Classifiers for Recognition
Reading: Chapter 22 (skip 22.3)

• Examine each window of an image
• Classify object class within each window based on a training set images

Slide credits for this chapter:
Frank Dellaert, Forsyth & Ponce, Paul Viola, Christopher Rasmussen
Example: A Classification Problem

- Categorize images of fish—say, “Atlantic salmon” vs. “Pacific salmon”
- Use features such as length, width, lightness, fin shape & number, mouth position, etc.

Steps
1. Preprocessing (e.g., background subtraction)
2. Feature extraction
3. Classification

example from Duda & Hart
Some errors may be inevitable: the minimum risk (shaded area) is called the Bayes risk.

Probability density functions (area under each curve sums to 1)
Discriminative vs Generative Models

Finding a decision boundary is not the same as modeling a conditional density.
Loss functions in classifiers

• Loss
 – some errors may be more expensive than others
 • e.g. a fatal disease that is easily cured by a cheap medicine with no side-effects -> false positives in diagnosis are better than false negatives
 – We discuss two class classification: \(L(1\rightarrow 2) \) is the loss caused by calling 1 a 2

• Total risk of using classifier \(s \)

\[
R(s) = Pr\{1 \rightarrow 2 | \text{using } s\} L(1 \rightarrow 2) + Pr\{2 \rightarrow 1 | \text{using } s\} L(2 \rightarrow 1)
\]
Histogram based classifiers

- Use a histogram to represent the class-conditional densities
 - (i.e. \(p(x|1) \), \(p(x|2) \), etc)
- Advantage: Estimates converge towards correct values with enough data
- Disadvantage: Histogram becomes big with high dimension so requires too much data
 - but maybe we can assume feature independence?
Example Histograms
Kernel Density Estimation

- **Parzen windows**: Approximate probability density by estimating local density of points (same idea as a histogram)
 - Convolve points with window/kernel function (e.g., Gaussian) using scale parameter (e.g., sigma)

from Hastie *et al.*
Density Estimation at Different Scales

• Example: Density estimates for 5 data points with differently-scaled kernels

• Scale influences accuracy vs. generality (overfitting)
Example: Kernel Density Estimation
Decision Boundaries

from Duda et al.
Application: Skin Colour Histograms

- Skin has a very small range of (intensity independent) colours, and little texture
 - Compute colour measure, check if colour is in this range, check if there is little texture (median filter)
 - Get class conditional densities (histograms), priors from data (counting)

- Classifier is

 - if \(p(\text{skin}|\mathbf{x}) > \theta \), classify as skin
 - if \(p(\text{skin}|\mathbf{x}) < \theta \), classify as not skin
Skin Colour Models

Skin chrominance points

Smoothed, [0,1]-normalized

courtesy of G. Loy
Skin Colour Classification

For every pixel p_i in I_{test}

- Determine the chrominance values (a_i, b_i) of $I_{test}(p_i)$
- Lookup the skin likelihood for (a_i, b_i) using the skin chrominance model.
- Assign this likelihood to $I_{skin}(p_i)$
Results

Figure from “Statistical color models with application to skin
detection,” M.J. Jones and J. Rehg, Proc. Computer Vision and
Pattern Recognition, 1999 copyright 1999, IEEE
ROC Curves
(Receiver operating characteristics)

Plots trade-off between false positives and false negatives for different values of a threshold.

Figure from “Statistical color models with application to skin detection,” M.J. Jones and J. Rehg, Proc. Computer Vision and Pattern Recognition, 1999 copyright 1999, IEEE
Nearest Neighbor Classifier

- Assign label of nearest training data point to each test data point

Voronoi partitioning of feature space for 2-category 2-D and 3-D data
K-Nearest Neighbors

- For a new point, find the k closest points from training data
- Labels of the k points “vote” to classify
- Avoids fixed scale choice—uses data itself (can be very important in practice)
- Simple method that works well if the distance measure correctly weights the various dimensions

$k = 5$

Example density estimate from Duda et al.
Neural networks

• Compose layered classifiers
 – Use a weighted sum of elements at the previous layer to compute results at next layer
 – Apply a smooth threshold function from each layer to the next (introduces non-linearity)
 – Initialize the network with small random weights
 – Learn all the weights by performing gradient descent (i.e., perform small adjustments to improve results)
Input units

Hidden units

Output units
Training

• Adjust parameters to minimize error on training set
• Perform gradient descent, making small changes in the direction of the derivative of error with respect to each parameter
• Stop when error is low, and hasn’t changed much
• Network itself is designed by hand to suit the problem, so only the weights are learned
The vertical face-finding part of Rowley, Baluja and Kanade’s system

Architecture of the complete system: they use another neural net to estimate orientation of the face, then rectify it. They search over scales to find bigger/smaller faces.

Face Finder: Training

• Positive examples:
 – Preprocess ~1,000 example face images into 20 x 20 inputs
 – Generate 15 “clones” of each with small random rotations, scalings, translations, reflections

• Negative examples
 – Test net on 120 known “no-face” images

from Rowley et al.
Face Finder: Results

- 79.6% of true faces detected with few false positives over complex test set

135 true faces
125 detected
12 false positives
Face Finder Results:
Examples of Misses

from Rowley et al.
Find the face!

- The human visual system needs to apply serial attention to detect faces (context often helps to predict where to look)
Convolutional neural networks

- Template matching using NN classifiers seems to work
- Low-level features are linear filters
 - why not learn the filter kernels, too?
A convolutional neural network, LeNet; the layers filter, subsample, filter, subsample, and finally classify based on outputs of this process.

Figure from “Gradient-Based Learning Applied to Document Recognition”, Y. Lecun et al Proc. IEEE, 1998 copyright 1998, IEEE
LeNet is used to classify handwritten digits. Notice that the test error rate is not the same as the training error rate, because the learning “overfits” to the training data.

Figure from “Gradient-Based Learning Applied to Document Recognition”, Y. Lecun et al Proc. IEEE, 1998 copyright 1998, IEEE
Support Vector Machines

- Try to obtain the decision boundary directly
 - potentially easier, because we need to encode only the geometry of the boundary, not any irrelevant wiggles in the posterior.
 - Not all points affect the decision boundary
Support Vectors
Pedestrian Detection with SVMs