
Is Machine Colour Constancy Good Enough?

Brian Funt, Kobus Barnard and Lindsay Martin
School of Computing Science,

 Simon Fraser University
Burnaby, British Columbia

Canada V5A 1S6
{funt, kobus, colour}@cs.sfu.ca

Abstract.  This paper presents a negative result: current machine colour
constancy algorithms are not  good enough for colour-based object

recognition.  This result has surprised us since we have previously used the

better of these algorithms successfully to correct the colour balance of

images for display. Colour balancing has been the typical application of

colour constancy, rarely has it been actually put to use in a computer vision

system, so our goal was to show how well the various methods would do on

an obvious machine colour vision task, namely, object recognition.

Although all the colour constancy methods we tested proved insufficient for

the task, we consider this an important finding in itself.  In addition we

present results showing the correlation between colour constancy

performance and object recognition performance, and as one might expect,

the better the colour constancy the better the recognition rate.

1 Introduction

We set out to show that machine colour constancy had matured to the point where it

would be useful in other aspects of machine vision.  Since all the different colour

constancy algorithms require only a fraction of a second to run, they could be practical

so long as their results were sufficiently accurate. ÔSufficiently accurateÕ begs the

questionÑÒAccurate enough for what?ÓÑso we needed to choose a representative task

that would provide an answer to the question and simultaneously give us a way to

measure accuracy.

In the past the performance of colour constancy algorithms has been reported in

terms of average angular error or RMS error between the predicted and target images

[1]. In this paper, we test colour constancy by putting it to use in colour-based object

recognition. The object recognition strategy is Swain and BallardÕs Òcolour indexingÓ

method [2], which is based on comparing histograms of the distribution of image

colours.  Colour indexing fails miserably when the ambient light illuminating the

object to be recognized differs from that used in constructing the database of model

images.  Swain and Ballard suggest using colour constancy preprocessing as a way of

addressing this problem; however, it has since been solved by introducing

illumination-independent representations (e.g., relative colour instead of absolute

colour
 
[3] or by moment-based representations of colour histograms

 
[4]).

Nonetheless, if colour constancy methods work then it seems a natural task for them



to be used in preprocessing images prior to indexing as Swain and Ballard originally

suggested.

Clearly, the fact that colour indexing is sensitive to variations in the ambient

scene illumination is to be expected since its an entirely colour-based method and the

scene illumination directly affects the image RGB colour1. The question we address

here is whether or not existing colour constancy algorithms are effective enough at

generating illumination-independent colour descriptors that colour indexing will work

under the typical range of scene illuminations that are encountered in practice such as

daylight, tungsten light, and fluorescent office lighting.  Since our goal is to test

colour constancy, not to develop a new and improved object-recognition scheme,  we

use colour indexing without modification.

The outline of the paper is as follows: first colour indexing and the importance of

colour constancy for it will be discussed; then the method for colour correction given

a good estimate of the illumination will be considered; this will be followed by a brief

description of each of the colour constancy methods (greyworld, white-patch retinex,

neural net, 2D gamut-constraint, and 3D gamut-constraint); next is the experimental

setup and a description of the database of test images; following this are results and

discussion.

2 Colour Indexing and Colour Constancy

The task for a machine colour constancy algorithm is to generate illumination-

independent descriptors of the scene colours measured in terms of the camera RGB

coordinates.  The camera output is affected by the surface reflectance and the

illumination.  For the red channel we have

R(x, y) = E(∫ λ )S(x, y,λ )CR (λ )  (1)

where CR (λ )  is the spectral sensitivity of the cameraÕs red channel (similar equations

for the green and blue channels G(x, y)and B(x, y)), E(λ ) is the spectrum of the

incident illumination, and S(x, y,λ )  is the spectral reflectance of the surface.

We assume that the relative spectral power distribution of E(λ ) is spatially

invariant (its intensity may vary), although some colour constancy methods have been

developed that exploit spatial variation in illumination [5]. Surface colours as they

would have appeared under some chosen ÔcanonicalÕ illuminant will be used as

illumination-independent colour descriptors. Hence the machine colour constancy

problem can be expressed as that of deriving an image of the scene as it would appear
under the canonical illuminant RGBcanonical(x,y) given the image of the scene

RGBunknown(x,y) under the unknown illuminant.  The mapping has only to account

for the change in relative spectral power distribution between the unknown and

canonical illuminants.

1 RGB space defined as the output of our SONY DXC-930 3-CCD colour video camera.
Strictly speaking ÔcolourÕ is what a human observer perceives, but in this paper we will
also use it to refer to a pixelÕs RGB.



Many colour constancy methods estimate only the chromaticity of  the colours

under the canonical illuminant and ignore the intensity component.  There are many

ways of normalizing the RGB to eliminate the effect of intensity of which we will

use two different ones here.  Colour indexing will be based on the standard

chromaticity coordinate space:

r=R/(R+G+B);    g=G/(R+G+B) (2)

For colour correction and the 2D gamut-constraint algorithm discussed below, we will

use

r=R/B; g=G/B (3)

Colour constancy algorithms will be used to convert between chromaticity

ÔimagesÕ, in other words from the chromaticity under the unknown illumination
rgunknown(x,y) they will provide an estimate of what the chromaticity rgcanonical(x,y)

would have been under the canonical illumination.

Colour indexing is performed using 2-dimensional chromaticity histograms.

Swain and Ballard did the majority of their tests using RGB but they included some

tests with rg-chromaticity space.  The method is quite simple.  First a database of

model (chromaticity) histograms is created from images of the objects that we wish

the system to recognize. The objects need to be separated from the background before

the database is built. This segmentation can be done manually if need be.  Given an

image of an object to be recognizedÑcall it the ÔtestÕ objectÑits chromaticity

histogram is determined.  Unlike the case for the model objects, the test object does
not need to be separated from the image background. The test histogram T is then

intersected with each model histogram M in the database, where intersection is defined

as,

H(T,M) = min(T j
j=1

∑ ,Mj ) / Mj

j=1

∑ (4)

The model with the highest histogram intersection score is used to identify the

unknown object.

In our implementation the chromaticity histograms are 16x16.  This sampling

might be too coarse for a very large image database, but for our purposes the coarse

sampling should help tolerate inaccuracies in colour constancy.

3 Colour Constancy and Colour Correction

We test 5 different colour constancy algorithms: greyworld, white-patch retinex, 2D

gamut-constraint, 3D gamut-constraint and neural network.  These algorithms all

either estimate the colour of the incident illumination and then use that estimate to

transform the image colours to canonical colour descriptors, or as in the case of the

gamut-constraint algorithms, they estimate the transformation directly.  We do not

test the Maloney-Wandell [6] algorithm since previous tests [7]  have shown it to

perform very poorly, often worse than doing no colour constancy at all.



The colour correction step is in each case based on a diagonal model of

illumination change.  Other names for the diagonal model are von Kries adaptation

and coefficient rule [8]
 
. The diagonal model simply states that the effect of moving

from one scene illuminant to another can be modeled by scaling the R, G, and B

channels by independent scale factors. These scale factors can be written as the

elements of a diagonal matrix.  Previous work has shown that the diagonal model

works almost as well as a full 3x3 linear model for typical scene illuminants [9]. In

particular, for the type sensors found in our video camera, which have relatively

narrow band and non-overlapping sensitivity functions, the diagonal model works very

well.

Some of the algorithms work in a 2-dimensional chromaticity space.  In this case

a 2x2 diagonal transform can still model the change in chromaticity caused by moving

between illuminants. For the diagonal model to hold, the two-dimensional

chromaticity coordinates must be those defined by Equation 3.  Finlayson [10]
 
shows

that this choice of chromaticity coordinates is crucial in preserving, in 2-dimensional

coordinates, the diagonal model of illumination change that was present in the

original 3-dimensional coordinates.

Each of the colour constancy algorithms we test will be described briefly in turn.

The version of the greyworld algorithm we use compares the average of all the RGB
in the image to a 50% ideal grey under the canonical, i.e., to RGBgrey  given by

RGBgrey=(
1
/2)*RGBcanonical.  The diagonal scale factors for colour correction then

are  simply Rgrey/Raverage, Ggrey/Gaverage and Bgrey/Baverage.
The white-patch retinex algorithm compares the RGB of white under the

canonical to the maximum found in each of the 3 image bands separately.  There are

many different variants of retinex and our white-patch version corresponds to the

infinite-path-without-reset case described by Brainard and Wandell [11].  It differs from

the retinex described by McCann et al. [12]  Once the maximum in each colour

channel is found, the diagonal scale factors for colour correction are simply
Rcanonical/Rmax, Gcanonical/Gmax and Bcanonical/Bmax.

Previously studies [1] have shown the various gamut-constraint methods [8, 10,

13] to be some of the best performing machine colour constancy methods. The

gamut-constraint method derives constraints on the ambient illumination by

evaluating the differences between the gamut of colours found in the image and those

of a canonical gamut. For our experiments we constructed the canonical gamut from a

database of hundreds of reflectance spectra from a wide variety of common objects.

The  canonical gamut is given by the convex hull of the set of RGB values that

would have arisen if these reflectances were to be illuminated by the canonical

illuminant. To understand the gamut-constraint method, consider an RGB triple a

arising in an image of a scene under some unknown illumination.  What does aÕs

presence reveal about the illumination?  Since the canonical gamut represents the full

set of RGBÕs ever expected to occur, the same spot under the canonical illuminant

must correspond to some RGB inside the canonical gamut. However, since a has been

obtained under an illuminant different from the canonical one, it may no longer lie

within the canonical gamut.  The set of diagonal transformations mapping a back to

the canonical gamut represents the set of possible unknown illuminations.
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Figure 1. Solid lines show the
convex hull of four diagonal
mappings (0.33,0.4), (0.67,1.0),
(1.33,0.8) and (1.33,0.6) that
transform chromaticity (3,5) to the
4 vertices of the canonical gamut.
Dashed lines show convex hull of
mappings taking (2,4) to the
canonical gamut.  The mappings
d e s c r i b i n g  t h e  u n k n o w n
illumination are therefore restricted
to the intersection (shaded) of the
two convex sets

Consider as a simple example a database having only 4 reflectances resulting in

the 4 chromaticities (1,2), (2,5), (4,4), (4,3) under the canonical illuminant. The

canonical gamut is defined by the convex hull of these 4 points, which in this

example happen to all be on the hull. Intensity in this case is eliminated by moving

to the two-dimensional chromaticity coordinates defined in Equation 3.

Consider an image RGB triple, a=(6,10,2), converted to chromaticity coordinates

(3,5), which turns out not to lie within the canonical gamut. What does it take to

map it to the canonical gamut?  If we suppose that  a corresponds to one of the 4

known reflectances, say that represented by (1,2) in the canonical gamut,  then  to

map it  there requires a scaling of the first component by 0.33 and the second

component by 0.4. On the other hand, it might correspond to the canonical gamut

point (2,5) in which case a scaling of 0.67 and 1.0 is needed. The other 2 canonical

gamut points yield 2 more scaling pairs.  Figure 1 plots the four mappings as filled

diamonds.

Of course it might have been the case that a corresponds to one of the points

inside the convex hull of the canonical gamut.  However, only linear scalings are

involved, so mapping to those interior gamut points would only result in scalings

within the interior of the convex hull (solid lines) of the mappings in Figure 1. The

convex hull of the set of mappings, therefore, represents the complete set of

mappings that could take a into the canonical gamut. . Each point within the convex

hull in Figure 1 represents a different hypothesis about the unknown illumination.

Each  point models the change in (r,g) created by moving from the canonical

illumination to a possible unknown illumination.

The convex hull in Figure 1 therefore expresses the constraints that finding a in

the image imposed on what the unknown illumination might be.  The illumination

must be represented by one of the points within the convex hull because these are all

the illuminations that could possibly have resulted in one of the colours in the

canonical gamut appearing as a.

One RGB a yields constraints on the unknown illumination and a second one b

will yield further constraints. Suppose the second chromaticity is (2,4), then the

mappings taking b to the hull vertices of the canonical gamut are as shown by the



open circles in Figure 1 superimposed on the mappings for a. Since both a and b

appear in the image, and by assumption, both scene points are lit by the same

unknown illumination, the unknown illumination must be represented by one of the

mappings in the intersection of the two convex hulls. All other candidate

illuminations are eliminated from consideration.
The convex hull of the set of distinct rgÕs in the image is called the image gamut.

Each vertex of the image gamut will yield some new constraints on the unknown

illumination that can be intersected with the constraints obtained from the other

vertices. Once the mapping constraint set has been established some heuristic method

must be used to pick one of the remaining candidates as the estimate of the unknown

illumination. We have used the hull centroid as the final estimate.

ForsythÕs CRULE
 
[8] gamut-constraint method does not consider the possibility

of illumination constraints. The experimental results reported below are based on the

gamut-constraint method with added illumination constraints [10]. Measurement of

lots of different light sources reveals quite a restricted gamut. Our sampling of

illuminants includes 100 measurements of illumination around the university campus,

including both indoor and outdoor illumination. Some inter-reflected light was

included such as that from concrete buildings and light filtering through trees, but

illumination that was obviously unusual was excluded. The  resulting illumination

gamut is reformulated in terms of the set of diagonal transformations mapping each

illuminant to the canonical illuminant. In this form it can be intersected with the

constraints from the image gamut to further constrain the estimate of the unknown

illumination.

Gamut-constraint methods can be carried out either in a 2D chromaticity space or a

3D RGB space.  The 3D gamut-constraint method is just like the 2D case except that

the constraint sets are now polyhedral convex hulls.  Potentially the 3D case can be

used to estimate the surface brightness in addition to surface chromaticity, but for our

experiments we do not require the brightness information, so after running the 3D

method we convert back to 2D chromaticity space. It should be noted that carrying out

the gamut-constraint method in 3D and converting the result to 2D is not equivalent

to carrying it out in 2D in the first place.  In addition, when the 3D method is being

used to estimate chromaticity, the final estimate is made by maximizing the volume

of the intersection set. This method of choosing the final estimate originates in [8]

and gives better chromaticity estimates than the hull centroid in the 3D case.

4 Neural Network Colour Constancy

Previously reported results [1] have shown good performance using a neural network

for colour constancy. The network estimates the illuminant chromaticity based on the

gamut of colours present in the image. The neural network is a Perceptron [14] with

one hidden layer and an input layer consisting of 1000 to 2000 binary inputs

representing the chromaticity of the RGBÕs present in the scene. The hidden layer has

a much smaller size, usually about 16-32 neurons and the output layer is composed of

only two neurons. Each image RGB from a scene is transformed into standard rg-

chromaticity space (Equation 2) which then is coarsely, but uniformly, discretized and



presented to the networkÕs input layer. The input is binary indicating either the

presence or absence of the corresponding chromaticity in the image. The output layer

of the neural network produces the values r and g (in the chromaticity space) of the

illuminant. The output values are real numbers ranging from 0 toÊ1.

We trained the network using a back-propagation algorithm without

momentum[15] on thousands of synthetic images generated by randomly selecting 1

illuminant and from 1 to 60 reflectances from our database of surface reflectances and

illuminants, and then integrating them with the with the spectral sensitivity functions

of our camera in accordance with Equation 1. During the learning phase the network is

provided the image data along with the chromaticity of its illuminant.

5 The Test Images

The images used for our experiments are of 11 different, relatively colourful objects.

(Figure 2 shows the objects). The pictures were taken with a Sony DXC-930 3-CCD

colour video camera balanced for 3200K lighting with the gamma correction turned off

so that its response is essentially a linear function of luminance. The RGB response

of the camera was calibrated against a Photoresearch 650 spectraradiometer. The

aperture was set so that no pixels were clipped in any of the three bands (i.e.

R,G,B<255). Since most of the images had some specular highlights, reducing the

aperture in this manner left much of each image quite dark. To overcome this problem

we also extended the dynamic range of the images roughly 5-fold by averaging 25

frames (and storing the result as floating point images). Recording the images in this

way produced a more versatile image database since it can then be used to simulate

both the effect of brightening the images by increasing the aperture and the effect of

clipping bright spots.

We took images under 5 different illuminants using the top section (the part

where the lights are mounted) of a Macbeth Judge II light booth. The illuminants

were the Macbeth Judge II illuminant A, a Sylvania Cool White Fluorescent, a

Philips Ultralume Fluorescent, the Macbeth Judge II 5000 Fluorescent, and the

Macbeth Judge II 5000 Fluorescent together with a Roscolux 3202 full blue filter,

which produced a illuminant similar in colour temperature to a very deep blue sky.

The effect created by changing between these illuminants can be seen in Figure 3

where the same ball is seen under each of the illuminants.  The illuminant spectra are

plotted in Figure 4.

Two sets of images were taken. For the "model" set, we took images of each

object under each of the five illuminants, without moving the object. In other words,

we have 11 groups of 5 registered images.   The "test" set is similar, except that the

object was purposefully moved before taking each image. With these two sets of

images we are then able both to evaluate colour indexing under different scene

illuminants with and without changes in object position. In total, 110 images were

used.



Figure 2. The 11 objects in the image database as seen under a single illuminant

Figure 3. Ball-2 as seen under 4 of the 5 illuminants
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Figure 4. Spectra of the five test illuminants as measured by a Photoresearch
spectrometer

Before using the images, they were first adjusted according to our camera

calibration model. To do this we first subtract the variation of the background from

the average background level, as determined by averaging a large number of images

with the lens cap on. Then we adjusted pixels darker than a certain amount with a pre-

established look-up table to make up for a small non-linearity in the camera. Finally,

we subtracted the per-channel intercept of the camera linearity data from the images.

The result is an image which is closer to one taken by an "ideal" camera, under the

model that the RGB values are simply integrals as in Equation 1 of the incoming

spectra multiplied by sensor sensitivity functions. When computing image

histograms, the data is further cleaned up by averaging 5-by-5 blocks of pixels and

excluding very dark pixels.
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Figure 5. Object recognition performance as a function of colour constancy error.

7 Results

Our experiments confirm the obvious hypothesis that colour constancy is likely to

improve colour indexing in situations where the illumination impinging on the test

object is different from that used in constructing the model database. Figure 5 shows a

clear correlation between colour indexing performance and colour constancy error.

The recognition performance measure used in Figure 5 is based on a weighted

average of  colour indexingÕs rankings.  During the recognition phase, colour indexing

calculates match strengths for each model in the database. If the strongest match is in

fact the correct object, then we say that we have a rank one match. If the correct object



is the algorithmÕs second choice, then we have a rank two match, and so on. For each

algorithm, we obtain a percentage of the total (220 possible) matches by rank. To

distill these results into a single representative value, we use a weighted sum of the

percentages of the first three ranks: the weight for rank one is one, the weight for rank

two is 1/2, and the weight for rank three is 1/3. Matches beyond rank 3 are considered

failures and count as zero.

The measure for colour constancy error is based on a comparison of corrected and

ÒtargetÓ images. Using the set of registered model images, we compute the root mean

square difference on a pixel-by-pixel basis taken across the entire image in

chromaticity between the target imageÑthe one taken under the canonical

illuminantÑand the colour corrected image. Of the 5 illuminants, 4 are adequate for

use as a canonical illuminant. One illuminant creates such a blue cast in the images

that many of the red and green intensities are very low and possibly less reliable. As

result for each colour constancy algorithm we obtain 4x55=220 colour constancy

results, which are averaged to produce the data plotted as filled diamonds in Figure 5.

As noted above, our data set has an extended dynamic range with the images

being purposefully underexposed in order to prevent any clipping. Visual checking by

an impartial colleague suggested that exposure levels for normal viewing would be on

average 2.5 times higher. Thus we simulated image capture at this level by scaling by

2.5 and thresholding anything greater than to 255 to 255.  We then re-ran the

matching experiments; the results are plotted with filled triangles in Figure 5.

Part of our motivation for experimenting with the clipping level was the

unexpectedly good performance of  the white-patch retinex method which was

comparable to the gamut-constraint and neural net methods This was surprising given

comparative results reported by Funt et al. [1].  Upon reflection, however, one might

expect retinex to do relatively well given the special unclipped nature of our images.

Clipping often is the cause of RetinexÕs failure because it relies on the brightest

pixels being accurate, and clipped pixels clearly are not accurate. Specular highlights

provide excellent clues to retinex as to the colour of the illuminant, again, providing

they are not clipped.  Our images generally do contain unclipped specularities. Even

without specularities, preserving the maxima in each channel definitely will increase

the performance of white-patch Retinex.

Under the more usual case, where either the human user or automatic aperture

control has adjusted the capture process to obtain a pleasing image, there are

invariably clipped pixels. In this case retinex starts to break down because by

definition, the maximum value in at least one channel is a bad data point. To verify

that this degradation does occur, we simulated clipping at various levels. The result is

plotted in Figure 6. Here it is clear that as the clipping level increases, the retinex

algorithm degrades much more quickly than the others, and when clipping is at the

level of 75-100Ñconsistent with the scaling of 2.5 used aboveÑthen its performance

is close to previously reported results. The performance of all the algorithms in the

non-clipped case is shown in Table 1.
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Algorithm RMS Error

Nothing 0.1114

Actual 0.0306

White-Patch Retinex 0.0625

Greyworld 0.0975

2D Gamut-Constraint 0.0649

3D Gamut-Constraint 0.0555

Neural Net 0.0634

Table 1: Colour Constancy Error by Algorithm: The error is the RMS difference in
chromaticity between mapped image and registered target image. The results are the average
of 220 results, being the estimated maps for 55 images to each of 4 illuminants.
"Nothing" denotes doing no colour constancy and simply using the input image as the
output image.  "Actual" denotes using the true unknown illuminant RGB to do colour
correction based on the diagonal model.

Rank 1 2 3 4 5 6 7 8 9 1 0 1 1

Nothing 28.4 10.2 9.1 9.1 8.5 6.8 4.5 6.2 5.7 4.5 6.8

Perfect 97.7 2.3

Actual 92.3 5.5 1.4 0.9

Retinex 67.7 8.6 5.9 1.8 2.7 1.8 1.4 3.2 5.5 0.9 0.5

Grey world 46.4 9.1 7.3 8.2 2.3 5.0 1.8 2.3 5.9 9.5 2.3

2D Gamut 60.0 10.9 8.6 5.5 1.8 3.6 2.3 2.3 1.8 1.4 1.8

3D Gamut 67.3 8.6 5.5 2.3 2.7 3.2 3.2 1.8 2.3 0.5 2.7

Neural net 61.4 7.7 7.7 4.1 1.8 2.3 1.4 1.4 1.8 5.9 4.5

Table 2: Number of matches by rank in percent. The total number of attempted matches is
220 for each except for "perfect" where only 44 matches make sense. ÒPerfectÓ indicates
the case where the test illumination is the same as the canonical illumination and hence
there is exact Òcolour constancy.Ó

Our original question was: Is machine colour constancy good enough? Based on

our results, we feel that the answer is no. Table 2 shows the indexing performance of

colour indexing using each algorithm for preprocessing. The best performer finds only

67% of the objects (rank 1 matches); whereas, the results  (92% rank 1) based on

using the actual illuminant RGB for colour correction indicate that both colour

indexing and the diagonal model of illumination change will together support much

better performance. Thus we conclude that we still have some distance still to go

before machine colour constancy is up to the task of supporting object recognition.

In terms of our methodology, we feel that we gave machine colour constancy

every reasonable chance, and thus the results should be considered closer to the Òbest

caseÓ than the Òworst caseÓ. For example, we used illumination with spatially



uniform chromaticity and were careful to remove noise through temporal and spatial

averaging. We have also taken some trouble to develop a good camera model as

required by some of the algorithms. Finally, the database was relatively small, and we

avoided bad matches due to colours appearing coincidentally in the background by

placing the objects on black cloth.

Having said that, we wish to emphasize some aspects of the experiment that were

not open to compromise. First, and foremost, the data is real image data, and the

objects are random everyday objects as opposed to, for example, planer non-specular

ÒMondriansÓ. In particular, the object database includes several objects with a

significant fluorescent component (e.g., the Tide box image).  The fluorescent

component does not change in the same way as the matte component which presents a

problem for the diagonal model.  It is perhaps also of some significance that the

images were taken by a research assistant who had little understanding of the intended

purpose of the experimentÑpossibly eliminating any unintended bias in the choice of

objects to test. Finally, the illuminants represent quite a dramatic range in terms of

what is usually encountered in common natural lighting and standard man-made

lighting situations without adding the unusual effects of things like heavily filtered

theater lights.

8 Conclusion

We tested machine colour constancy algorithms using the computer vision task of

colour-based object recognition based on colour histogram intersection.  The colour

constancy algorithms did not perform as well as expected based on previous results

with colour balancing images. We expected that colour constancy processing would

provide colour descriptors that would be accurate enough that colour indexing

performance would be close to that obtained when there is no change in the ambient

illumination. As shown in Table 2, this is did not turn out to be the case. Colour

constancy pre-processing did, however, yield a significant improvement over doing no

pre-processing, it simply was not enough of an improvement. Figure 5 shows that

the degree of improvement in histogram matching appears almost linearly related to

the RMS error in colour prediction.

The results of Brainard et al. [16] indicate that human colour constancy is not all

that accurate and state (p. 2101) ÒOur results represent neither complete constancy nor

a complete absence of constancy.Ó  The results of our experiments raise the question

as to whether or not human colour constancy would be sufficiently accurate for

histogram-based object recognition?

We take the current state of machine colour constancy performance as a challenge

for future research. It is clear that without RMS errors in colour prediction under 0.04,

a typical vision task such as object recognition can not be based on absolute

descriptors (as opposed to relative ones, like ratios) of colour.
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