
Matlab
(see Homework 1: Intro to Matlab)

Starting Matlab from Unix:
• matlab &           OR
• matlab –nodisplay

Image representations in Matlab:
• Unsigned 8bit values (when first read)

– Values in range [0, 255],  0 = black, 255 = white

• Double precision floating point
– By convention, values in range [0.0, 1.0];  0.0 = black;  1.0 = white

• Colour images have 3 values at each pixel: RGB
– [0.0 0.0 0.0] = black;  [1.0 1.0 1.0] = white;  [1.0 0.0 0.0] = red
– Sometimes accessed through a colour map (lookup table)



Linear Filters
(Reading: 7.1, 7.5-7.7)

• Linear filtering:
– Form a new image whose pixels are a weighted sum 

of the original pixel values, using the same set of 
weights at each point



Correlation
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Slide credit: Christopher Rasmussen



Convolution

• Same as correlation, but 
with kernel reversed

• Represent the linear 
weights as an image,F

• F is called the kernel
• Center origin of the kernel 

F at each pixel location

• Multiply weights by 
corresponding pixels

• Set resulting value for 
each pixel

• Image, R, resulting from 
convolution of F with 
image H, where u,v range 
over kernel pixels (in 1D):

Rij = H i−u,j−vFuv
u,v
∑

Warning: the textbook mixes up
H and F
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Correlation compared to Convolution



Linear Filtering (warm-up slide)
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Linear Filtering (warm-up slide)
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Linear Filtering
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Linear Filtering
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Linear Filtering
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111

111

111

Blur (with a
box filter)



Linear Filtering
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Linear Filtering
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Sharpening filter
- Accentuates differences 
with local average
- Also known as Laplacian





Average  filter (box filter)
• Mask with positive 

entries, that sum to 1.
• Replaces each pixel 

with an average of its 
neighborhood.

• If all weights are equal, 
it is called a box filter.
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Example: Smoothing with a box filter



Smoothing with a Gaussian

• Smoothing with a box 
actually doesn’t compare 
at all well with a 
defocussed lens

• Most obvious difference is 
that a single point of light 
viewed in a defocussed 
lens looks like a fuzzy 
blob; but the box filter 
would give a little square.

• A Gaussian gives a good 
model of a fuzzy blob

• It closely models many 
physical processes (the sum 
of many small effects)



Gaussian Kernel

• Idea: Weight contributions of neighboring pixels by nearness

• Constant factor at front makes volume sum to 1 (can be ignored, as 
we should re-normalize weights to sum to 1 in any case).

0.003   0.013   0.022   0.013   0.003

0.013   0.059   0.097   0.059   0.013

0.022   0.097   0.159   0.097   0.022

0.013   0.059   0.097   0.059   0.013

0.003   0.013   0.022   0.013   0.003

5 x 5, σ = 1

Slide credit: Christopher Rasmussen



Smoothing with a Gaussian



Smoothing reduces pixel 
noise:

Each row shows smoothing
with Gaussians of different
width; each column shows
different amounts of 
Gaussian noise.



Efficient Implementation

• Both the BOX filter and the Gaussian filter are separable 
into two 1D convolutions:

– First convolve each row with a 1D filter

– Then convolve each column with a 1D filter.

– (or vice-versa)



Separability of the Gaussian filter



Differentiation and convolution

• Recall, for 2D function, 
f(x,y):

• This is linear and shift 
invariant, so must be the 
result of a convolution.

• We could approximate this 
as

(which is obviously a 
convolution)

∂f

∂x
= lim

ε→0

f x + ε, y( )
ε

−
f x,y( )

ε
 
  

 
  

∂f

∂x
≈

f xn+1,y( )− f xn, y( )
∆x

1-1



Vertical gradients from finite differences



Filters are templates

• Applying a filter at some point 
can be seen as taking a dot-
product between the image and 
some vector

• Filtering the image is a set of 
dot products

• Insight 

– filters look like the effects 
they are intended to find

– filters find effects they look 
like



Normalized correlation

• Think of filters as a dot product of the filter vector with 
the image region

– Now measure the angle between the vectors

– Angle (similarity) between vectors can be measured 
by normalizing length of each vector to 1.

– Normalized correlation: divide each correlation by 
square root of sum of squared values (length)

θcos|||| baba =⋅



Figure from “Computer Vision for Interactive Computer Graphics,” W.Freeman et al, IEEE Computer Graphics and Applications, 
1998 copyright 1998, IEEE

Application: Vision system   
for TV remote control

- uses template matching



We need scaled representations

• Find template matches at all scales
– e.g., when finding hands or faces, we don’t know what 

size they will be in a particular image
– Template size is constant, but image size changes

• Efficient search for correspondence
– look at coarse scales, then refine with finer scales
– much less cost, but may miss best match

• Examining all levels of detail
– Find edges with different amounts of blur
– Find textures with different spatial frequencies (levels 

of detail)



Aliasing

• We can’t shrink an image by taking every second pixel
• If we do, characteristic errors appear 

– Examples shown in next few slides
– Typically, small phenomena look bigger; fast 

phenomena can look slower
– Common examples

• Checkerboard patterns misrepresented in video 
games

• Striped shirts look funny on colour television
• Wagon wheels rolling the wrong way in movies



Resample the 
checkerboard by taking 
one sample at each circle.  
In the case of the top left 
board, new representation 
is reasonable. 
Top right also yields a 
reasonable representation. 
Bottom left is all black 
(dubious) and bottom 
right has checks that are 
too big.



Resampling with prior smoothing



The Gaussian pyramid

• Create each level from previous one:

– smooth and sample

• Smooth with Gaussians, in part because

– a Gaussian*Gaussian = another Gaussian 

– G(x) * G(y) = G(sqrt(x2 + y2))

• Gaussians are low pass filters, so the representation is 
redundant once smoothing has been performed

– There is no need to store smoothed images at the full 
original resolution



All the extra 
levels add very 
little overhead 
for memory or 
computation!



Summary of Linear Filters

• Linear filtering:
– Form a new image whose 

pixels are a weighted sum 
of original pixel values

• Properties
– Output is a shift-invariant

function of the input (same 
at each image location)

Examples:
• Smoothing with a box filter

• Smoothing with a Gaussian

• Finding a derivative

• Searching for a template

Pyramid representations
• Important for describing 

and searching an image at 
all scales


