN(κ)(φi)

∞ otherwise

The final SLC histogram representation h of a subregion S is a max-pooling
histogram [15, 17] of all ui in that region:

hmax = [h1, h2, . . . , hk] where

hj = max{uij |(xi, yi) ∈ S} (2)

The resulting histogram is used as the input layer to a linear SVM. [1] showed
that a linear SVM obtained higher performance on the SLC model than a his-
togram intersection kernel SVM.

102 103 104 105

Codebook dimensionality

0.54

0.56

0.58

0.60

0.62

0.64

0.66

0.68

0.70

A
v
e
ra

g
e
 c

la
ss

 a
cc

u
ra

cy

103 104 105

Model dimensionality

0.54

0.56

0.58

0.60

0.62

0.64

0.66

0.68

0.70

Caltech 101 (15 training images): Codebook and model dimensionality vs. accuracy

Original SPM (3-levels, intersection kernel)

Localized soft assignment (3-levels, intersection kernel)

SLC (4-codebooks, linear kernel)

Fig. 1: [1] demonstrated that SLC performed better than the basic spatial pyra-
mid model and better than more recent state-of-the-art refinements in the con-
text of single-image classification (Caltech 101 and 256). Figure reproduced from
[1].



4 Sancho McCann and David G. Lowe

In summary, SLC uses location-augmented feature vectors, localized soft-
assignment coding, and a single, whole-image max-pooling region. SLC moves
the task of maintaining spatial locality into the coding stage, whereas previously,
this had been left for the pooling stage.

We avoid the issue of λ selection by use of the multi-level SLC variant as
suggested by [1]. Multi-level SLC codes across several dictionaries at once, each
with a different λ. Not only does this avoid having to fine-tune a parameter,
McCann et al. [1] showed that a combination of several dictionaries with different
λ gave better classification performance than any of the individual dictionaries
alone.

4 Detection methods

This section reviews two methods that seek to avoid having to perform an ex-
haustive sliding window detection. A 320× 240 image “contains more than one
billion rectangular sub-images” [9]. As individual evaluations of the SLC classi-
fier are relatively expensive, it is important to avoid unnecessary evaluations.

4.1 Efficient sub-window search

Efficient sub-window search (ESS) was presented by Lampert et al. [9, 10] as
a way of effectively performing exhaustive search of all image sub-windows in
time that is sub-linear relative to the number of possible sub-windows. ESS is a
branch-and-bound algorithm that relies on efficiently computing an upper bound
for the scores of sets of sub-windows.

The efficiency of the original ESS bound results from a one-time quantization
from features into codewords and then accumulation of those codewords’ linear
SVM weights into integral histograms [9]. This step is not possible with SLC.
Without committing to a particular sub-window reference frame, the quanti-
zation from a feature into an SLC codeword is not defined, because location
relative to the sub-window is a component of the feature.

The alternative, feature-centric efficient sub-window search proposed by Leh-
mann et al. [18, 19] is also inadequate for SLC because the feature-to-codeword
quantization still depends on a commitment to a particular detection window as
a reference frame. For each possible sub-window, a different feature-to-codeword
mapping takes place, rendering the bound of feature-centric ESS expensive to
compute. An approximate bound similar to the approximation we make in Sec-
tion 5 is possible, and we include an implementation with our code, but there
are two reasons we decide against this approach. First, as observed by [18], the
large number of extracted features results in a computation bottleneck. Second,
we have observed that using the approximation from Section 5 when computing
the bounds results in traversing many unfruitful paths through the branch-and-
bound search space.



Efficient Detection for Spatially Local Coding 5

4.2 Hough transform

The detection framework we develop builds upon the Generalized Hough trans-
form [11, 19]. While it lacks the theoretical guarantees of the efficient sub-window
search, the Hough transform is compatible with approximations to SLC, and can
still quickly suggest promising regions of the image over which to focus expen-
sive evaluation of the full SLC model. It handles large numbers of features well
(the voting phase scales linearly with the number of features). We are able to
greatly speed up detection over the sliding window approach, without sacrificing
performance.

We do not use a standard Hough transform. Our approach differs in two ways.
First, we perform max-pooling voting prior to multiplying those intermediate
votes by weights derived from the linear SVM. Second, our initial votes are
based on an approximation to the SLC model. This is due to the way that SLC
coding depends on committment to a particular detection hypothesis. It is not
obvious that this approximation will result in useful peaks in the Hough space,
and we evaluate the suitability of these peaks in Section 5.2.

After obtaining these preliminary hypotheses from the peaks in Hough space,
we apply a cascade of thresholds and refinement to focus the SLC classifier on
only the most promising regions. The design and optimization of this pipeline is
described next.

5 The detection pipeline

5.1 Approximate SLC Hough transform

We follow the approach of Lehmann et al. [19] in considering hypothesis foot-
prints. Each hypothesis stamps out a footprint over which evidence for an object
detection is accumulated. However, instead of accumulating votes hypothesis-by-
hypothesis as in a sliding window approach, the Hough transform has each fea-
ture cast a weighted vote for (or against) hypotheses consistent (or inconsistent)
with that feature’s occurrence.

The vote weights associated with each codeword are derived from the linear
SVM weights. As in Lampert et al. [10], we re-write the linear SVM decision
function as a sum of per-codeword weights. The SVM decision function is f(h) =
β +

∑
i αi〈h,h(i)〉, where h is the SLC histogram being classified, h(i) are the

training histograms, and αi are the learned per-example SVM weights. We can

extract per-codeword weights wj =
∑
i αih

(i)
j , and re-write the decision function

as:

f(h) = β +
∑
j

hj · wj (3)

and drop the bias term β because only the relative scores matter.
Since SLC is based on max-pooling rather than sum-pooling, we need to

perform the Hough transform in two phases. The first phase, where most of



6 Sancho McCann and David G. Lowe

the work is done, involves building a max-pooling histogram at each bin in the
discretized Hough space.

This phase occurs in a 5D Hough space: (s, a, x, y, c), with s being scale,
represented by hypothesis window width, a being aspect ratio, x and y being
the hypothesis center, and c being the codeword. See Figure 2 for a visualization.

Fig. 2: For each (a, s) ∈ A×S, we build an x, y grid of Hough bins, each of which
tracks per-codeword votes. After max-pooling voting is complete, we collapse
each histogram into a Hough score for each bin using Equation 3.

To determine the region over which a feature will cast a vote, we use a lo-
cation distribution for each SLC codeword c: (µ(c), σ2

(c)) (with µ = (µx, µy) ∈
[−0.5, 0.5]2). The location distribution is only explicitly used during this approx-
imate Hough transform step and is not part of the final SLC model. It is a means
of approximating the region over which a given codeword is likely to contribute
to the hypothesis footprint.

SLC quantizes using feature location relative to a reference frame. However,
there is no such reference frame when quantizing features prior to voting in
Hough space. Thus, we make the following approximation. We quantize using
localized soft assignment [16] based solely on appearance information (we drop
the λ in Equation 1). This maps a feature to the codewords that it might be
matched to under SLC. We use this tentative matching based on appearance
along with the learned location distributions to determine the bins in which to
cast Hough votes.

Given feature center (fx, fy), an appearance-only soft-coding that results
in non-zero weight for codeword c, and learned location distribution for that
codeword, (µ(c), σ2

(c)), we compute for each (a, s) ∈ A × S the Hough bins that
this features should vote in as follows:

µ̂x = fx − µ(c)
x · s; µ̂y = fy − µ(c)

y ·
s

a
(4)



Efficient Detection for Spatially Local Coding 7

σ̂x = σ(c)
x · s; σ̂y = σ(c)

y ·
s

a
(5)

Equations 4 and 5 invert the learned location distribution into Hough space
at the appropriate scale (width) and aspect ratio. We update the max-pooling
histogram for codeword c in all Hough bins within 3σ̂ of µ̂.

After all votes have been cast, we apply Equation 3 to each bin to turn the
histograms into scores.

5.2 Optimizing Hough predictions

In this section, we coarsely optimize parameters of our approximate Hough trans-
form on a subset of the VOC 2012 car category. We train on all non-truncated,
non-difficult, non-occluded cars in the train portion of the training set, and test
on all images in the validation set that include a car.

Our goal in using the Hough transform and cascade of refinements is to
reduce the number of times we need to evaluate using the full model. First,
we check that the approximation we use when computing the Hough votes is
appropriate. Do the Hough scores reflect roughly the regions of the image that
are more likely to contain the object of interest? We run a simple thresholding
algorithm (Algorithm 1) for this check. Figure 3 shows that the Hough scores are
meaningful. Almost every Hough bin has a score greater than -1, so the recall
when thresholding at -1 is effectively the maximum recall we can achieve with a
Hough transform at this bin density. We retain almost 100% of that recall and
eliminate 60% of the bins from consideration by thresholding at zero. (Recall
achieves a maximum of only 86% in this series of experiments due to our choice
of search grid resolution and minimum scale. We make the same choices for the
sliding window baseline we compare against later in Figure 5.)

Algorithm 1: Thresholding bins

Data: 4D Hough map m, threshold t
results ← {};
for bin b ∈ m do

if b.score >= t then
add b to results ;

end

end

We can do better. Instead of selecting all Hough bins that pass a threshold,
what if we select only local peaks in Hough space that pass the threshold? Figure
4 shows the result of running Algorithm 2 with a varying threshold. There are
on average 2528 local Hough peaks in each image. This results in recall of 81%
compared to exhaustive consideration of all candidate windows (86%), as shown
at the left extreme of Figure 3). Again, by thresholding at zero, we remove even
more windows from consideration without losing further recall.



8 Sancho McCann and David G. Lowe

1.0 0.5 0.0 0.5 1.0
Hough threshold

0.0

0.2

0.4

0.6

0.8

1.0

R
e
ca

ll

63473

61830

27211

13684

6866

3263
1551

716

(Annotations show number of Hough bins passing the threshold.)

Fig. 3: We are able to maintain high recall while eliminating more than half of
the candidate windows by discarding Hough bins receiving negative scores. This
experiment runs Algorithm 1 with a varying threshold. (Recall in this experiment
only reaches 86% due to our choice of grid resolution and minimum scale.)

Algorithm 2: Thresholding peaks

Data: 4D Hough map m, threshold t
results ← {};
for bin b ∈ m do

if b.score >= t and IsLocalMax(b) then
add b to results ;

end

end

3.0 2.5 2.0 1.5 1.0 0.5 0.0 0.5 1.0
Hough threshold

0.0

0.2

0.4

0.6

0.8

1.0

R
e
ca

ll

2528

1338

739

420
231

125
66

(Annotations show number of Hough peaks passing the threshold.)

Fig. 4: By focusing only on peaks, we eliminate many candidate locations.
Thresholding at zero further reduces the number of candidate windows with-
out reducing recall. This experiment runs Algorithm 2 with a varying threshold.



Efficient Detection for Spatially Local Coding 9

This is additional evidence that the signal from our Hough transform, even
though based on an approximation of our full model, is meaningful. The score
well separates candidate regions from background.

Many windows still remain, and many candidates overlap significantly with
one-another. We perform non-maximum suppression at this point to produce the
final predictions based solely on the Hough scores (Algorithm 3). This results
in poor detection performance (13% average precision) compared to the sliding
window detector.

Algorithm 3: Predict from thresholded peaks

Data: 4D Hough map m, threshold t
results ← {};
for bin b ∈ m do

if b.score >= t and IsLocalMax(b) then
add b to results ;

end

end
NonMaximumSuppression(results)

The discrepancy can be explained by the Hough scores being only an ap-
proximation to the full model. The scores of the candidate windows at this stage
are not as accurate as what the full model would provide, and they aren’t as
precisely localized. Even if we did re-evaluate each of these peaks with the true
model (Algorithm 4), the fact that they aren’t well-localized means that those
scores will still not be as informative, boosting performance to only 19% av-
erage precision. Figure 5 (Hough peaks and Re-scored Hough peaks) shows the
performance of these two methods.

Algorithm 4: Predict from re-scored peaks

Data: 4D Hough map m, threshold t
results ← {};
for bin b ∈ m do

if b.score >= t and IsLocalMax(b) then
b.score = EvaluateSLC(b);
if b.score >= t then

add b to results ;
end

end

end
NonMaximumSuppression(results)



10 Sancho McCann and David G. Lowe

Sliding Window
(~48 hours)

Hough peaks
(~1 hour)

Rescored
Hough peaks

(~2 hours total)

Rescored
Hough peaks w.
4D refinement

(~4 hours total)

0.00

0.05

0.10

0.15

0.20

0.25

A
v
e
ra

g
e
 p

re
ci

si
o
n

Fig. 5: By re-scoring the Hough peaks, and then refining their locations using gra-
dient descent, we retrieve the performance of the sliding window detector while
gaining a large speedup. All methods were subject to non-maximum suppression
to eliminate overlapping predictions.

One last step is necessary to nearly recover the performance of the sliding
window approach. After re-scoring the Hough peaks, so that we know their score
under the true model, we again discard peaks with negative scores, suppress
strong overlaps, and finally refine the remaining peaks using a gradient descent
procedure [19]. Our gradient descent uses a finite difference approximation of the
gradient, followed by line search. We simultaneously refine the (x, y) location,
the aspect ratio, and scale until we reach a local maximum.

Algorithm 5: Full detection pipeline

Data: 4D Hough map m, threshold t
results ← {};
for bin b ∈ m do

if b.score >= t and IsLocalMax(b) then
b.score = EvaluateSLC(b);
if b.score >= t then

add b to results ;
end

end

end
NonMaximumSuppression(results);
for b ∈ results do

b ← GradientDescentSLC(b);
end
NonMaximumSuppression(results);



Efficient Detection for Spatially Local Coding 11

As a result, we consider a much finer set of potential candidate windows
around the peaks than the sliding window approach does, but only evaluate a
small number of windows in total using the full SLC model.

Now that we have largely recovered the performance of the brute force sliding
window detector using a much faster approximation, we turn our attention to
the design of the training phase.

5.3 Mining hard negative examples

For the above experiments, we used a model that was trained with a single pass
through the training set, collecting all non-difficult, non-truncated, non-occluded
positive examples and 10x that many negative examples selected randomly from
regions of the training data that did not overlap with any positive example.

A technique used by many others in the past [20, 8, 7] is to mine the training
data for hard negative examples: negative windows that the classifier erroneously
predicts as belonging to the class. Walk et al. [20] observe that without hard neg-
ative selection, performance is extremely sensitive to the randomness in selecting
examples for the negative training set, and that at least 2 re-training rounds are
required in order to reach full performance using HOG + linear SVM. We follow
this practice by running the detector over the training set, and adding the high-
est scoring false positives into our negative training set. Figure 6 shows the effect
of hard negative mining on the car class. The effect of additional hard negative
examples is clear.

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n

Hough detector: VOC 2012 Cars

1 training round (average precision: 0.229422)
3 training rounds (average precision: 0.320923)

Fig. 6: Three rounds of training with hard negative mining results in a significant
improvement in classifier accuracy.



12 Sancho McCann and David G. Lowe

6 Evaluation

We evaluate our detector on the Daimler monocular pedestrian dataset [2]. This
dataset presents a challenging real-world problem and has been used to test
and compare among other methods. Additionally, its training data is consistant
in its cropping, alignment, and aspect ratio, which allows us to focus solely
on the localization performance of our search strategy, and not introduce the
confounding factors of handling of widely varying aspect ratio or viewpoint.

The Daimler pedestrian training set comprises 15660 pedestrian training ex-
amples, each presented in a 48× 96 cropped image, and 6744 images containing
no pedestrians. We extract multi-scale SIFT and build three SLC dictionaries
with λ = {0.0, 1.5, 3.0}. We perform three training rounds. During the first train-
ing round, we extract random negative training windows such that the number
of negatives is 7× the number of positives (chosen to fit within memory con-
straints). We train a linear SVM using k-fold cross validation for selection of
the hyper-parameters. Before re-training in the next round, we run our detec-
tor across all 6744 negative training images to mine for the most difficult (most
highly scored) negative examples, and replace the 25% easiest examples from the
previous training round with an equivalent number of new difficult examples.

For testing, we followed the evaluation protocol described by Dollár et al.
[21]. We evaluate against all fully-visible, labeled pedestrians, ignoring bicyclists,
motorcyclists, pedestrian groups, and partially visible pedestrians. Detections
and failed detections of ignored annotations neither count for or against our
detector. As in [21], we standardize the aspect ratio of all ground truth boxes
to 0.41 by retaining the annotated height and adjusting the width of the ground
truth bounding box to 0.41 times the height. We up-scale the test images by 1.6
to allow detection of the smaller scale pedestrians.

Enzweiler et al. [2] initially proposed reporting recall vs. false positives per
frame. However, Dollar et al. [21] point out that false positives per image is
a more useful measure of false positives in this setting. They observe that the
difference is in whether one is evaluating the performance of the classifier under-
lying the detector, or evaluating the performance of the entire detector pipeline
as a complete system. “Choices made in converting a binary classifier to a detec-
tor, including choices for spatial and scale stride and non-maximal suppression,
influence full image performance.” [21]. We follow them in reporting miss-rate
vs. false positives per image. This is similar to reporting precision vs. recall as
in the Visual Object Classes Challenge, but false positives per images is perhaps
more important in an automotive pedestrian detection setting. Figure 7 shows
our results compared against the single-feature, non-motion results reported by
[21].

Our detector outperforms HOG [7], histogram intersection kernel SVM [22],
and an early version of the deformable parts model [23] throughout a wide range
of false-positive rates. The one method that has an advantage is the latent SVM
[8] that learns explicit subparts. The recall of our detector does saturate at higher
false positive rates, but Dollár et al. identify the region between 10−2 and 100

false positives per window as the region most relevant for comparison. This is



Efficient Detection for Spatially Local Coding 13

supported by Hussein et al. [24] who also use a score that focuses more on the
region of the curve with low false alarms. They say, “this is useful since in many
applications we are more interested in the low false alarm rate range”. Never-
theless, the saturation of recall in our detector is a point for future investigation.
We suspect this is due to some of the true detections not being covered by the
initial set of Hough peaks, and our refinement phase is not able to recover from
these poor local maxima. There is obvious room for improvement, but we believe
these results demonstrate that application of the Spatially Local Coding feature
to the detection problem is a fruitful area for future research.

10-4 10-3 10-2 10-1 100 101 102

False positives per image

0.20

0.30

0.40

0.50

0.64

0.80

1.00

M
is

s 
ra

te

Daimler DB

SLC (this paper)

HOG

HIKSVM

LATSVM-V1

LATSVM-V2

Fig. 7: Results on the Daimler monocular pedestrians dataset. (The data is taken
from [21]. We have extracted the performance curves for the single-feature, non-
motion methods that they evaluate.)

Figure 8 shows typical output of our detector. Common error cases include
reporting false positives on regions containing vertical structures and merging
two pedestrians into a single detection.

7 Conclusion

We’ve engineered a method of localization using Spatially Localized Features
through use of a Hough transform approximation, followed by non-maximum
suppression and gradient descent refinement. The approach was demonstrated
on the widely used Daimler monocular pedestrian dataset, achieving a good
level of detection accuracy. We believe this demonstrates that further research
towards using SLC in the detection context is warranted.



14 Sancho McCann and David G. Lowe

(a) Two successful detections (b) Two successful detections

(c) A success, and a false positive (d) A missed detection (the child)

Fig. 8: Examples of typical detections made by our detector on Daimler monocu-
lar pedestrian dataset. We’ve displayed detections above the threshold associated
with the equal error rate. The numbers attached to each detection report the
SLC score. True positives are outlined in green. Ground truth annotations are
outlined in blue. False positives are outlined in red.

There is considerable scope for further research to extend this approach.
One component of the current pipeline needing improvement is in the selection of
Hough peaks. Initializing the gradient descent procedure from a broader selection
of locations would lead to improved recall. There is also considerable scope for
expanding the set of features being used and location weights to achieve higher
detection performance.

References

1. McCann, S., Lowe, D.G.: Spatially local coding for object recognition. In: ACCV.
(2012) 204–217

2. Enzweiler, M., Gavrila, D.M.: Monocular pedestrian detection: survey and exper-
iments. PAMI 31 (2009) 2179–95



Efficient Detection for Spatially Local Coding 15

3. Lowe, D.G.: Distinctive Image Features from Scale-Invariant Keypoints. IJCV 60
(2004) 91–110

4. Csurka, G., Dance, C., Fan, L., Willamowski, J., Bray, C.: Visual categorization
with bags of keypoints. In: Workshop on Statistical Learning in Computer Vision,
ECCV. (2004)

5. Lazebnik, S., Schmid, C., Ponce, J.: Beyond Bags of Features: Spatial Pyramid
Matching for Recognizing Natural Scene Categories. In: CVPR. (2006)

6. Chum, O., Zisserman, A.: An exemplar model for learning object classes. In:
CVPR. (2007)

7. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In:
CVPR. (2005)

8. Felzenszwalb, P.F., Girshick, R.B., McAllester, D., Ramanan, D.: Object Detection
with Discriminatively Trained Part Based Models. PAMI 32 (2009) 1627–1645

9. Lampert, C.H., Blaschko, M.B., Hofmann, T.: Beyond sliding windows: Object
localization by efficient subwindow search. In: CVPR. (2008)

10. Lampert, C.H., Blaschko, M.B., Hofmann, T.: Efficient subwindow search: a branch
and bound framework for object localization. PAMI 31 (2009) 2129–42

11. Leibe, B., Leonardis, A., Schiele, B.: Robust object detection with interleaved
categorization and segmentation. IJCV 77 (2008) 259–289

12. Wohlhart, P., Donoser, M., Roth, P., Bischof, H.: Detecting partially occluded
objects with an implicit shape model random field. In: ACCV. (2013)

13. Krizhevsky, A., Sutskever, I., Hinton, G.: Imagenet classification with deep convo-
lutional neural networks. In: NIPS. (2012)

14. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D.,
Vanhoucke, V., Rabinovich, A.: Going Deeper with Convolutions. arXiv:1409.4842
[cs.CV] (2014)

15. Boureau, Y.L., Bach, F., LeCun, Y., Ponce, J.: Learning mid-level features for
recognition. In: CVPR. (2010)

16. Liu, L., Wang, L., Liu, X.: In Defense of Soft-assignment Coding. In: ICCV. (2011)
17. Yang, J., Yu, K., Gon, Y., Huang, T.: Linear spatial pyramid matching using

sparse coding for image classification. In: CVPR. (2009)
18. Lehmann, A., Van Gool, L., Leibe, B.: Feature-Centric Efficient Subwindow Search.

In: CVPR. (2009)
19. Lehmann, A., Leibe, B., van Gool, L.: PRISM: Principled implicit shape model.

In: British Machine Vision Conference. (2009)
20. Walk, S., Majer, N., Schindler, K., Schiele, B.: New features and insights for

pedestrian detection. In: CVPR. (2010)
21. Dollár, P., Wojek, C., Schiele, B., Perona, P.: Pedestrian detection: an evaluation

of the state of the art. PAMI 34 (2012) 743–61
22. Maji, S., Berg, A., Malik, J.: Classification using Intersection Kernel Support

Vector Machines is Efficient. In: CVPR. (2008)
23. Felzenszwalb, P., McAllester, D., Ramanan, D.: A discriminatively trained, multi-

scale, deformable part model. In: CVPR. (2008)
24. Hussein, M., Porikli, F., Davis, L.: A comprehensive evaluation framework and a

comparative study for human detectors. IEEE Transactions on Intelligent Trans-
portation Systems 10 (2009)


