Texture
Reading: Chapter 9 (skip 9.4)

- **Key issue**: How do we represent texture?
- **Topics**:
 - Texture segmentation
 - Texture-based matching
 - Texture synthesis
 - Can be based on simpler representations than analysis
 - Shape from texture (we will skip)

Objectives: 1) Discrimination/Analysis

The Goal of Texture Analysis

- **ANALYSIS**: “Same” or “different”
- **True (infinite) texture**
- **Generated image**

Compare textures and decide if they’re made of the same “stuff”.

2) Synthesis

The Goal of Texture Synthesis

- **SYNTHESIS**
- **Input image**
- **True (infinite) texture**
- **Generated image**

Representing textures

Observation: textures are made up of subelements, repeated over a region with similar statistical properties

- **Texture representation**:
 - Find the subelements, and represent their statistics
 - What filters can find the subelements?
 - Human vision suggests spots and oriented filters at a variety of different scales
 - What statistics?
 - Mean of each filter response over region
 - Other statistics can also be useful

Human texture perception

Bergen and Adelson, Nature 1988

Learn size-tuned filter responses.

Derivative of Gaussian Filters

Measure the image gradient and its direction at different scales (use a pyramid).
Add more oriented filters (Malik & Perona, 1990)

Alternative: Gabor filters

- **Gabor filters**: Product of a Gaussian with sine or cosine
- Top row shows anti-symmetric (or odd) filters, bottom row the symmetric (or even) filters.
- No obvious advantage to any one type of oriented filters.

The Laplacian Pyramid

- **Building a Laplacian pyramid**:
 - Create a Gaussian pyramid
 - Take the difference between one Gaussian pyramid level and the next (before subsampling)
- **Properties**
 - Also known as the difference-of-Gaussian function, which is a close approximation to the Laplacian
 - It is a band pass filter - each level represents a different band of spatial frequencies
- **Reconstructing the original image**:
 - Reconstruct the Gaussian pyramid starting at top layer
Oriented pyramids

- Laplacian pyramid is orientation independent
- Apply an oriented filter to determine orientations at each layer
 - This represents image information at a particular scale and orientation.
 - We will not study details in this course.

Final texture representation

- Form a Laplacian and oriented pyramid (or equivalent set of responses to filters at different scales and orientations).
- Square the output (makes values positive)
- Average responses over a neighborhood by blurring with a Gaussian
- Take statistics of responses
 - Mean of each filter output
 - Possibly standard deviation of each filter output

Application: Texture-based Image Matching
The texture synthesis problem

Generate new examples of a texture.

- **Original approach**: Use the same representation for analysis and synthesis
 - This can produce good results for random textures, but fails to account for some regularities
- **Recent approach**: Use an image of the texture as the source of a probability model
 - This draws samples directly from the actual texture, so can account for more types of structure
 - Very simple to implement
 - However, depends on choosing a correct distance parameter

This is like copying, but not just repetition

- For each new pixel \(p \) (select \(p \) on boundary of texture):
 - Match a window around \(p \) to sample texture, and select several closest matches
 - Matching minimizes sum of squared differences of each pixel in the window (Gaussian weighted)
 - Give zero weight to empty pixels in the window
 - Select one of the closest matches at random and use its center value for \(p \)

Initial conditions for growing texture

- If no initial conditions are specified, just pick a patch from the texture at random
- To fill in an empty region within an existing texture:
 - Grow away from pixels that are on the boundary of the existing texture

Window size parameter

Efros and Leung

Efros and Leung method

Sample

Generated image

- For each new pixel \(p \) (select \(p \) on boundary of texture):
 - Match a window around \(p \) to sample texture, and select several closest matches
 - Matching minimizes sum of squared differences of each pixel in the window (Gaussian weighted)
 - Give zero weight to empty pixels in the window
 - Select one of the closest matches at random and use its center value for \(p \)
More Synthesis Results

Increasing window size

Texturing a sphere

Sample image

2D

3D

Image Extrapolation

http://www.cs.ucsd.edu/~s1235475/Typos.png
Further issues in texture synthesis

• How to improve efficiency
 – Use fast nearest-neighbor search
• How to select region size automatically
• How to edit textures to modify them in natural ways