David Lowe

Object Recognition using
Invariant Local Features

Goal: Identify
known objects in
new images

Training images Test image

Applications

o Mobile robots, driver assistance

e Cell phone location or object recognition

e Panoramas, 3D scene modeling, augmented reality
e Image web search, toys, retall, ...
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Local feature matching
Torr & Murray (93); Zhang, Deriche, Faugeras, L uong (95)

= Apply Harris corner detector
= Match points by correlating only at corner points
= Derive epipolar alignment using robust least-squares
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Rotation Invariance
Cordelia Schmid & Roger Mohr (97)

= Apply Harris corner detector
= Use rotational invariants at
corner points

« However, not scale invariant.
Sensitive to viewpoint and
illumination change.

Scale-Invariant Local Features

= Image content is transformed into local feature
coordinates that are invariant to translation, rotation,
scale, and other imaging parameters

SIFT Features

Advantages of invariant local features

= Locality: features are local, so robust to occlusion
and clutter (no prior segmentation)

= Distinctiveness: individual features can be matched
to a large database of objects

= Quantity: many features can be generated for even
small objects

= Efficiency: close to real-time performance

= Extensibility: can easily be extended to wide range
of differing feature types, with each adding robustness
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Build Scale-Space Pyramid

= All scales must be examined to identify scale-invariant
features

= An efficient function is to compute the Difference of
Gaussian (DOG) pyramid (Burt & Adelson, 1983)
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Scale space processed one octave at atime Key point localization

= Detect maxima and minima "’:"”
of difference-of-Gaussian in Scale Ao’
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Sampling frequency for scale Select canonical orientation

More points are found as sampling frequency increases, but

accuracy of matching decreases after 3 scales/octave - Crea,te hls'togr.am of local
gradient directions computed
iy at selected scale
= Assign canonical orientation
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= Each key specifies stable 2D
coordinates (x, y, scale,
orientation)
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Correctly matched

I Keypoint location (%) ——
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Example of keypoint detection SIFT vector formation

Threshold on value at DOG peak and on ratio of principle = Thresholded image gradients are sampled over 16x16
curvatures (Harris approach) array of locations in scale space

(o) 233189 image = Create array of orientation histograms
(b) 832 DOG extrema = 8 orientations x 4x4 histogram array = 128 dimensions

(c) 729 left after peak
value threshold
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(d) 536 left after testing
Image gradients Keypoint descriptor
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Feature stability to noise

= Match features after random change in image scale &
orientation, with differing levels of image noise

= Find nearest neighbor in database of 30,000 features
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Featur e stability to affine change

= Match features after random change in image scale &
orientation, with 2% image noise, and affine distortion

= Find nearest neighbor in database of 30,000 features
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Distinctiveness of features

= Vary size of database of features, with 30 degree affine
change, 2% image noise

= Measure % correct for single nearest neighbor match
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Detecting 0.1% inliersamong 99.9% outliers

= We need to recognize clusters of just 3 consistent
features among 3000 feature match hypotheses
= RANSAC would be hopeless!

= Generalized Hough transform
e Vote for each potential match according to model
ID and pose
o Insert into multiple bins to allow for error in
similarity approximation
e Check collisions

Probability of correct match

= Compare distance of nearest neighbor to second nearest
neighbor (from different object)

= Threshold of 0.8 provides excellent separation
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M odel verification

1. Examine all clusters with at least 3 features
2. Perform least-squares affine fit to model.

3. Discard outliers and perform top-down check for

additional features.

4. Evaluate probability that match is correct
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3D Object Recognition

= Extract outlines
with background
subtraction
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3D Object Recognition

= Only 3 keys are needed
for recognition, so extra
keys provide robustness

= Affine model is no longer
as accurate

Recognition under occlusion

Test of illumination invariance

= Same image under differing illumination

273 keys verified in fina match

Examples of view interpolation

Object Recognition

Recognition using View Interpolation
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L ocation recognition Raobot localization results
! = Joint work with Stephen Se, Jim Little

= Map registration: The robot can
process 4 frames/sec and localize itself
within 5 cm

= Global localization: Robot can be
turned on and recognize its position
anywhere within the map

Closing-the-loop: Drift over long map
building sequences can be recognized.
Adjustment is performed by aligning
submaps.

Robot Localization

Map continuously built over time L ocations of map featuresin 3D

= Camera (Euclidean view)
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Sony Aibo
(Evolution
Robotics)

SIFT usage:

& Recognize
charging
station

& Communicate
with visual
cards

AIBO® Entertainment Robot

Official U.S. Resources and Online Destinations.

Object Recognition

3/18/2007



