Texture Reading: Chapter 9 (skip 9.4)

- Key issue: How do we represent texture?
- · Topics:
 - Texture segmentation
 - Texture-based matching
 - Texture synthesis
 - Can be based on simpler representations than analysis
 - Shape from texture (we will skip)

Representing textures

Observation: textures are made up of subelements, repeated over a region with similar statistical properties

Texture representation:

- find the subelements, and represent their statistics
- · What filters can find the subelements?
 - Human vision suggests spots and oriented filters at a variety of different scales
- · What statistics?
 - Mean of each filter response over region
 - Other statistics can also be useful

The Laplacian Pyramid

• Building a Laplacian pyramid:

- Create a Gaussian pyramid
- Take the difference between one Gaussian pyramid level and the next (before subsampling)

· Properties

- Also known as the difference-of-Gaussian function, which is a close approximation to the Laplacian
- It is a band pass filter each level represents a different band of spatial frequencies

• Reconstructing the original image:

- Reconstruct the Gaussian pyramid starting at top layer

Oriented pyramids

- · Laplacian pyramid is orientation independent
- Apply an oriented filter to determine orientations at each layer
 - This represents image information at a particular scale and orientation.
 - We will not study details in this course.

Final texture representation

- Form a Laplacian and oriented pyramid (or equivalent set of responses to filters at different scales and orientations).
- Square the output (makes values positive)
- Average responses over a neighborhood by blurring with a Gaussian
- · Take statistics of responses
 - Mean of each filter output
 - Possibly standard deviation of each filter output

The texture synthesis problem

Generate new examples of a texture.

- Original approach: Use the same representation for analysis and synthesis
 - This can produce good results for random textures, but fails to account for some regularities
- Recent approach: Use an image of the texture as the source of a probability model
 - This draws samples directly from the actual texture, so can account for more types of structure
 - Very simple to implement
 - However, depends on choosing a correct distance parameter

This is like copying, but not just repetition

Photo

Efros and Leung method

- For each new pixel **p** (select **p** on boundary of texture):
 - Match a window around p to sample texture, and select several closest matches
 - Matching minimizes sum of squared differences of each pixel in the window (Gaussian weighted)
 - Give zero weight to empty pixels in the window
 - Select one of the closest matches at random and use its center value for p

Initial conditions for growing texture

- If no initial conditions are specified, just pick a patch from the texture at random
- To fill in an empty region within an existing texture:
 - Grow away from pixels that are on the boundary of the existing texture

Window size parameter Inp.//www.ca.berkelg.adu/~ethou/researth/NYseftow/sex97.pts

ound itself, at "this daily at the fact the state of the store of the

Further issues in texture synthesis

- How to improve efficiency
 - Use fast nearest-neighbor search
- How to select region size automatically
- How to edit textures to modify them in natural ways