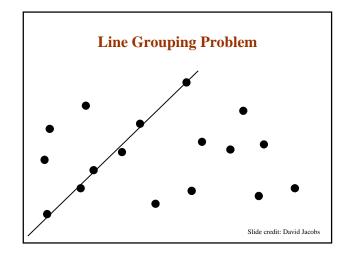
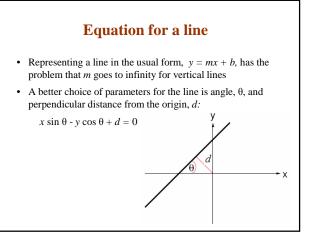
Fitting a Model to Data Reading: 15.1, 15.5.2

- Cluster image parts together by fitting a model to some selected parts
- Examples:
 - A line fits well to a set of points. This is unlikely to be due to chance, so we represent the points as a line.
 - A 3D model can be rotated and translated to closely fit a set of points or line segments. It it fits well, the object is recognized.



This is difficult because of:

- Extraneous data: clutter or multiple models
 - We do not know what is part of the model?
 - Can we pull out models with a few parts from much larger amounts of background clutter?
- · Missing data: only some parts of model are present
- Noise
- Cost:
 - It is not feasible to check all combinations of features by fitting a model to each possible subset

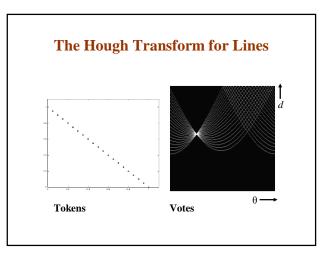


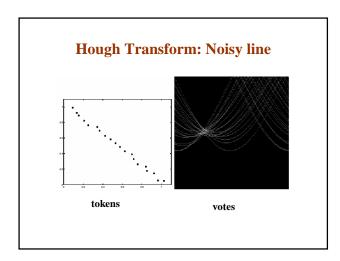
The Hough Transform for Lines

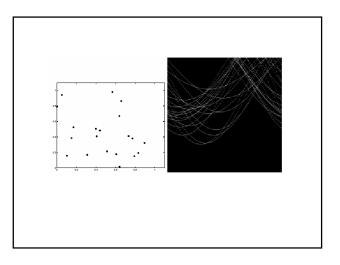
- Idea: Each point votes for the lines that pass through it.
- A line is the set of points (x, y) such that

 $x\sin\theta - y\cos\theta + d = 0$

- Different choices of θ , *d* give different lines
- For any (x, y) there is a one parameter family of lines through this point. Just let (x,y) be constants and for each value of θ the value of *d* will be determined.
- Each point enters votes for each line in the family
- If there is a line that has lots of votes, that will be the line passing near the points that voted for it.

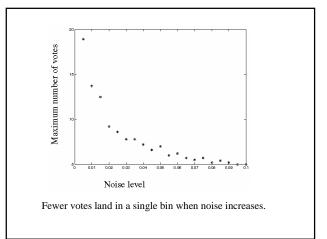


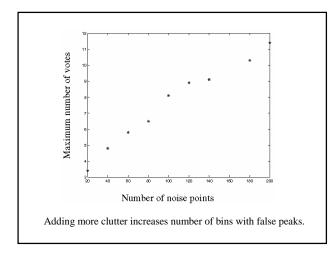


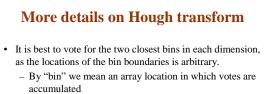


Mechanics of the Hough transform

- Construct an array representing θ, d
- For each point, render the curve (θ, d) into this array, adding one vote at each cell
- Difficulties
 - how big should the cells be? (too big, and we merge quite different lines; too small, and noise causes lines to be missed)
- How many lines?
 Count the peaks in the
 - Hough array
 - Treat adjacent peaks as a single peak
- Which points belong to each line?
 - Search for points close to the line
 - Solve again for line and iterate



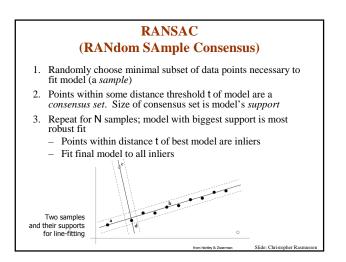




- This means that peaks are "blurred" and noise will not cause similar votes to fall into separate bins
- Can use a hash table rather than an array to store the votes – This means that no effort is wasted on initializing and
 - This means that no effort is wasted on initializing and checking empty bins
 - It avoids the need to predict the maximum size of the array, which can be non-rectangular

When is the Hough transform useful?

- The textbook wrongly implies that it is useful mostly for finding lines
 - In fact, it can be very effective for recognizing arbitrary shapes or objects
- The key to efficiency is to have each feature (token) determine as many parameters as possible
 - For example, lines can be detected much more efficiently from small edge elements (or points with local gradients) than from just points
 - For object recognition, each token should predict scale, orientation, and location (4D array)
- **Bottom line:** The Hough transform can extract feature groupings from clutter in linear time!



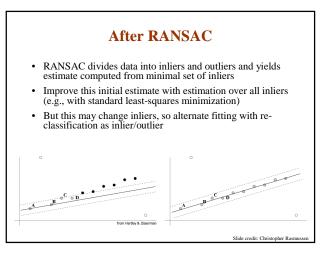
Algorithm 15.4: RANSAC: fitting lines using random sample co	nsensus
Determine:	
n — the smallest number of points required	
k — the number of iterations required	
t — the threshold used to identify a point that fits well	
d — the number of nearby points required	
to assert a model fits well	
Until k iterations have occurred	
Draw a sample of n points from the data	
uniformly and at random	
Fit to that set of n points	
For each data point outside the sample	
Test the distance from the point to the line	
against t ; if the distance from the point to the line	
is less than t , the point is close	
end	
If there are d or more points close to the line	
then there is a good fit. Refit the line using all	
these points.	
end	
Use the best fit from this collection, using the	
fitting error as a criterion	

RANSAC: How many samples?

How many samples are needed?

Suppose <i>w</i> is fraction of inliers (points from line).
n points needed to define hypothesis (2 for lines)
k samples chosen.
Probability that a single sample of n points is correct:
w^n
Probability that all samples fail is:
$(1-w^n)^k$
Choose k high enough to keep this below desired failure rate.

Sample size	Proportion of outliers							
n	5%	10%	20%	25%	30%	40%	50%	
2	2	3	5	6	7	11	17	
3	3	4	7	9	11	19	35	
4	3	5	9	13	17	34	72	
5	4	6	12	17	26	57	146	
6	4	7	16	24	37	97	293	
7	4	8	20	33	54	163	588	
8	5	9	26	44	78	272	1177	



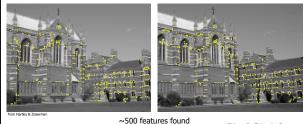
Automatic Matching of Images

- · How to get correct correspondences without human intervention?
- Can be used for image stitching or automatic determination of epipolar geometry

Slide

Feature Extraction

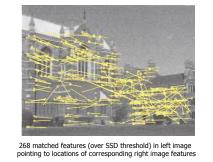
- · Find features in pair of images using Harris corner detector
- Assumes images are roughly the same scale (we will discuss better features later in the course)



Finding Feature Matches



Initial Match Hypotheses



Slide credit: Christopher R

Outliers & Inliers after RANSAC

- n is 4 for this problem (a homography relating 2 images)
- Assume up to 50% outliers
- 43 samples used with t = 1.25 pixels

Discussion of RANSAC

• Advantages:

- General method suited for a wide range of model fitting problems
- Easy to implement and easy to calculate its failure rate
- Disadvantages:
 - Only handles a moderate percentage of outliers without cost blowing up
 - Many real problems have high rate of outliers (but sometimes selective choice of random subsets can help)
- · The Hough transform can handle high percentage of outliers, but false collisions increase with large bins (noise)