Fitting a Model to Data
Reading: 15.1, 15.5.2

• Cluster image parts together by fitting a model to some selected parts

• Examples:
 – A line fits well to a set of points. This is unlikely to be due to chance, so we represent the points as a line.
 – A 3D model can be rotated and translated to closely fit a set of points or line segments. It it fits well, the object is recognized.

This is difficult because of:

• Extraneous data: clutter or multiple models
 – We do not know what is part of the model?
 – Can we pull out models with a few parts from much larger amounts of background clutter?

• Missing data: only some parts of model are present

• Noise

• Cost:
 – It is not feasible to check all combinations of features by fitting a model to each possible subset

The Hough Transform for Lines

• Idea: Each point votes for the lines that pass through it.
• A line is the set of points \((x, y)\) such that
 \[x \sin \theta - y \cos \theta + d = 0 \]
• Different choices of \(\theta, d\) give different lines
• For any \((x, y)\) there is a one parameter family of lines through this point. Just let \((x,y)\) be constants and for each value of \(\theta\) the value of \(d\) will be determined.
• Each point enters votes for each line in the family
• If there is a line that has lots of votes, that will be the line passing near the points that voted for it.

Equation for a line

• Representing a line in the usual form, \(y = mx + b\), has the problem that \(m\) goes to infinity for vertical lines
• A better choice of parameters for the line is angle, \(\theta\), and perpendicular distance from the origin, \(d\):
 \[x \sin \theta - y \cos \theta + d = 0 \]
Mechanics of the Hough transform

- Construct an array representing θ, d
- For each point, render the curve (θ, d) into this array, adding one vote at each cell
- Difficulties
 - how big should the cells be? (too big, and we merge quite different lines; too small, and noise causes lines to be missed)

- How many lines?
 - Count the peaks in the Hough array
 - Treat adjacent peaks as a single peak
- Which points belong to each line?
 - Search for points close to the line
 - Solve again for line and iterate

More details on Hough transform

- It is best to vote for the two closest bins in each dimension, as the locations of the bin boundaries is arbitrary.
 - By “bin” we mean an array location in which votes are accumulated
 - This means that peaks are “blurred” and noise will not cause similar votes to fall into separate bins
- Can use a hash table rather than an array to store the votes
 - This means that no effort is wasted on initializing and checking empty bins
 - It avoids the need to predict the maximum size of the array, which can be non-rectangular
When is the Hough transform useful?

• The textbook wrongly implies that it is useful mostly for finding lines
 – In fact, it can be very effective for recognizing arbitrary shapes or objects
• The key to efficiency is to have each feature (token) determine as many parameters as possible
 – For example, lines can be detected much more efficiently from small edge elements (or points with local gradients) than from just points
 – For object recognition, each token should predict scale, orientation, and location (4D array)
• **Bottom line:** The Hough transform can extract feature groupings from clutter in linear time!

Algorithm 15.4: RANSAC: fitting lines using random sample consensus

```
Descriptive:
  n --- the smallest number of points required
  k --- the number of iterations required
  t --- the threshold used to identify a point that fits well
  d --- the number of nearby points required to assert a model fit well

Until n iterations have occurred
  Draw a sample of n points from the data uniformly and at random
  Fit to that set of n points
  For each data point outside the sample
    Test the distance from the point to the line
    against t if the distance from the point to the line is less than t, the point is close
  end
  If there are d or more points close to the line
    Then there is a good fit. Refit the line using all these points.
  else
    Use the best fit from this collection, using the
    fitting error as a criterion
end
```

RANSAC: How many samples?

How many samples are needed?

Suppose w is fraction of inliers (points from line). n points needed to define hypothesis (2 for lines) k samples chosen.

Probability that a single sample of n points is correct:

$$W^n$$

Probability that all samples fail is:

$$\left(1 - w^n\right)^k$$

Choose k high enough to keep this below desired failure rate.

RANSAC: Computed k ($p = 0.99$)

<table>
<thead>
<tr>
<th>Sample size</th>
<th>Proportion of outliers</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>5%</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>8</td>
<td>5</td>
</tr>
</tbody>
</table>

After RANSAC

• RANSAC divides data into inliers and outliers and yields estimate computed from minimal set of inliers
• Improve this initial estimate with estimation over all inliers (e.g., with standard least-squares minimization)
• But this may change inliers, so alternate fitting with re-classification as inlier/outlier
Automatic Matching of Images

- How to get correct correspondences without human intervention?
- Can be used for image stitching or automatic determination of epipolar geometry

Feature Extraction

- Find features in pair of images using Harris corner detector
- Assumes images are roughly the same scale (we will discuss better features later in the course)

Finding Feature Matches

- Select best match over threshold within a square search window (here 300 pixels2) using SSD or normalized cross-correlation for small patch around the corner

Initial Match Hypotheses

- 268 matched features (over SSD threshold) in left image pointing to locations of corresponding right image features

Outliers & Inliers after RANSAC

- n is 4 for this problem (a homography relating 2 images)
- Assume up to 50% outliers
- 43 samples used with $t = 1.25$ pixels

Discussion of RANSAC

- **Advantages:**
 - General method suited for a wide range of model fitting problems
 - Easy to implement and easy to calculate its failure rate
- **Disadvantages:**
 - Only handles a moderate percentage of outliers without cost blowing up
 - Many real problems have high rate of outliers (but sometimes selective choice of random subsets can help)
 - The Hough transform can handle high percentage of outliers, but false collisions increase with large bins (noise)