Segmentation by Clustering Reading: Chapter 14 (skip 14.5)

- **Data reduction** obtain a compact representation for *interesting* image data in terms of a set of components
- Find components that belong together (form **clusters**)
- Frame differencing Background Subtraction and Shot Detection

Segmentation by Clustering

Segmentation by Clustering

Segmentation by Clustering

From: Object Recognition as Machine Translation, Duygulu, Barnard, de Freitas, Forsyth, ECCV02

General ideas

• Tokens

- whatever we need to group (pixels, points, surface elements, etc., etc.)
- Top down segmentation
 - tokens belong together
 because they lie on the
 same object

• Bottom up segmentation

- tokens belong together
 because they are
 locally coherent
- These two are not mutually exclusive

Why do these tokens belong together?

Top-down segmentation

Credit: D. Marr, "Vision," W.H. Freeman, 1982

Basic ideas of grouping in human vision

- Figure-ground discrimination
 - grouping can be seen in terms of allocating some elements to a figure, some to ground
 - Can be based on local bottom-up cues or high level recognition

- Gestalt properties
 - Psychologists have studies a series of factors that affect whether elements should be grouped together
 - Gestalt properties

Symmetry

Parallelism

Continuity

Closure

Elevator buttons in Berkeley Computer Science Building

Groupings by Invisible Completions

* Images from Steve Lehar's Gestalt papers: http://cns-alumni.bu.edu/pub/slehar/Lehar.html

Segmentation as clustering

- Cluster together (pixels, tokens, etc.) that belong together
- Agglomerative clustering
 - merge closest clusters
 - repeat
- Divisive clustering
 - split cluster along best boundary
 - repeat

- Point-Cluster distance
 - single-link clustering
 - complete-link
 clustering
 - group-average clustering
- Dendrograms
 - yield a picture of output as clustering process continues

Dendrogram from Agglomerative Clustering

Instead of a fixed number of clusters, the dendrogram represents a hierarchy of clusters

Feature Space

- Every token is identified by a set of salient visual characteristics called *features*. For example:
 - Position
 - Color
 - Texture
 - Motion vector
 - Size, orientation (if token is larger than a pixel)
- The choice of features and how they are quantified implies a *feature space* in which each token is represented by a point
- Token similarity is thus measured by distance between points ("feature vectors") in feature space

K-Means Clustering

- Initialization: Given K categories, N points in feature space. Pick K points randomly; these are initial cluster centers (means) m₁, ..., m_K. Repeat the following:
 - 1. Assign each of the N points, x_j , to clusters by nearest m_i (make sure no cluster is empty)
 - 2. Recompute mean m_i of each cluster from its member points
 - 3. If no mean has changed, stop
- Effectively carries out gradient descent to minimize:

$$\sum_{i \in \text{clusters}} \left\{ \sum_{j \in \text{elements of i'th cluster}} \left\| x_j - \mu_i \right\|^2 \right\}$$

Slide credit: Christopher Rasmussen

K-Means

Minimizing squared distances to the center implies that the center is at the mean:

$$e(\mathbf{m}_i) = \sum_{i=1}^{n_c} \sum_{j;c_j=i} |\mathbf{x}_j - \mathbf{m}_i|^2$$
$$\frac{\partial e}{\partial \mathbf{m}_k} = \sum_{j;c_j=k} -2(\mathbf{x}_j - \mathbf{m}_k) = 0 \quad \longleftarrow \quad \begin{array}{l} \text{Derivative of} \\ \text{error is zero at the} \\ \text{minimum} \end{array}$$

$$\mathbf{m}_k = \frac{\sum_{j;c_j=k} \mathbf{x}_j}{\sum_{j;c_j=k} \mathbf{1}} = \frac{1}{n_k} \sum_{j;c_j=k} \mathbf{x}_j$$

Example: 3-means Clustering

Image

Clusters on intensity

Clusters on color

K-means clustering using intensity alone and color alone

Original Image Segmentation Using Colour K-means using colour alone, 11 segments

K-means using colour alone, 11 segments

Forsyth & Ponce Figure 14.14

Forsyth & Ponce Figure 14.15

Technique: Background Subtraction

• If we know what the background looks like, it is easy to segment out new regions

• Applications

- Person in an office
- Tracking cars on a road
- Surveillance
- Video game interfaces

• Approach:

- use a moving average to estimate background image
- subtract from current frame
- large absolute values are interesting pixels

Background Subtraction

• The problem: Segment moving foreground objects from static

from C. Stauffer and W. Grimson
Current image

Background image

Foreground pixels

Pfinder

Slide credit: Christopher Rasmussen

Algorithm

video sequence $I(\mathbf{x}, t)$ frame difference $d(\mathbf{x}, t)$ background $I_0(\mathbf{x}, t)$ thresholded frame diff $d_T(\mathbf{x}, t)$

for t = 1:N

Update background model $I_0(\mathbf{x}, t)$ Compute frame difference $d(\mathbf{x}, t) = |I(\mathbf{x}, t) - I_0(\mathbf{x}, t)|$ Threshold frame difference $d_T(\mathbf{x}, t) = d(\mathbf{x}, t) > thresh$ Noise removal $d_T(\mathbf{x}, t) = imerode(d_T(\mathbf{x}, t))$ end

Objects are detected where $d_T(\mathbf{x}, t)$ is non-zero

Background Modeling

average
$$I_0(\mathbf{x},t) = \frac{1}{T} \sum_{t=1}^T I(\mathbf{x},t)$$

Offline

- Pixel-wise mean values are computed during training phase (also called Mean and Threshold)
- Adjacent Frame Difference $I_0(\mathbf{x},t) = I(\mathbf{x},t-1)$
 - Each image is subtracted from previous image in sequence

• Moving average
$$I_0(\mathbf{x},t) = \frac{w_a I(\mathbf{x},t) + \sum_{i=1}^N w_i I(\mathbf{x},t-i)}{w_c}$$

Background model is linear weighted sum of previous frames

Forsyth & Ponce Figure 14.10

Results & Problems for Simple Approaches

from K. Toyama et al.

Background Subtraction: Issues

- Noise models
 - Unimodal: Pixel values vary over time even for static scenes
 - Multimodal: Features in background can "oscillate", requiring models which can represent disjoint sets of pixel values (e.g., waving trees against sky)
- Gross illumination changes
 - **Continuous:** Gradual illumination changes alter the appearance of the background (e.g., time of day)
 - Discontinuous: Sudden changes in illumination and other scene parameters alter the appearance of the background (e.g., flipping a light switch
- Bootstrapping
 - Is a training phase with "no foreground" necessary, or can the system learn what's static vs. dynamic online?

Application: Sony Eyetoy

- For most games, this apparently uses simple frame differencing to detect regions of motion
- However, some applications use background subtraction to cut out an image of the user to insert in video
- Over 4 million units sold

Technique: Shot Boundary Detection

- Find the **shots** in a sequence of video
 - shot boundaries usually result in big differences between succeeding frames
- Strategy
 - compute interframe distances
 - declare a boundary where these are big

• Distance measures

- frame differences
- histogram differences
- block comparisons
- edge differences

• Applications

- representation for movies, or video sequences
 - obtain "most representative" frame
- supports search