
Machine Vision and Applications (1993) 6"35-49 Machine Vision and 
Applicat ions 
�9 Springer-Verlag 1993 

A parallel stereo algorithm that produces dense depth maps 
and preserves image features* 
Pascal Fua 1,2 

1 INRIA Sophia-Antipolis, 2004 Route des Lucioles, F-0656 Valbonne Cedex, France 
2 SRI International, 333 Ravenswood Avenue, Menlo Park, CA 94025, USA 

Abstract. To compute reliable dense depth maps, a stereo al- 
gorithm must preserve depth discontinuities and avoid gross 
errors. In this paper, we show how simple and parallel tech- 
niques can be combined to achieve this goal and deal with 
complex real world scenes. Our algorithm relies on correla- 
tion followed by interpolation. During the correlation phase 
the two images play a symmetric role and we use a valid- 
ity criterion for the matches that eliminate gross errors: at 
places where the images cannot be correlated reliably, due 
to lack of texture of occlusions for example, the algorithm 
does not produce wrong matches but a very sparse dispar- 
ity map as opposed to a dense one when the correlation 
is successful. To generate a dense depth map, the informa- 
tion is then propagated across the featureless areas, but not 
across discontinuities, by an interpolation scheme that takes 
image grey levels into account to preserve image features. 
We show that our algorithm performs very well on difficult 
images such as faces and cluttered ground level scenes. Be- 
cause all the algorithms described here are parallel and very 
regular they could be implemented in hardware and lead to 
extremely fast stereo systems. 
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larization - Stereo 

1 Introduction 

Over the years numerous algorithms for passive stereo have 
been proposed. They can roughly be classified in two cate- 
gories (Barnard and Fischler 1982): 

1. Feature-based. These algorithms extract features of inter- 
est from the images, such as edge segments or contours, and 
match them in two or more views. These methods are fast 
because only a small subset of the image pixels are used, but 
may fail if the chosen primitives cannot be reliably found in 
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the images; furthermore they usually only yield very sparse 
depth maps. 
2. Area-based. In these approaches, the system attempts to 
correlate the grey levels of image patches in the views being 
considered, assuming that they present some similarity. The 
resulting depth map can then be interpolated. The underlying 
assumption appears to be a valid one for relatively textured 
areas; however, it may prove wrong at occlusion boundaries 
and within featureless regions. 
Alternatively, the map can be computed by directly fitting 
a smooth surface that accounts for the disparities between 
the two images. This is a more principled approach since 
the problem can be phrased as one of optimization; how- 
ever, the smoothness assumptions that are required may not 
always be satisfied. 

All these techniques have their strengths and weaknesses 
and it is difficult to compare their merits since few re- 
searchers work on similar data sets. However, one can get a 
feel for the relative performance of these systems from the 
study by Giielch (1988). In this work, the author has assem- 
bled a standardized data set and sent it to 15 research insti- 
tutes across the world. It appears that the correlation-based 
system developed at SRI by Hannah (1988) has produced 
the best results both in terms of precision and reliability. 
This system achieves precisions in the order of half a pixel 
in disparity, but, unfortunately, only matches a very small 
proportion, typically less than 1%, of the image points. 

In this paper we propose a correlation algorithm that re- 
liably produces far denser maps with fery few false matches 
and can therefore be effectively interpolated. In the next sec- 
tion we describe our hypothesis generation mechanism that 
attempts to match every point in the image and uses a con- 
sistency criterion to reject invalid matches. This criterion is 
designed so that when the correlation fails, instead of yield- 
ing an incorrect answer, the algorithm returns NO answer. As 
a result, the density of the computed disparity map is a very 
good measure of its reliability. The interpolation technique 
described in the section that follows combines the depth 
map produced by correlation and the grey level information 
present in the image itself to introduce depth discontinuities 
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and fit a surface that is piecewise smooth. These algorithms 
have proven very effective on real data. Their parallel im- 
plementation on a Connection Machine s relies only on lo- 
cal operations and on nearest neighbor communication; they 
could be ported to a dedicated architecture, thereby making 
fast and cheap systems possible. 

2 Correlation 

Most correlation-based algorithms attempt to find interest 
points on which to perform the correlation. While this ap- 
proach is justified when only limited computing resources 
are available, with modem hardware architectures and mas- 
sively parallel computers it becomes possible to perform the 
correlation over all image points and retain only matches that 
appear to be "valid". The hard problem is then to provide 
an effective definition of what we call validity, and we will 
propose one below. 

In our approach, we compute similarity scores for every 
point in the image by taking a fixed window in the first image 
and a shifting window in the second. The second window 
is moved in the second image by integer increments along 
the epipolar line and an array of scores is generated for inte- 
ger disparity values. We use a measure based on normalized 
mean-squared differences of grey level values. In the remain- 
der of the paper, following Brown and Ballard (1982), we 
will refer to this score s as correlation score and take it to 

be: 

s = max(0, 1 - c) (1) 

~ .  -~ (( Ii (x +i,y+J)- ~l )-( I2(x +dx +i'y+dy+ j ) -  ~2) )2 
e 

i ( ~ i  j(II(x+i,y+j)-Ii)2)(~i j(Iz(x+dx+i,y+dy+j)-I2) 2) 

where I1 and I2 are the left and right image intensities, Ii ,  
are their average value over the correlation window and 

dx, dy represent the displacement along the epipolar line. 
The measured disparity could then be taken to be the one 
that provides the highest value of s;. In fact, to compute 
the disparity with subpixel accuracy, we fit a second degree 
curve to the correlation scores in the neighborhood of the 
optimum and compute the optimal disparity by interpolation. 

For comparison's sake, we have also implemented a nor- 
malized cross correlation measure that occasionally yields 
slightly different results. However, after applying the smooth- 
ing algorithm of Sect. 3, the depth images computed using 
the mean-squared differences method and normalized cross 
correlation become undinstinguishable. 

Thanks to the subpixel interpolation, both methods yield 
disparities with precisions of better than a pixel on average. 
Their respective behaviors are discussed briefly in Appendix 
B. 

1 Trademark: TMC Inc. 
2 Imposing s > 0 amounts to choosing a very weak threshold on 
the correlation measure 
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Fig. 1. Consistent vs inconsistent matches: the two rows represent 
pixels along two epipolar lines of It and I2 and the arrows go 
from a point in one of the images towards the point in the other 
image that maximizes the correlation score. The match on the left 
is consistent because correlating from I1 to I2 and from I2 to I1 
yields the same match, unlike the matches on the right, which are 
inconsistent 

2.1 Validity of the disparity measure 

As shown by Nishihara and Poggio (1983), the probability of 
a mismatch goes down as the size of the correlation window 
and the amount of texture increase. However, using large 
windows leads to a loss of accuracy and the possible loss of 
important scene features. For smaller windows, the simplest 
definition of validity would call for a threshold on the corre- 
lation score; unfortunately such a threshold would be rather 
arbitrary and, in practice, hard to choose. Another approach 
is to build a correlation surface by computing disparity scores 
for a point in the neighborhood of a prospective match and 
checking that the surface is peaked enough (Anandan 1989). 
It is more robust, but also involves a set of relatively ar- 
bitrary thresholds. Here we propose a definition of a valid 
disparity measure in which the two images play a symmet- 
ric role, and that allows us to use small windows reliably. 
We perform the correlation twice by reversing the roles of 
the two images and consider as valid only those matches for 
which we measure the same depth at corresponding points 
when matching from I1 into I2 and I 2 into Is. As shown in 
Fig. 1, this can be defined as follows. 

Given a point Ps in Is, let P2 be the point of /2 located on 
the epipolar line corresponding to PI such that the windows 
centered on P1 and P2 yield the optimal correlation measure. 
The match is valid if and only if P1 is also the point that 
maximizes the scores when correlating the window centered 
on P2 with windows that shift along the epipolar line of Is 
corresponding to P2. 

For example, the validity test is likely to fail in presence 
of an occlusion. Let us assume that a portion of a scene is 
visible in Is but not /2. The pixels in I1 corresponding to 
the occluded area in I2 will be matched, more or less at ran- 
dom, to points of i2 that correspond to different points of 
I1 and are likely to be matched with them. The matches for 
the occluded points will therefore be declared invalid and 
rejected. We illustrate this behavior using the portion of the 
tree scene of Fig. 2 outlined in Fig. 2a. Different parts of the 
ground between the two trees and between the trees and the 
stump are occluded in Fig. 2b and c. In Fig. 3a and b, we 
show the computed disparities for this image window after 
correlation with the images shown in Fig. 2b and c, respec- 
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Fig. 2. a An outdoor scene with two trees and a stump, b,c The same scene seen from the left (b) and the right (c) so that different parts 
of the ground are occluded by the trees 

Fig. 3. a The result of matching 2a and 2b for window of 2a delimited by the white rectangle, b The result of matching 2a and 2c for the 
same windows, e The merger of four disparity maps computed using the image of Fig. 2a as a reference frame, the two other images of 
Fig. 2, and two additional images. Invalid matches appear in white and become almost dense in occluded areas of a and b. The closest 
areas are darker; note that there are few false matches although the correlation windows used in this case are very small (3 x 3) 

tively. The points for which no valid match can be found 
appear in white and the areas where their density becomes 
very high correspond very closely to the occluded areas for 
both pairs of  images. These results have been obtained using 
3 • 3 correlation windows; these small windows are suffi- 
cient in this case because the scene is highly textured and 
gives our validity test enough discriminating power to avoid 
errors. We will elaborate on this point in Appendix A. For  
an image like this it is a distinct advantage to be able to 
use small windows, because the correct depth of the gound 
behind the trees could not be computed with larger ones that 
would include the tree trunks. 

We use the face shown in Fig. 4 to demonstrate another 
case in which the validity test rejects false matches. The 
epipolar  lines are horizontal and in Fig. 4d we show the re- 
sulting disparity image, using 7 x 7 windows, in which the 
invalid matches appear in black. In Fig. 4e we show another 
disparity image computed after one of  the images has been 
shifted vertically by two pixels, thereby degrading the cali- 
bration and the correlation. Note that the disparity map be- 
comes much sparser but that no gross errors are introduced. 
In practice, we take advantage of  this behavior for poorly 

calibrated images: we compute several disparity maps by 
shifting one of the images up or down and retaining the 
same epipolar lines, 3 thereby replacing the epipolar line by 
an epipolar  band, and retain the valid matches with the high- 
est correlation score. 

In the two examples above, we have shown that when 
the correlation between the two images of  a stereo pair is 
degraded our algorithm tends, instead of  making mistakes, 
to yield sparse maps. This actually is a very generic behavior 
that we further discuss below and in Appendix A. 

Generally speaking, correlation-based algorithms rely on 
the fact that the same texture can be found at corresponding 
points in the two images of  a stereo pair. These algorithms 
are known to fail when: 

- The areas to be correlated have little texture. 

- The disparities vary rapidly within the correlation win- 
dow. 

- There is an occlusion. 

If  we consider the local image texture as a signal to be 
found in both images, we can model  these problems as noise 

3 Assumed not to be exactly vertical 
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Fig. 4. a Left and b right 256 x 256 images of a face. c The disparity map obtained by merging the results computed at two levels of 
resolution, d Disparity map computed at the highest resolution, e Disparity map computed at the highest resolution after shifting the right 
image up by two pixels, f Disparity map computed at the lower resolution 

Fig. 5. a,b Stereo pair of the Martian surface as seen by a Viking lander, e The disparity map after removal of isolated matches, d The 
interpolated depth map with lines of constant w overlaid in white. The black  areas  are unknown and correspond mostly to areas that are 
not visible in both images and to the sky. In the depth map, only pixels in areas where the density of valid matches is high are assumed 
to be known 

that corrupts the signal. In Appendix A, we use synthetic 
data to show that as the signal-to-noise ratio decreases, or 
equivalently as the problems mentioned above become more 
acute, the performance of  our correlation algorithm degrades 
'gracefully '  in the following sense: 

As the signal is being degraded, the density of matches 
decreases accordingly but the ratio of  correct to false matches 
remains high until the disparity map becomes very sparse. 

In other words, a relatively dense disparity map is a g u a r a n -  

t ee  that the matches are correct, at least up to the precision 
allowed by the resolution being used. In this context we also 
show the effectiveness of a very simple heuristic: if  we reject 



39 

not only invalid matches but also isolated valid matches, we 
can increase even more the ratio of correct/incorrect matches 
without losing a large number of the correct answers. As an 
example of a possible application of this desirable feature, 
in Fig. 5, we show a stereo pair of images of the Martian 
surface produced by the Viking landers. Note that the part 
of the ground that can be seen in both images simultane- 
ously is relatively small and that the correlation algorithm 
naturally produces an almost dense map in this area and an 
empty one elsewhere. Using this data and the interpolation 
scheme described in the following section, a mobile robot 
could compute a very reliable DTM in that area and know 
that it does not know the shape of the ground in the other 
areas, which, for safety reasons, would obviously be useful. 

Other stereo systems (e.g. Hannah 1988; Meygret et al. 
1990) include a validity criterion similar to ours but use it 
as only one among many others. In our case, because we 
correlate over the whole image and not only at interest or 
contour points, we do not need the other criteria and can rely 
on density alone. However, our validity test depends on the 
fact that it is improbable to make the same mistake twice 
when correlating in both directions. Thus, it can potentially 
be fooled by repetitive patterns (see Fig. C4 in Appendix C), 
a problem we have not addressed yet. 

2.2 Hierarchical approach 

To increase the density of our potentially sparse disparity 
map, we use windows of a fixed size to perform the match- 
ing at several levels of resolution, 4 which is almost equiv- 
alent to matching at one level of resolution with windows 
of different sizes (Kanade and Okutom, 1990) but compu- 
tationally more efficient. More precisely, as shown by Burt 
et al. (1982), it amounts to performing the correlation using 
several frequency bands of the image signal. 

As discussed in Appendix B, the best precisions are ob- 
tained for the smaller windows or, equivalently, the higher 
levels of resolution. We therefore merge the disparity maps 
by selecting, for every pixel, the highest level of resolution 
for which a valid disparity has been found. In Fig. 4c we 
show the merger of the disparity maps for two levels of 
resolution. This merger is dense and exhibits more of the 
fine details of the face than the map of Fig. 4e computed 
using only the coarsest level of resolution. The reliability of 
our validity test allows us to deal very simply with several 
resolutions without having to introduce, as in Kanade and 
Okutomi (1990) for example, a correction factor accounting 
for the fact that correlation scores for large windows tend to 
be inferior to those for small windows. 

The computation proceeds independently at all levels of 
resolution, and this is a departure from traditional hierar- 
chical implementations that make use of the results gener- 
ated at low resolution to guide the search at higher resolu- 
tions. While these are good methods for reducing compu- 
tation time, they assume that the results generated at low 

4 Computed by subsampling gaussian smoothed images 

resolution are more reliable, even if less precise, than those 
generated at high resolution. This is a questionable assump- 
tion, especially in the presence of occlusions. For example, 
in the case of the trees of Fig. 2, it could lead to a com- 
puted distance for the area between the trunks that would 
be approximately the same as that of the trunks themselves, 
which would be wrong. In Appendix A we show that, in the 
absence of repetitive patterns, the output of our algorithm is 
not appreciably degraded by using the large disparity range 
that our approach requires. 

2.3 Using more than two images 

As suggested by many researchers, including Faugeras 
(1988) and Moravec (1981), more than two images can and 
should be used whenever practical. When dealing with three 
images or more, we take the first one to be our reference 
frame, compute disparity maps for all pairs formed by this 
image and one of the other images, and then merge these 
maps in the same way as those computed at different levels 
of resolution. In this way, we can generate a dense disparity 
map, such as the one of Fig. 3c: the three images of Fig. 2 
belong to a series of five taken by a horizontally moving 
camera. Taking the image of 2a as our reference frame, we 
merge the four resulting disparity maps, each of them rela- 
tively sparse, to produce a dense map with few errors. 

In particular, we have been using the INRIA Ayache and 
Lustman (1987) three-camera stereo system. To simplify the 
implementation of our algorithm on a SIMD parallel ma- 
chine, the images are first reprojected (Ayache and Hansen 
1988) onto the same image plane so that all epipolar lines 
become parallel. Computing the correlation scores then in- 
volves the same sequence of operations at every pixel and 
becomes easy to implement. 

Ayache and Hansen (1988) show that the images can 
be rectified in such a way as to make the epipolar lines 
horizontal or vertical, at the expense of a potentially severe 
deformation. We have found this unnecessary since diagonal 
epipolar lines can be handled as easily as horizontal ones. 
We simply take the reprojection plane to be a plane that 
is parallel to the one passing by the optical centers of the 
three cameras. Our rectification scheme can be understood 
as the one that yields parallel epipolar lines with a minimal 
deformation of the images. This approach is described in 
detail in Appendix C. 

2.4 Implementation issues 

The most severe drawback of our approach is its high com- 
putational requirement. Our algorithm is implemented on a 
Connection Machine. 5 For the image sizes we typically deal 
with, such a machine is fast enough to make this problem 
irrelevant for research purposes (Table 1). Our implementa- 
tion on a SPARCstation 26 workstation runs in approximately 

Trademark: TMC Inc. 
Trademark: SUN Inc. 
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Fig. 6. a Interpolated depth map for the face shown in Fig. 4. b -d  Shaded views generated 
by shining a light from three different directions 

2min  30 s on 256 x 256 images for any window size and 
a disparity range of  50. We are also porting this code to 
a multi-DSP 96002 board developed joint ly by INRIA and 
MATRA-MSII  7 and expect run times of  approximately 15 s 

for similar images at a cost much lower than that of  a Con- 
nection Machine. Heuristics, such as a more conventional 
use of the hierarchy, would obviously need to be used for a 
faster implementation, but they are not required for any other 
reason than computational efficiency. Furthermore, correla- 
tion is a very regular algorithm that can be implemented in 
hardware (Nishihara 1984) if  speed is required. We are cur- 
rently considering such a hardware implementation of our 
algorithm and a preliminary study shows that, for the corre- 
lation itself, computation times on the order of a second or 
less are now well within reach. For more details, we refer the 
interested reader to an internal report (Cailler et al. 1990). 

In this section we have presented a hypothesis generation 
mechanism that produces depth maps that are correct where 
they are dense and unreliable only where they become very 
sparse. Typically these sparse measurements occur in feature- 
less areas that are usually smooth, and at occlusion bound- 
aries where one expects to find an image intensity edge. To 
compute dense depth maps, one must therefore interpolate 
those measures in such a way as to propagate the depth 
information across the featureless areas and preserve depth 
discontinuities. In the next section, we describe the model  
and algorithm we use to perform the interpolation. 

7 Funded under contract Esprit P940 

Table 1. Computation times required to correlate two images over 
a range of 50 disparities using a CM2 with a floating point ac- 
celerator and 8000 processors. The percentages represent the time 
actually spent computing on the CM, the remainder being devoted 
to communicating with the SUN front end. The CM computing time 
scales linearly with the size of the images and the number of pro- 
cessors while the communication overhead remains approximately 
constant 

Window size 256 x 256 512 x 512 

3 x 3 1.75 s (79%) 5.37 s (96%) 
5 x 5 3.14 s (83%) 10.13 s (96%) 
7 x 7 5.03 s (85%) 17.8 s (96%) 

3 Interpolation 

We model the world as made of  smooth surfaces separated 
by depth discontinuities. We also assume that these depth 
discontinuities produce changes in grey level intensities due 
to changes in orientation and surface material. We first de- 
scribe a simple interpolation model  that is well suited to 
images with sharp contrasts, and then propose a refinement 
of that scheme for lower contrast scenes. 

3.1 Simple interpolation model 

Ideally, if we could measure with absolute reliability the 
depth, wO, at a number of  locations in the image, we could 
compute a depth image w by minimizing the following cri- 
teflon: 
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f leOw"~2 (OW) 2 
c :  (2) 

s = 1 if w0 has been measured, 0 otherwise 

Ax = 0 if horizontal discontinuity, cx otherwise 

Ay = 0 if vertical discontinuity, c v otherwise 

where Cx and c v are two real numbers that control the amount 
of smoothing. 

As discussed in the previous section, when a valid dis- 
parity can be found, it is reliable and can be used, along with 
the camera models, to estimate w0; we then take s to be the 
correlation score of Eq. 1. As shown by Szeliski (1989), this 
amounts to assuming that w0 is sampled from the true dis- 
tance w with a noise whose variance is proportional to I / s ,  
i.e. 

w0 = w + N(0, S -1) (3) 

- l o g ( p ( w 0 l w ) )  = 1/2 log(s) + 1/2s(w - wO), 

and the Ow/Ox and Ow/Ox terms come from assuming that 
the noise is correlated. 

Assuming that changes in reflectance can be found at 
depth discontinuities, we replace the As and A v of Eq. 2 by 
terms that vary monotonically with the image gradients in 
the x and y directions. In fact, we have observed that the ab- 
solute magnitudes of the gradients are not as relevant to our 
analysis as their local relative magnitudes: boundaries can be 
adequately characterized as the locus of the strongest local 
gradients, independent of the actual value of these gradients. 
We therefore write: 

(o,) 
A~ = c~Normalize Ox 

A y = c y N o r m a l i z e ( O ~  ) (4) 

where Normalize is the piecewise linear function defined by: 

1 if x < x0 

Normalize(x) = x~-~ if xo < x < xl , (5) 
5g I - - 5  0 

0 if xl < x  

x0 and xl being two constants. In all our examples, x0 is the 
median value of x in the image and Xl its maximum value. 
We have also experimented with a Normalize function that 
is proportional to the rank s of x and obtained very similar 
results. The result is also quite insensitive to the value chosen 
for x0 as long as it does not become so large as to force 
the algorithm to ignore all edges. What really matters is 
the monotonicity of the Normalize function; it allows the 
depth information tO propagate faster in the directions of 
least image gradient, and gives to the algorithm a behavior 
somewhat similar to that of adaptative diffusion schemes 
(e.g. Perona and Malik 1987). 

8 Computed by ordering the values of x in the image and assigning 
to x a value between 0 and 1 that is proportional to its rank 

A number of authors have investigated such regulariza- 
tion functionals (Blake and Zisserman 1987; Mumford and 
Shah 1985; Poggio 1985, to quote a few); they are roughly 
equivalent and we chose the quadratic criterion of Eq. 2 be- 
cause it allows an extremely fast and efficient implementa- 
tion on the parallel hardware that we use. We have tried to 
include the second derivatives in the regularizing term, with 
no appreciable difference except for a slowed down compu- 
tation. 

To compute w, we discretize the criterion of Eq. 2, yield- 
ing 

C = E 8ij(Wij -- wOij)2 + )kx E (wi+x'j -- Wi'j)2 
ij ij 

+ ),v ~ ( w i , j + l  - wid) 2 
ij 

= S ( W  - WO)~(W - WO) + W ~ K W  (6) 

where W and W0 are the vectors of all w and w0 depths, 
K the sparse matrix whose "computational molecules" (Ter- 
zopoulos 1986) are of the form 

0 -Ay  0 
-Ax 2(A~+Ay) -A~ 

0 -A~ 0 

and S the diagonal matrix whose elements are the correlation 
scores s. 9 We then use a conjugate gradient method (Szeliski 
1990; Terzopoulos 1986) to solve the equation 

OC 
- - = 0  
O W  (7) 

( K  + S ) W  = S W O  . 

The parallel implementation of the conjugate gradient method 
involves only NEWS nearest neighbor communication and, 
here again, it is possible to develop specialized hardware if 
speed is required (Mead 1988). 

In Fig. 6, we show the depth map computed by inter- 
polating the disparity map of Fig. 4c and the three views 
generated by illuminating this map from different directions. 
Note that the main features of the face, nose, eyebrows and 
mouth have been correctly recovered. 

In Fig. 7 we show the behavior of our algorithm on a 
synthetic image with a central square that presents a ramp in 
intensity and is corrupted by a gaussian noise. The central 
square is shifted by a constant disparity in a second image 
resulting, after correlation, in the disparity map of 7b where 
the black pixels are those for which no valid match can be 
found (mainly the pixels that are occluded in the second 
image). In Fig. 7c the rounded curve is a plot of the inter- 
polated depths along a horizontal line passing through the 
center of the image. The depth discontinuities are well pre- 
served where the contrast is sharp but tend to be slightly 
blurred where the contrast becomes low. This interpolation 
technique is therefore appropriate for the face of Fig. 4 that 
presents few low-contrast depth discontinuities, although it 

9 s = 0 where  the matches  are inva l id  
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c 
Fig. 7. a Synthetic image with a central square that presents a ramp in intensity and ganssian noise, b The disparity map computed by 
correlation, c A slice through a portion of the smoothed image 

produces a somewhat blurry result for the tree scene of Fig. 2, 
as can be seen in Fig. 8a. To improve upon this situation, we 
propose a slightly more elaborate interpolation scheme that 
takes depth discontinuities explicitly into account. 

3.2 Introducing depth discontinuities 

The Ax and A v coefficients defined by Eq. 4 introduce "soft" 
discontinuities: when the contrast is low, some smoothing 
occurs across the discontinuity. The depth image, however, 
is less smoothed than in the complete absence of an edge 
resulting in a strong w gradient at such depth discontinu- 
ities. We take advantage of this property of our "adaptative" 
smoothing by defining the following iterative scheme: 
1. Interpolate using the Ax and Ay defined above. 
2. Iterate the following procedure: 

(a) Recompute Ax and A v as functions of both the inten- 
sity gradient and the depth gradient of the interpo- 
lated image: 

Ax = Normalize (0~-z/) Normalize (0~-zw) ~ 

(8) 
Ay = Normalize ~ Normalize \ Oy ] 

where c~ is a constant equal to 2 in our examples. 
(b) Interpolate again the raw disparity map using the new 

Az and Ay coefficients. 

The algorithm converges in a small number of iterations, 
resulting in a much sharper depth map. The squarish curve 
in Fig. 7c is a plot of the depth interpolated from the disparity 
map of Fig. 7b after four iterations. Similarly, in Fig. 8b, we 
show a much improved depth map for the tree scene after 
the same number of iterations. 

reliable depth maps in the presence of depth discontinuities, 
occlusions and featureless areas: 

- The correlation is performed twice over the two images by 
reversing their roles. Only matches that are consistent in 
both directions are retained, thereby guaranteeing a very 
low error rate. 

- The disparity map is then interpolated using a technique 
that takes advantage of the grey level information present 
in the image to preserve depth discontinuities and propa- 
gate the information across featureless areas. 

The depth maps that we compute are qualitatively correct 
and the density of acceptable matches provides us with an 
excellent estimate of their reliability. Because of the great 
regularity and simplicity of the techniques described here, 
we hope to be able to build dedicated hardware that would 
implement them and could, for example, be used by a mobile 
robot in an outdoor environment. 

Furthermore, because the reliability of the depth maps is 
easy to assess, a system based on our algorithm would know 
when to invoke additional sources of three-dimensional in- 
formation, such as geometrical constraints, shape from shad- 
ing, or the output of an active ranging sensor, to fill in those 
areas of uncertainty. In future research we intend to investi- 
gate the possibilities that such an approach has to offer. 

Acknowledgements. The author wishes to thank Yvan Leclerc and 
Gerard Giraudon for their helpful comments and advice. The SUN 
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Appendix A. Behavior of the correlation algorithm on 
synthetic data 

4 Conclusion 

In this work we have described a correlation-based algorithm 
that combines two simple and parallel techniques to yield 

In this appendix we model the behavior of our correlation 
algorithm using synthetic data and show that the validity test 
defined in Sect. 2 allows our algorithm to make few mistakes 
and forces it to produce very sparse maps when the data 
becomes too noisy and the matches unreliable. 
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Fig. 8. a Trees depth image computed by smoothing using the algorithm presented in 
Sect. 3.1. b Depth image after four iterations of the iterative scheme in Sect. 3.2. c Depth 
values along the horizontal and vertical lines plotted in d. We have stretched the depth 
images to enhance the contrast so that the furthest areas appear completely white. Note 
that the trunks and the stump clearly stand out 

Fig. 9. a One image taken from a triplet, note that only the label of the bottle is textured. 
b The corresponding disparity map. c The interpolated depth map computed using the 
coefficients defined in Sect. 3.1. d The interpolated depth map after four iterations of the 
interpolation scheme of Sect. 3.2. The depth images have been stretched as in Fig. 8 



44  

1 . . . . . . . . . .  i . . . . . . . . . . . . .  i . . . . . . . . . . . .  i I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  : 

! ............. i : ............ i" ............ I ............. . ......... ! 

. . . . . . . . . . . . .  ' . . . . . . . . . . .  . . . . . . . . . . .  

? 
A . l a  1 ,~ b 1 ~ 

f 
1 . . . . . . . . . .  ! . . . . . . . . . . . . .  ,,- . . . . . . . . . . . .  ] 1 1  . . . . . . . . . . . .  : . . . . . . . . . . . . .  ' . . . . . . . . . . . . .  : . . . . . . . . . . . .  : ~ . . . . . . . . . . . . . . . . . . . . . . . . .  : . . . . . . . . . . . . .  r . . . . . . . . . . . . .  

C ~ ~'  d l ~ A 2  1 ~ 

Fig. A.1. a The proportion of matched pixels for three window sizes, 3 x 3, 5 x 5 and 7 x 7, as a function of the noise-to-signal ratio, b 
The proportion of incorrectly matched pixels as a function of the noise-to-signal ratio, c,d The proportions of matched pixels and incorrect 
matches after removal of isolated matches 

Fig. A.2. The proportions of pixels that are incorrectly matched when no validity test is performed for three window sizes, 3 x 3, 5 • 5 
and 7 x 7 

In the remainder of this section, we use a stereo pair 
formed by two synthetic images, I1 and I2 defined as fol- 
lows: 

/1 ---- No(0, O'texture) + NI (0 ,  O-noise) 

[2 = NO(0, O-texture) + N2(0, O'noise) 
(A.1) 

where No, N1 and N2 are three independent gaussian random 
variables of variance O-texture and O-noise, and we define the 
noise-to-signal ratio 

7Z/8 = O-noise/0"textur e (A.2) 

such that the two images are identical when n/s is zero and 
that the correlation is degraded as n/s grows. To gauge the 
performance of  our correlation algorithm, we introduce two 
functions: fv~id, the proportion of  pixels for which a valid 
match (according to our criterion) can be found, and ferror, 
the proportion of pixels among these for which the match 
is erroneous, that is for which the computed disparity 1~ is 
different from zero. These two functions depend only on 
�9 the noise-to-signal ratio, 
�9 the size of the correlation windows, 
�9 the range of disparities being tested. 

Below we show the influence of these parameters using 
curves that have been computed by running large simula- 
tions on the Connection Machine TM. 

l~ the purpose of this test we use integer disparities and do not 
interpolate 

A.1 Influence of the noise-to-signal ratio 

In Fig. A . l a  we plot fvalid as a function of n/s for three dif- 
ferent window sizes and for a fixed disparity range of  twenty 
integer disparities centered around 0. Similarly, in Fig. A. lb, 
we plot ferror, ferror increases with n/s while fvalid decreases 
towards the probability of a match in the absence of a sig- 
nal, which is very low for the 7 x 7 and 5 x 5 windows. For 
these window sizes, fe,or does not become significant before 
fvalid has dropped below about 25% justifying our claim that 
the density of  the disparity map can be regarded as a con- 
fidence estimate. The general behavior of  the two functions 
for 3 x 3 windows is fundamentally the same. However, the 
probability of  a match in the absence of a signal is now 
non-negligeable and only very dense disparity maps can be 
regarded as reliable if they have been computed with such 
small windows. 

For comparison, in Fig. A.2 we plot ferror when the cor- 
relation is performed only from I1 to I2 without imposing 
our validity criterion, fvalia is then computed by taking the 
proportion of pixels for which the score of  Eq. 1 is positive. 
Note that the proportion of errors becomes significant much 
earlier. In short, at the cost of loosing a small number of the 
correct matches, our technique allows us to dispose almost 
completely of the erroneous ones, at least for sufficiently 
large correlation windows. 

If  we are willing to accept somewhat sparser disparity 
maps, we can increase the reliability of  the correlation al- 
gorithm even more by removing the isolated and probably 
erroneous matches. To do so we treat the disparity map as a 
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Fig.A.3a--fl. The proportions of matched 
pixels and incorrect matches as a func- 
tion of the signal-to-noise ratio for three 
sizes of the disparity range: a,b 5 x 5 win- 
dows, c,d 3 x 3 windows 

binary array in which valid matches are represented as ones 
and invalid matches as zeros. We then shrink and re-expand 
the disparity map to remove isolated points. In Fig. A. lc  and 
d we plot fvalid and fen'or after having shrunk and re-expanded 
the maps by one pixel. For the larger windows, the ratio of  
errors does not become significant until fvalid has dropped at- 
most all the way to zero, indicating that the removed points 
were almost all in error. 

A.2 Influence of the size of the disparity range 

In Fig. A.3a,b we plot fvalid and ferror computed using three 
sizes, 10, 20 and 40, of  the disparity range and 5 x 5 windows. 
In Fig. A.3c,d we plot the same curves for 3 x 3 windows. 
For low values of  the noise-to-signal ratio the proportion 
of matched pixels is slightly less for large disparity intervals 
because more good matches are "lost" accidentally. For high 
values of  n/s  the proportion of errors increases somewhat for 
large disparity ranges because the chances of  an accidental 
match also increase. Thus, the performance of  the algorithm 
is somewhat degraded when the disparity range increases but, 
all in all, the effect is quite minor and almost insignificant 
for large windows. This is why we can get good results with 
our simple hierarchical scheme that does not use the results 
found at the coarsest resolutions to guide the search at the 
finest ones. 

A p p e n d i x  B.  E x p e r i m e n t a l  c o m p a r i s o n  o f  the  corre la t ion  
m e a s u r e s  

In this appendix, we present the experimental results ob- 
tained by Hotz and described in more detail in a technical 
report (Hotz 1991). In these experiments, he compared the 

correlation results obtained for various window sizes and the 
four correlation measures listed below: 

C1 = E ( I 1  - / 2 ) 2  
q ( E  • E • 

Non-normalized mean-squared differences. 

C2 = E I ~  -/2 

Non-normalized cross correlation. 

~ 3  ~ E ( ( / 1  - - / W )  - -  ( f2  - -  772) 2 

V / i ~ ( i  1 _ ~11) 2 ~ ( / 2  _ ~2 )  

Normalized mean-squared differences. 

C 4  = E ( ( l r l  - I1 ) ( I2  - / 2 )  

V / ( E ( I  1 _ ~)2 E ( 5  - T2 2) 

Normalized cross correlation. 

These experiments were p6fformed on rock scenes such 
as the one of Fig. B.1, in which the 200 points shown as 
white crosses were matched by hand. u After the correlation 
procedure, the following quantities were computed: 
- Percentage of the reference points for which a match has 

been found, which corresponds to the function fvaia of  
Appendix A. 

- Percentage of the reference points for which the computed 
disparity is the same as the one found by hand, which 
corresponds to 1 - ferror where fermr is defined in Appendix 
A. 

UFiducial marks were first pasted on the rocks and then two images 
were shot for each camera position, one with the marks and one 
without them 
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- Average difference between the computed disparities and 
the hand-picked ones. 

in Fig. B.2 and for each of  the correlation measures C1 
to C4, we plot the results as functions of the window size. 
The plots all have essentially the same shape: the percentage 
of matched points increases with the window size while the 
precision decreases. By using large windows, we smooth out 
the finer details and, in effect, reduce the resolution. 

Scores C2, C3, and C4 yield results that are very similar 
and are much better than the ones computed using score C1. 
It is easy to understand why in the case of C3 and C4; both 
criteria being normalized, they are insensitive to variations in 
the mean intensity value of the images that can overwhelm 

b 

100 ~ 

9095 i : i i i i i  i i i :  TIIIIII! . I  
85 . . . . .  ~- . . . . .  

80 

75 . . . . . . .  ~ . . . . . . .  

7O 

50 
3x3 5x5 7x7 9x9 llxll 13x13 15x15 17x17 19x19 

Fig. B.la,b. Two test images with 200 hand-picked matches shown 
as white  crosses 

Fig. B.2a-e. Results as functions of the window size for measures 
C1 to C4: a Percentage of reference points for which a match has 
been found, b Percentage of reference points for which the correct 
match has been found, c Average difference between the computed 
and "real" disparities. The four plots are superposed on the same 
graphs: C1 = _11_; C2 ~_~--V'l--; C3 ~-~--~--; C4 = - - 0 - -  

criterion C1. It is more interesting to note that C2, even 
though it is not normalized, is also much better than C1. 

By changing the camera settings for one image of the 
stereo pair, we have checked that the normalized criteria 
are effectively insensitive to such transformations while C2 
degrades somewhat and C1 degrades dramatically. 

For a more exhaustive description of these tests, we refer 
the interested 12 reader to the technical report (Hotz 1991). 

12and ffancophone 
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Fig. C.1. Pinhole model for two cameras: Cl and C2 are the optical centers of the two cameras and the world point P projects to 11 and 
/2 respectively. E1 and E2 are the epipoles through which all epipolar lines go, and DE1 and DE~ are the epipolar lines on which Ii and 
I2 are bound to lie 

Fig. C.2. Rectification of two images: the two original images I~ and [2 are rectified into I~ and I12 by reprojecting them to the same 
image plane P] = P~ 

Fig. C.3. a--c A triplet of images, d - f  The images after rectification. The grid in the bottom left comer is used to calibrate the system and 
compute the T matrices 
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Fig. C.4a-c. Disparity maps: a computed by correlating Fig. C.3a with C.3b, b by correlating C.3a with C.3c, and c merging the two maps. 
These maps are virtually error-free except for those caused by the repetitive patterns on the grid itself 

Appendix C. Rectification 

In this appendix, we describe the rectification techniques we 
use to deal with triplet images produced by the INRIA 3 
camera stereo system. For a more thorough description of 
the mathematical formalism used here, we refer the interested 
reader to the article by Ayache and Hansen (1988). 

C.1 From image planes  to calibration matrices 

Each camera is modeled, using the classic pinhole model, 
by its optical center C, its image plane 79 and a 4 x 3 cal- 
ibration matrix T such that if the image point I = (u, v) is 
the projection of the world point P = (z, p, z) the following 
relationships hold: 

V = T  
W 

: u / w  

v = V / W  

T is such that 

(c.1) 

T C  = 0 .  (C.2) 

Given the center C = (xc, Pc, zc), the plane 79, its origin 
and axes, T can be derived as follows. Let 

a z  + by + zc  = h where a2 + b2 + c2 = l (C.3) 

be the equation of plane P and let M0 and To be two 4 x 4 
matrices: 

(C.4) M0= h 0 
0 h 
0 0 

( o0 0 
To= 0 1 

0 0 

M0 is such that, given a world point P with projective co- 
ordinates (z, g, z, 1), the point M P  is the intersection of the 
plane 7 ~ and the line going through P and the world origin 

. - +  

0. To is the matrix representing the translation of vector OC. 

Using the pinhole camera model, it is easy to see that the 
matrix 

M = T o M o T o  1 (C.5) 

is such that for a world point P,  [ = M P  is the image point 
that is the projection of P through the camera optical center 
as shown in Fig. C.1. The projective image coordinates of I 
can be computed from its world coordinates by multiplying 
them by a 3 x4 matrix, N, that depends only on the arbitrarily 
chosen axes and origin of the plane P but not on the camera. 
The calibration matrix T is then taken to be 

T = N M .  (C.6) 

C.2 Rectif ication matrices  

Given several images and a point in one of them, the cor- 
responding points in the other images are bound to lie on 
epipolar lines. These epipolar lines are parallel if and only 
if all the image planes are parallel. In our application, we 
rectify the three images by reprojecting them from their re- 
spective image plane 79o to a plane 79a that is parallel to the 
one passing by the three optical centers without changing the 
optical center as shown in Fig. C.2. To every image point of 
the original image plane corresponds a unique point of the 
rectified plane; we derive below their analytical relationship. 

Let To = [Ro, C0] and TI([R1,C1] be the two corre- 
sponding 3 x 4 calibration matrices computed as described 
above, where R0 and R1 are 3 x 3 matrices and Co and C1 
3 x 1 matrices. Let I0 = (U0, V0, 1) be a point of the original 
image and I1 = (U1, V1, W1) the corresponding point in the 
rectified image. Let then P be a world point that projects at 
both I0 and I1, i.e. 

Io = ToP (C.7) 
[1 = T 1 P  . 



We write P as C + A(x, y, z, 1), where C is the common 
optical center and A a real number. Because 

ToC = TIC = o (C.8) 

we can write 

= AT0 Y 
Z 

1 

Wl =AT1 = A 
w1 

X 

+we1 
w1 

= R 1 R o  1 V0 + (C1 -- R1RolCo) 
1 

(i:) = Rect (c.9) 

where Rect is the 3 x 3 matrix computed by adding to the 
last column of  R 1 R o  1 the vector C1 - R1RolCo. 

C. 3 Rectifying the images 

Having computed the rectification matrix Rect of  equation 
C.9 and its inverse, we can now transform the images. Given 
a point I1 of  the rectified image, its corresponding point in 
the original image is I0 = Rect- l I~ in the original image and 
we compute the grey level of  I1 using bilinear interpolation. 
In Fig. C.3 we show a triplet of  images and the corresponding 
images after rectification. The grid that appears in all three 
views is used to compute the original calibration matrices 
(Toscani et al. 1989). Note that the rectified images are not 
very deformed because the three original image planes were 
almost parallel. In Fig. C.4 we show the output of  our stereo 
algorithm. 
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