

Applications

- Mobile robots, driver assistance
- Cell phone location or object recognition
- Panoramas, 3D scene modeling, augmented reality
- Image web search, toys, retail, ...

Local feature matching Torr & Murray (93); Zhang, Deriche, Faugeras, Luong (95)

- Apply Harris corner detector
- Match points by correlating only at corner points
- Derive epipolar alignment using robust least-squares

Scale-Invariant Local Features

SIFT Features

Advantages of invariant local features

- Locality: features are local, so robust to occlusion and clutter (no prior segmentation)
- Distinctiveness: individual features can be matched to a large database of objects
- Quantity: many features can be generated for even small objects
- Efficiency: close to real-time performance
- Extensibility: can easily be extended to wide range of differing feature types, with each adding robustness

Distinctiveness of features

- Vary size of database of features, with 30 degree affine change, 2% image noise
- Measure % correct for single nearest neighbor match

Detecting 0.1% inliers among 99.9% outliers

- We need to recognize clusters of just 3 consistent features among 3000 feature match hypotheses
- RANSAC would be hopeless!

Generalized Hough transform

- Vote for each potential match according to model ID and pose
- Insert into multiple bins to allow for error in similarity approximation
- Check collisions

Model verification

- 1. Examine all clusters with at least 3 features
- 2. Perform least-squares affine fit to model.
- 3. Discard outliers and perform top-down check for additional features.
- 4. Evaluate probability that match is correct

3D Object Recognition

- Only 3 keys are needed for recognition, so extra keys provide robustness
- Affine model is no longer as accurate

Test of illumination invariance

Same image under differing illumination

273 keys verified in final match

Robot localization results

Joint work with Stephen Se, Jim Little

- Map registration: The robot can process 4 frames/sec and localize itself within 5 cm
- Global localization: Robot can be turned on and recognize its position anywhere within the map
- Closing-the-loop: Drift over long map building sequences can be recognized. Adjustment is performed by aligning submaps.

