Panorama Stitching and Augmented Reality

Examples:
- Identify all panoramas and objects in an image set
- Identify all products in a supermarket
- Identify any location for robot localization or augmented reality

Matching in large unordered datasets

Solve following problem for all feature vectors, x:
$$
\forall j \, NN(j) = \arg \min_i ||x_i - x_j||, \ i \neq j
$$

Nearest-neighbour matching is the major computational bottleneck
- Linear search performs dn^2 operations for n features and d dimensions
- No exact methods are faster than linear search for $d>10$
- Approximate methods can be much faster, but at the cost of missing some correct matches. Failure rate gets worse for large datasets.

K-d tree construction

Simple 2D example
Approximate k-d tree matching

Key idea:
- Search k-d tree bins in order of distance from query
- Requires use of a priority queue

Fraction of nearest neighbors found

- 100,000 uniform points in 12 dimensions.

Results:
- Speedup by several orders of magnitude over linear search

Bundle Adjustment

- New images initialised with rotation, focal length of best matching image

K-d tree query

Approximate k-d tree matching

Key idea:
- Search k-d tree bins in order of distance from query
- Requires use of a priority queue

Fraction of nearest neighbors found

- 100,000 uniform points in 12 dimensions.

Results:
- Speedup by several orders of magnitude over linear search
Bundle Adjustment
- New images initialised with rotation, focal length of best matching image

Multi-band Blending
- Burt & Adelson 1983
 - Blend frequency bands over range $\propto \lambda$

2-band Blending
- Low frequency ($\lambda > 2$ pixels)
- High frequency ($\lambda < 2$ pixels)

Multi-band Blending
- Linear blending
- Multi-band blending

Automatic Straightening
- Heuristic: user does not twist camera relative to horizon
- Up-vector perpendicular to plane of camera x vectors
 $$\left(\sum_i x_i x_i^T\right) u = 0$$
Automatic Straightening

Gain Compensation

• Gain compensation

– Single gain parameter g_i for each image

$$e = \sum_i \sum_j w_{i,j} (g_i I_i(u_i) - g_j I_j(u_j))^2$$

Panoramas from handheld consumer cameras

- Free working demo available: Autostitch
- Commercial products: Serif, Kolor, others coming

Show in Java applet: Browser demo

Autostitch usage in www.flickr.com

Public images from Flickr

Surprise: Many users want borders to be visible

Over 20,000 panoramas posted by users of free Autostitch demo
Applications:
- Film production (already in use)
- Heads-up display for cars
- Tourism
- Medicine, architecture, training

What is needed:
- Recognition of scene
- Accurate sub-pixel 3-D pose
- Real-time, low latency

Augmented Reality

(David Lowe & Iryna Gordon)

- Solve for 3D structure from multiple images
- Recognize scenes and insert 3D objects

Shows one of 20 images taken with handheld camera

System overview

Bundle adjustment: an example

20 input images

50 iterations: error = 0.2 pixels

Incremental model construction

- Problems:
 - Computation time increases with the number of unknown parameters
 - Trouble converging if the cameras are too far apart (> 90 degrees)
- Solutions:
 - Select a subset of about 4 images to construct an initial model
 - Incrementally update the model by resectioning and triangulation
 - Images processed in order determined by the spanning tree

3D Structure and Virtual Object Placement

- Solve for cameras and 3D points:
 - Uses bundle adjustment (solution for camera parameters and 3D point locations)
 - Initialize all cameras at the same location and points at the same depths
 - Solve depth-reversal ambiguity by trying both options
- Insert object into scene:
 - Set location in one image, move along epipolar in other, adjust orientation
Augmentation Example