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Abstract

There has been recent progress on the problem of recog-

nizing specific objects in very large datasets. The most com-

mon approach has been based on the bag-of-words (BOW)

method, in which local image features are clustered into vi-

sual words. This can provide significant savings in mem-

ory compared to storing and matching each feature inde-

pendently. In this paper we take an additional step to re-

ducing memory requirements by selecting only a small sub-

set of the training features to use for recognition. This is

based on the observation that many local features are unre-

liable or represent irrelevant clutter. We are able to select

“useful” features, which are both robust and distinctive, by

an unsupervised preprocessing step that identifies correctly

matching features among the training images. We demon-

strate that this selection approach allows an average of 4%

of the original features per image to provide matching per-

formance that is as accurate as the full set. In addition, we

employ a graph to represent the matching relationships be-

tween images. Doing so enables us to effectively augment

the feature set for each image through merging of useful fea-

tures of neighboring images. We demonstrate adjacent and

2-adjacent augmentation, both of which give a substantial

boost in performance.

1. Introduction

Large database image recognition refers to the task of

correctly matching a query image to an image of the same

object selected from a large database. In this context large

refers to image sets where the amount of data exceeds

what can be stored in available memory. Conventional ap-

proaches which store individual local descriptors for each

image [9] are no longer suitable as the number of images

rises into the millions or higher.

One solution to this problem was proposed by Sivic

and Zisserman [20], in which image descriptors are quan-

(a) All image features (b) Useful image features

Figure 1. Original image features (a) and those deemed to be useful

(b). Transient objects in the foreground and non-distinctive areas

of the scenes are found to be without useful features.

tized into “visual words.” Quantized matching is per-

formed using a bag-of-words (BOW) method, in which vi-

sual word occurrences alone are used to measure image sim-

ilarity. Their approach employs a term-frequency inverse-

document-frequency (tf-idf ) weighting scheme similar to

that used in text retrieval.

In current BOW methods, all descriptors from the initial



image set are quantized and discarded while their geomet-

ric data are preserved for later matching. Quantization sig-

nificantly reduces the storage requirements for features as

invariant descriptors do not need to be retained, but can be

summarized by a single cluster center for all features in a

visual word. However, other information must still be re-

tained for each feature, such as its source image ID, as well

as location, scale, and orientation within that image for fi-

nal geometric checking. In practice, the use of visual words

provides, at most, a one order of magnitude reduction in

memory usage regardless of the number of features within

each visual word.

In this paper, we present a method to further reduce the

amount of information stored from each image, while still

maintaining strong recognition performance, through the

preservation of only a minimal set of image features, which

we refer to as useful features.

We define a useful feature to be an image feature which

has proven to be robust enough to be matched with a corre-

sponding feature in the same object, stable enough to exist

in multiple viewpoints, and distinctive enough that the cor-

responding features are assigned to the same visual word.

Our method builds on that of Philbin et al. [15], em-

ploying a BOW framework and tf-idf ranking. Image de-

scriptors are first extracted and quantized into visual words.

These are used to match database images against one an-

other using tf-idf ranking. The best tf-idf matches are ge-

ometrically validated using a method similar to that em-

ployed by Chum [5] in which an initial affine model is ver-

ified using epipolar geometry. Once validated, geometri-

cally consistent descriptors are labeled and retained while

all other descriptors are discarded. Validated image matches

are stored in the form of an image adjacency graph where

matched image pairs are joined by an edge.

In our experiments, testing is conducted on the Oxford

Buildings dataset using a cross validation procedure. Our

results show that using only useful features eliminates 96%

of image descriptors while maintaining recognition perfor-

mance. Using image adjacency relationships, we achieve

significantly improved recognition performance without ne-

cessitating the storage of any additional features.

This paper presents our method for extracting and using

useful features as follows. Section 2 outlines previous work

done in the field of large database image matching. Section

3 presents the BOW framework used in our method used

to generate our initial matches. Useful feature extraction

and geometric validation is discussed in section 4. Section

5 introduces the image adjacency graph as well as a new

ranking method making use of adjacency relationships. The

evaluation procedure is provided in section 6 and results

presented in section 7.

2. Previous work

In recent years, many methods have been published mak-

ing using of a quantized descriptor space and a BOW frame-

work to perform image ranking on large sets of images

[7, 8, 14, 15, 16]. Though the methods vary, these recog-

nition systems can all be broken down into the following

steps: feature extraction, feature quantization, image rank-

ing, and geometric re-ranking.

Feature extraction from the image is a topic that has been

widely researched, with many interest point detectors [12]

and descriptors [11] in use.

Feature quantization makes use of clustering to quantize

the descriptor space into visual words, which together make

up a visual vocabulary. This clustering and word assign-

ment has been conducted using hierarchical k-means [14]

as well as approximate flat k-means [8, 15]. Increasing the

visual vocabulary size to 1M cluster centers allowed for im-

provements in recognition on datasets as large as 1M im-

ages. Furthermore, it has been shown that the visual vocab-

ulary used can impact the recognition performance of the

overall system. Forming the visual vocabulary using a sam-

ple set of images effectively trains the BOW to discriminate

descriptors from the samples, while using a different set of

images results in reduced recognition [8].

Once quantized, matching is performed using methods

which borrow heavily from document retrieval. Using a

standard term-frequency inverse-document-frequency (tf-

idf ) weighting scheme [4] has been shown to yield good

recognition performance [14, 15]. This weighting scheme

can be interpreted as an approximation to a K-NN voting

algorithm with tf-idf weights [8].

The BOW search produces a ranked list of images which

can subsequently be re-ranked using geometric information

associated with image descriptors. As this is a more compu-

tationally expensive step, only a small subset of the images

will be candidates for re-ranking, requiring that the initial

BOW recognition performance be as precise as possible.

In order to boost recognition performance, novel addi-

tions to this base framework have been introduced. In [7],

the concept of query expansion is used in which strong im-

age matches are used to generate additional queries. Doing

so allows a single query image to undergo several iterations

of the image ranking and geometry checking stages before

producing a final result. Other improvements include the

use of soft word assignment [16] which makes use of mul-

tiple word assignment to reduce quantization error in large

vocabularies, as well as hamming-embedding [8] in which

location within a visual word is encoded to allow for im-

proved accuracy using smaller vocabularies.

In all these methods, word assignment and geometric in-

formation associated with every image feature is preserved

for possible use in geometric re-ranking.

Recent research [5, 17] has explored the construction and



use of graphs in large image collections. Our approach dif-

fers from these by using the image graph for feature se-

lection. In addition, we demonstrate the value of image

graphs for augmenting the matched features for each im-

age at query time through use of the adjacency relation-

ships resulting in significant recognition performance im-

provements.

Previous research showed the value of selecting infor-

mative features in a BOW framework [19]. Their approach

used ground truth image locations which differs from our

unsupervised approach. Our method also incorporates a ge-

ometric verification phase that identifies individual correct

matches between images.

3. Bag-of-words matching

Our bag-of-words framework consists of a group of

cluster centers, referred to as visual words W =
{w1, w2, ..., wk}.

Given a new image I , image descriptors {d1, d2, d3...}
are extracted. Assignment of descriptors to visual words is

performed using a nearest word search:

d → w = arg min
w

dist(d,w) (1)

As the number of visual words increases, visual word as-

signment can become a computational bottleneck. In such

cases, we use approximate nearest word search [13], which

provides significant speedup over linear search while main-

taining high accuracy.

Following visual word assignment the original image de-

scriptors are discarded, yielding memory savings over con-

ventional image matching methods. A record of word oc-

currences from each image is kept, and as the name bag-of-

words would suggest, only this record of visual word occur-

rences is used for initial querying.

While not used in the initial BOW matching process, ge-

ometric information associated with image descriptors can

be used on a limited subset of candidate images in a sec-

ondary re-ranking of initial query results. The set of cluster

centers, image word occurrences and descriptor geometric

information form our BOW image database.

3.1. Querying an image database

Images used to query the database follow the same word

assignment process and are converted into visual word oc-

currences. In order to compare image word occurrence his-

tograms, word occurrences are converted to tf-idf weights,

xij :

xij =
nij

∑

i nij
︸ ︷︷ ︸

tfij

log
N

∑

j |nij > 0|
︸ ︷︷ ︸

idfi

(2)

where nij is the number of occurrences of word i in image j

and N is the total number of images in the image database.

In the IDF term
∑

j |nij > 0| denotes the number of images

in which word i is present.

Tf-idf weights are used in a vector space model, where

query and database images I are represented by a vec-

tor made up of tf-idf weights Ij = [x1j , x2j , x3j , ..., xkj ]
which is then normalized to unit length. Similarity between

images is calculated using the L2 distance metric or cosine

similarity, which are equivalent for length-normalized vec-

tors.

As images contain often repeated and therefore uninfor-

mative descriptors, a stop list of the most common words

was generated and those words suppressed, a technique

shown to be effective at improving recognition performance

[20].

4. Useful features

When generating features from an image, many image

features which are not useful are extracted. These include

features generated around unstable interest points, and fea-

ture descriptors that are uninformative and occur frequently

in many images. They could also include features of tran-

sient occlusions, such as a person or vehicle in the fore-

ground.

Rejection of useless features is motivated by the fact that

occlusions and unstable object features will likely exist in

only a single image, while useful features are likely to be

found in more than one image of the same object or loca-

tion. Identification of the features that are robust to change

of view can be performed by determining which features ex-

ist in multiple views and are geometrically consistent with

one another. While doing so requires that at least two views

of a given object or location exist in the image database

prior to useful feature extraction, for most large datasets this

condition will normally be met. We discuss the special case

of singleton images below.

In large database image matching applications, it is as-

sumed that images may not be labeled. Therefore, our use-

ful feature detection is fully unsupervised.

4.1. Implementation

In order to determine which image features are useful,

a BOW image database containing the full feature set is

constructed. Following construction, each image in the

database is used as a query. The best M images are each

geometrically verified, and only features which are geomet-

rically consistent are preserved.

Initial geometry checking is performed by using

RANSAC to estimate affine transform parameters between

images. Following this initial check, inliers are then used

to estimate epipolar geometry using a variation of the LO-



Figure 2. An image graph showing connectivity between database

images. This is one connected subgraph from the full Oxford

Buildings dataset. Ground truthed images are coloured by build-

ing. Images of the same location naturally form highly connected

regions in the graph without any prior knowledge about image con-

tent. Graph generated using GraphViz[1]

RANSAC algorithm [6]. This two stage process is needed

to improve the sometimes poor initial feature correspon-

dence reliability, a result of the many-to-many BOW match-

ing process.

4.2. Singleton images

Images without any geometrically valid matches are con-

sidered singleton images. In the context of large database

recognition, where items being searched are expected to be

common enough that they will appear in multiple images,

singleton images can be safely discarded allowing for fur-

ther memory savings.

In applications where isolated single views of an ob-

ject may be important, it will become necessary to preserve

some features from singleton images. To avoid the mem-

ory requirements of preserving all features, a subset of the

largest-scale image features in each image can be kept. This

is equivalent to preserving low resolution copies of single-

ton images, with the resolution chosen to achieve a target

number of features for each image.

It would also be possible to select a subset of singleton

image features based on other criteria, such as keeping fea-

tures that belong to visual words with high information gain

[19], or selecting features which are robust to affine or other

distortions of the image [18]. These are topics we intend to

examine in future research.

5. Image adjacency

In addition to filtering out uninformative descriptors,

useful feature extraction provides information about the re-

lationships between images in the database. We introduce

the concept of image adjacency, in which two images that

match following geometric verification are said to be adja-

cent.

To represent these relationships between database im-

ages, a graph G = (V,E) is constructed during the use-

ful feature extraction process such that each vertex v ∈ V

represents an image and each edge e = (vA, vB) ∈ E rep-

resents a geometrically verified match.

A visualization of the image adjacency graph shows the

relationships between database images (Figure 2). Even

though the image graph construction is unsupervised, im-

ages of the same building naturally group together and form

interconnected clusters.

An overview of useful feature extraction and image

graph construction is presented in Algorithm 1.

Data: BOW database

Result: Image graph G = (V,E), labeled useful

features

foreach image I in the database do
G.addVertex(vI)
Query the database using image I

R ← list of database images sorted by rank

for i = 1 → M do
d = validatedFeatures(I,Ri)
if |d| > numPointThresh then

G.addEdge(vI , vJ)
labelAsUseful(d)

end

end

end

Algorithm 1: Useful feature extraction

5.1. Image augmentation

The construction of the image graph allows for improve-

ments to the BOW image matching. Since adjacent images

are geometrically verified and are assumed to contain the

same object of interest, we can assume adjacent images rep-

resent nearby viewpoints of the same object. We present a

method for integrating multiple viewpoints together, also

referred to as view clustering [10], which allows images

with similar views to share features.

For every image I in our image database, referred to as

the base image, we represent the image not only with its

own descriptors, but also effectively include the descriptors

of every adjacent image in the image graph. In our BOW

framework, this simple variation on view clustering can be

implemented by adding word occurrences of all adjacent

images to those of the base image:



(a) All image features

(b) Useful image features

(c) Image graph

Figure 3. All image features (a) and useful features (b) for a se-

lected image. Note that this image retains features from both All

Souls college and Radcliffe Camera. In the image graph (c), the

node for the above image (red) connects clusters of All Souls im-

ages (cyan) and Radcliffe images (magenta).

mij = nij +
∑

k,{(j,k),(k,j)}∈E

nik (3)

where mij is the augmented number of occurrences of word

i in image j. The value mij replaces nij in Equation (2).

In the case where one image descriptor is used to validate

adjacency with multiple images, image augmentation will

count an extra occurrence of that descriptor for each match

present. This is equivalent to the introduction of importance

scaling to the tf which weights descriptors by the number of

images matched.

While image augmentation is similar in spirit to query

expansion [7], it has the advantage of allowing known im-

age relationships to be used in the initial tf-idf score. Query

expansion can only benefit a query when a correct match

has already obtained a high ranking.

6. Performance Evaluation

The dataset used for testing was the Oxford Buildings

dataset [2] consisting of 5062 images taken around Oxford.

Images containing 11 different buildings have been manu-

ally ground truthed as Good, OK or Junk.

• Good images: building is fully visible.

• OK images: at least 25% of the building is visible.

• Junk images: building is present, but less than 25% is

visible.

In addition, a set of 100,000 background images taken

from Flickr was used.

Image features were generated using the Hessian-Affine

interest point detector [12] along with the SIFT descrip-

tor [9]. For the visual vocabulary, we used the INRIA

Flickr60K vocabulary [8], generated from a separate set of

images. Use of a separate set of images to generate the vo-

cabulary better mimics large database BOW image match-

ing applications where vocabularies cannot be trained to

recognize a specific subset of images containing the object

of interest.

The feature detector, visual vocabulary set and 100K

background images were obtained from [3].

Useful feature generation

For all useful feature databases we constructed, the number

of ranked images to geometrically check was set to 30. Im-

ages were represented with a maximum of 300 descriptors.

In useful feature images with more than 300 features la-

beled as useful, the features geometrically validated by the

most images were used. Two methods for handling single-

ton images were tested. In one case, all features from sin-

gleton images were discarded. In the other case, the 300

largest-scale descriptors were used.

A visual vocabulary of 200,000 words was used. In tests

it was shown that results using a smaller 50,000 word vo-

cabulary resulted in similar trends but with a reduction in

recognition performance.

Recognition evaluation

As useful feature detection can be considered a training

step, separation of the dataset into testing and training sets

was necessary. Failure to do so would result in query im-

ages from the test set being used to validate features in the

training set. To prevent this, image recognition performance

was evaluated using K-fold cross validation, with number

of folds set to 5.

All Good images were used as query images for a given

building. Good and OK images were considered positive

matches, while Junk images were ignored. Only Good and



All Souls, Rankings: 32 / 240 / 45,615 (UF+1 / UF / Orig.)

Radcliffe Camera, Rankings: 73 / 240 / 10,036 (UF+1 / UF / Orig.)

Ashmolean, Rankings: 39 / 392 / 767 (UF+1 / UF / Orig.)

Figure 4. Examples of image matching cases where using only

useful features outperformed using all features. These are typi-

cally images with significant viewpoint or lighting changes. Query

images used (left) and their corresponding matches (right) are dis-

played.

OK images were split using K-fold cross validation, unla-

beled images and Junk images were always included with

the background set. Resulting image databases contained

an average of 104,950 images.

Following the approaches of [7, 8, 16], recognition per-

formance was evaluated using the average precision (AP)

score. Average precision is the mean of image precision

across all recall rates, providing a single numerical metric

for the overall recognition performance of an algorithm. AP

can be visually interpreted as the area under a precision-

recall curve. AP values range from 0 to 1, with the latter

only being achieved when 100% precision is obtained at full

recall.

Though our results are not directly comparable to those

in previous works due to the need to use cross-validation,

it should be noted that the BOW framework used as our

base case closely follows that of [15]. Furthermore, as our

testing framework makes use of whole images as queries,

we can expect lower recognition results than those reported

in similar works which make use of only descriptors from

the object of interest to query a database.

Images
Original Useful

Descriptors Descriptors

Singleton images: discarded

Total 104,950 222.27 M 1.92 M ( 0.87%)

Singleton 88,917 173.13 M 0 ( 0 %)

“Useful” 16,033 49.14 M 1.92 M ( 3.92%)

Singleton images: 300 largest

Total 104,950 222.27 M 27.06 M (12.17%)

Singleton 88,917 173.13 M 25.13 M (14.52%)

“Useful” 16,099 49.14 M 1.92 M ( 3.92%)

Table 1. Image database summary for the Oxford (5K) + Flickr

(100K) datasets. Descriptor and file counts reflect the mean across

all cross validation folds. As expected, the large Flickr background

set contains many singleton images.

Database types

All results are generated from performing BOW querying

(section 3.1) on image databases. Database types tested are

listed below.

• Original: Images represented using all features.

• UF: Images represented using only useful features.

• UF+1: Images represented using useful features, and

those of adjacent images

• UF+2: Images represented using useful features, and

those of 2-adjacent images

7. Results

7.1. Descriptor reduction

Generation of the useful feature databases resulted in a

large reduction in the number of descriptors present. Table

1 shows the number in image features stored in the original

database as well as the useful feature database equivalent.

The number of image features from the “useful” images was

reduced by approximately 96%, with useful features mak-

ing up less than 1% of all database features. Rather than

being represented by thousands of features, images are now

represented by a maximum of 300.

A significant reduction in features is obtained by discard-

ing features from singleton images. In some cases, labeled

building images were deemed to be singleton images, re-

sulting in lowered recognition results.

7.2. Recognition performance

In order to fairly compare the performance of BOW

ranking using only useful features (UF) to BOW ranking

using all features (Orig.), AP results are summarized by

building (Table 2). It is possible to see that using only useful

features yields recognition rates comparable to those using

all features, with a slight improvement in some cases.
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Figure 5. Building image graphs for (a) Hertford (highly con-

nected) and (b) Magdalen (poorly connected). Coloured images

represent Good or OK examples of building images. Edge labels

denote the number of geometrically verified useful features be-

tween images.

The addition of image augmentation (UF+1,UF+2) im-

proved results significantly, with some buildings having

recognition improve dramatically (e.g., Radcliffe Camera

images improving from 0.142 using all features to 0.765 us-

ing the UF+2 database type). Some example queries with

improved tf-idf rankings are displayed in Figure 4. Note

that these images are all matched despite the change in

lighting, viewpoint and the presence of objects in the fore-

ground.

In order to determine the effectiveness of image augmen-

tation when using lower quality queries, OK images were

used. As expected, overall recognition performance is lower

than that of the Good images, however the benefit of image

augmentation is still clear.

It is clear that useful feature detection requires a mini-

mum level of performance on the initial BOW querying and

verification during the image graph construction phase in

order to properly identify useful features. In the case of

Magdalen images (Figure 5(b)), poor initial tf-idf ranking

yielded very few valid geometrically verified matches re-

sulting in many singleton images. An examination of Hert-

ford images (Figure 5(a)) shows that an adequate initial

ranking resulted in a highly connected set of images with

many useful features being detected.

8. Conclusions

We have presented a method for identification of useful

features in a set of images as well as a method for image

feature augmentation in a bag-of-words framework. Our re-

sults show that pre-processing images to extract useful fea-

tures can improve recognition performance while reducing

memory requirements for image features by 96%. It may

seem surprising that recognition is improved by discarding
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Figure 6. Mean Average precision (AP) performance comparison

between database types when using only useful features. Error

bars represent standard error across cross validation folds.

features that fail to match other training images, as at least a

few potentially useful features will inevitably be discarded.

However, our results show that the enhanced quality of the

selected feature set can more than compensate for its re-

duced size, while at the same time providing large reduc-

tions in memory requirements.

Our method for including features from adjacent images

while matching gives a substantial improvement in query

performance without the need to explicitly define or re-

construct distinct objects. Instead, it efficiently combines

features at runtime from related viewpoints based on their

matching relationships within the image graph.

The treatment of singleton (unmatched) images should

depend on the requirements of the application. For many

real-world applications, such as recognition of landmarks

from public image collections, it will be appropriate to dis-

card singleton images, as they are likely to contain only

transient objects and clutter. However, in cases where it

is important to use singleton images, we have demonstrated

that one solution is to select a restricted number of large-

scale features from the singleton images. In future work,

we hope to explore other methods to improve the selection

of features from singleton images.

The image graph has been shown to be a useful data

structure for improving recognition as well as understand-

ing image data. Our graph visualization has allowed for

the identification of new unlabeled landmarks. This sug-

gests that the image graph can be used in other ways to fur-

ther improve recognition, such as attaching missing labels

or correcting mislabelings.



Building
Images Singleton: discarded Singleton: large

(Queries) Orig. UF UF+1 UF+2 Orig. UF UF+1 UF+2

All Souls 77 (24) 0.265 0.327 0.594 0.661 0.265 0.300 0.588 0.648

Ashmolean 25 (12) 0.300 0.327 0.408 0.408 0.300 0.321 0.404 0.405

Balliol 9 (5) 0.084 0.029 0.160 0.037 0.084 0.014 0.039 0.069

Bodleian 24 (13) 0.292 0.212 0.219 0.073 0.292 0.208 0.212 0.075

Christ Church 78 (51) 0.385 0.365 0.414 0.295 0.385 0.352 0.405 0.287

Cornmarket 12 (5) 0.205 0.017 0.020 0.030 0.205 0.016 0.019 0.030

Hertford 54 (35) 0.199 0.264 0.485 0.554 0.199 0.229 0.466 0.559

Keble 7 (6) 0.295 0.211 0.240 0.352 0.295 0.153 0.268 0.260

Magdalen 54 (13) 0.022 0.024 0.020 0.022 0.022 0.022 0.023 0.021

Pitt Rivers 6 (3) 0.168 0.210 0.210 0.205 0.168 0.204 0.205 0.201

Radcliffe 221 (105) 0.142 0.266 0.597 0.765 0.142 0.183 0.544 0.749

Good Queries (All Buildings) 0.214 0.205 0.306 0.309 0.214 0.182 0.289 0.300

Good Queries (All Queries) 0.218 0.267 0.464 0.514 0.218 0.224 0.436 0.504

OK Queries (All Buildings) 0.123 0.125 0.193 0.223 0.123 0.109 0.194 0.219

OK Queries (All Queries) 0.117 0.161 0.336 0.418 0.117 0.123 0.312 0.407

Table 2. Query performance by building when singleton images are discarded or represented using large scale features. Building values

reflect mean AP scores taken on Good queries for a given building. Bolded results corresponding to the method with the best performance.

In order to demonstrate that useful features are not sensitive to poor query images, results for OK images being used as queries are also

shown. Orig. - original database, UF - useful feature database, UF+1,UF+2 - useful features with image augmentation
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