
Matlab
(see Homework 1: Intro to Matlab)

Starting Matlab from Unix:
• matlab & OR
• matlab –nodisplay

Image representations in Matlab:
• Unsigned 8bit values (when first read)

– Values in range [0, 255], 0 = black, 255 = white

• Double precision floating point
– By convention, values in range [0.0, 1.0]; 0.0 = black; 1.0 = white

• Colour images have 3 values at each pixel: RGB
– [0.0 0.0 0.0] = black; [1.0 1.0 1.0] = white; [1.0 0.0 0.0] = red
– Sometimes accessed through a colour map (lookup table)

Linear Filters
(Reading: 7.1, 7.5-7.7)

• Linear filtering:
– Form a new image whose pixels are a weighted sum

of the original pixel values, using the same set of
weights at each point

Correlation

1/9.(10x1 + 11x1 + 10x1 + 9x1 + 10x1 + 11x1 + 10x1 + 9x1 + 10x1)1/9.(10x1 + 11x1 + 10x1 + 9x1 + 10x1 + 11x1 + 10x1 + 9x1 + 10x1) = =
1/9.(90) = 101/9.(90) = 10

1010 1111 1010

99 1010 1111

1010 99 1010

11

1010
1010

22

99

00

99

00

99

99

99

99

00

11

9999

1010

1010 1111

1100

11

1111

1111

1111

1111

10101010

II

11

11

11

11

11 11

11

11

11

FF

XX XX XX

XX 1010

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

XXXX

1/91/9

OO

Slide credit: Christopher Rasmussen

Convolution

• Same as correlation, but
with kernel reversed

• Represent the linear
weights as an image,F

• F is called the kernel
• Center origin of the kernel

F at each pixel location

• Multiply weights by
corresponding pixels

• Set resulting value for
each pixel

• Image, R, resulting from
convolution of F with
image H, where u,v range
over kernel pixels (in 1D):

Rij = H i−u,j−vFuv
u,v
∑

Warning: the textbook mixes up
H and F

111

111

111

Correlation compared to Convolution

Linear Filtering (warm-up slide)

000

010

000

Original

?

Linear Filtering (warm-up slide)

000

010

000

Original Filtered
(no change)

Linear Filtering

000

100

000

Original

?

Linear Filtering

000

100

000

Original Shifted left
By 1 pixel

Linear Filtering

Original

?
111

111

111

Linear Filtering

Original

111

111

111

Blur (with a
box filter)

Linear Filtering

Original

111

111

111

000

020

000 - ?
(Note that filter sums to 1)

Linear Filtering

Original

111

111

111

000

020

000 -

Sharpening filter
- Accentuates differences
with local average
- Also known as Laplacian

Average filter (box filter)
• Mask with positive

entries, that sum to 1.
• Replaces each pixel

with an average of its
neighborhood.

• If all weights are equal,
it is called a box filter.

111

111

111

Example: Smoothing with a box filter

Smoothing with a Gaussian

• Smoothing with a box
actually doesn’t compare
at all well with a
defocussed lens

• Most obvious difference is
that a single point of light
viewed in a defocussed
lens looks like a fuzzy
blob; but the box filter
would give a little square.

• A Gaussian gives a good
model of a fuzzy blob

• It closely models many
physical processes (the sum
of many small effects)

Gaussian Kernel

• Idea: Weight contributions of neighboring pixels by nearness

• Constant factor at front makes volume sum to 1 (can be ignored, as
we should re-normalize weights to sum to 1 in any case).

0.003 0.013 0.022 0.013 0.003

0.013 0.059 0.097 0.059 0.013

0.022 0.097 0.159 0.097 0.022

0.013 0.059 0.097 0.059 0.013

0.003 0.013 0.022 0.013 0.003

5 x 5, σ = 1

Slide credit: Christopher Rasmussen

Smoothing with a Gaussian

Smoothing reduces pixel
noise:

Each row shows smoothing
with Gaussians of different
width; each column shows
different amounts of
Gaussian noise.

Efficient Implementation

• Both the BOX filter and the Gaussian filter are separable
into two 1D convolutions:

– First convolve each row with a 1D filter

– Then convolve each column with a 1D filter.

– (or vice-versa)

Separability of the Gaussian filter

Differentiation and convolution

• Recall, for 2D function,
f(x,y):

• This is linear and shift
invariant, so must be the
result of a convolution.

• We could approximate this
as

(which is obviously a
convolution)

∂f

∂x
= lim

ε→0

f x + ε, y()
ε

−
f x,y()

ε

 


 

∂f

∂x
≈

f xn+1,y()− f xn, y()
∆x

1-1

Vertical gradients from finite differences

Filters are templates

• Applying a filter at some point
can be seen as taking a dot-
product between the image and
some vector

• Filtering the image is a set of
dot products

• Insight

– filters look like the effects
they are intended to find

– filters find effects they look
like

Normalized correlation

• Think of filters as a dot product of the filter vector with
the image region

– Now measure the angle between the vectors

– Angle (similarity) between vectors can be measured
by normalizing length of each vector to 1.

– Normalized correlation: divide each correlation by
square root of sum of squared values (length)

θcos|||| baba =⋅

Figure from “Computer Vision for Interactive Computer Graphics,” W.Freeman et al, IEEE Computer Graphics and Applications,
1998 copyright 1998, IEEE

Application: Vision system
for TV remote control

- uses template matching

We need scaled representations

• Find template matches at all scales
– e.g., when finding hands or faces, we don’t know what

size they will be in a particular image
– Template size is constant, but image size changes

• Efficient search for correspondence
– look at coarse scales, then refine with finer scales
– much less cost, but may miss best match

• Examining all levels of detail
– Find edges with different amounts of blur
– Find textures with different spatial frequencies (levels

of detail)

Aliasing

• We can’t shrink an image by taking every second pixel
• If we do, characteristic errors appear

– Examples shown in next few slides
– Typically, small phenomena look bigger; fast

phenomena can look slower
– Common examples

• Checkerboard patterns misrepresented in video
games

• Striped shirts look funny on colour television
• Wagon wheels rolling the wrong way in movies

Resample the
checkerboard by taking
one sample at each circle.
In the case of the top left
board, new representation
is reasonable.
Top right also yields a
reasonable representation.
Bottom left is all black
(dubious) and bottom
right has checks that are
too big.

Resampling with prior smoothing

The Gaussian pyramid

• Create each level from previous one:

– smooth and sample

• Smooth with Gaussians, in part because

– a Gaussian*Gaussian = another Gaussian

– G(x) * G(y) = G(sqrt(x2 + y2))

• Gaussians are low pass filters, so the representation is
redundant once smoothing has been performed

– There is no need to store smoothed images at the full
original resolution

All the extra
levels add very
little overhead
for memory or
computation!

Summary of Linear Filters

• Linear filtering:
– Form a new image whose

pixels are a weighted sum
of original pixel values

• Properties
– Output is a shift-invariant

function of the input (same
at each image location)

Examples:
• Smoothing with a box filter

• Smoothing with a Gaussian

• Finding a derivative

• Searching for a template

Pyramid representations
• Important for describing

and searching an image at
all scales

