

Local feature matching with large datasets Examples: Identify all panoramas and objects in an image set Identify all products in a supermarket Identify any location for robot localization or augmented reality

Nearest-neighbor matching

Solve following problem for all feature vectors, x:

$$\forall j \ NN(j) = \arg\min ||\mathbf{x}_i - \mathbf{x}_j||, \ i \neq j$$

- Nearest-neighbour matching is the major computational bottleneck
 - Linear search performs dn² operations for n features and d dimensions
 - No exact methods are faster than linear search for d>10
 - Approximate methods can be much faster, but at the cost of missing some correct matches. Failure rate gets worse for large datasets.

Bundle Adjustment

 New images initialised with rotation, focal length of best matching image

Multi-band Blending

- Burt & Adelson 1983
 - Blend frequency bands over range $\propto \lambda$

Automatic Straightening · Heuristic: user does not twist camera relative to horizon

3

• Up-vector perpendicular to plane of camera x vectors

 $\left(\sum_{i} \mathbf{X}_{i} \mathbf{X}_{i}^{T}\right) \mathbf{u} = \mathbf{0}$

3D Structure and Virtual Object Placement Solve for cameras and 3D points: Uses bundle adjustment (solution for camera parameters and 3D point locations) Initialize all cameras at the same location and points at the same depths Solve depth-reversal ambiguity by trying both options Insert object into scene: Set location in one image, move along epipolar in other, adjust orientation

