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ABSTRACT
Recommender systems help users find their items of inter-
est from large data collections with little effort. Collabo-
rative filtering (CF) is one of the most popular approaches
for making recommendations. While significant work has
been done on improving accuracy of CF methods, some of
the most popular CF approaches are limited in terms of
scalability and efficiency. The size of data in modern rec-
ommender systems is growing rapidly in terms of both new
users and items and new ratings. Item-based recommenda-
tion is one of the CF approaches used widely in practice. It
computes and uses an item-item similarity matrix in order
to predict unknown ratings. Previous works on item-based
CF method confirm its usefulness in providing high quality
top-k results. In this paper, we design a scalable algorithm
for top-k recommendations using this method, while meeting
high accuracy requirements. We achieve this by probabilis-
tic modeling of the similarity matrix. A unique challenge
here is that the ratings that are aggregated to produce the
aggregate predicted score for a user should be obtained from
different lists for different candidate items and the aggregate
function is non-monotone. We propose a layered architec-
ture for CF systems that facilitates computation of the most
relevant items for a given user. We design efficient top-
k algorithms and data structures in order to achieve high
scalability. Our algorithm is based on abstracting the key
computation of a CF algorithm in terms of two operations
– probe and explore. The algorithm uses a cost-based opti-
mization whereby we express the overall cost as a function
of a similarity threshold and determine its optimal value for
minimizing the cost. We empirically evaluate our theoretical
results on large real world datasets. Our experiments show
our approach achieves scalability and accuracy at the same
time.

1. INTRODUCTION
The number of items offered by modern information sys-

tems is growing rapidly. Browsing large collections and find-
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ing the right item of interest is not a trivial task for typical
users. Recommender systems help users find their items of
interest with little effort, through personalized recommenda-
tions. They take advantage of ratings by users on items they
have previously experienced and make predictions. Collab-
orative filtering (CF) has gained significant attention as the
most popular recommendation paradigm [1]. CF approaches
take as input a huge sparse matrix, consisting of ratings of
users on items. They output the most relevant (top-k) items
to the current or active user by predicting her unknown rat-
ings on candidate items. Most of the previous research on
collaborative filtering has been concerned with improving
the accuracy of predictions. Clearly, besides accuracy, scal-
ability is an important concern, given the ever growing num-
ber of users and items in today’s recommender systems. An
example of such a system is Google News which has mil-
lions of visitors every day and a growing number of news
feeds every second [4]. Other examples include Netflix1 and
Amazon2, with large collections of items and users. New rat-
ings, items and users are being added to the ratings matrix
constantly and need to be reflected in the top-k recommen-
dations. Computing the list of top-k items repeatedly for
all users or at login time for the active user can be costly,
calling for efficient top-k algorithms.

One of the standard and most popular approaches for col-
laborative filtering is item-based collaborative filtering (CF).
It is known to provide high quality top-k results [5,14]. The
main idea behind this approach is to calculate a similar-
ity matrix whose entries correspond to pairwise item simi-
larities, Pearson Correlation [13] being one of the popular
choices. Computing recommendations from scratch for ac-
tive users can be prohibitively expensive so CF-based rec-
ommender systems typically precompute item-wise similar-
ities and store them in a manner that facilitates quick re-
trieval [5]. Following this approach, the task of predicting
the score of the active user (ui) on an item (vj) consists of
the following steps:

∙ Find the N most similar items to vj that ui has rated,
referred to as vj ’s N nearest neighbors in ui’s profile.

∙ Compute a weighted average of ui’s ratings on the N
items weighted by similarities, as the predicted rating
or score of vj by ui.

Once item scores are predicted, those with highest pre-
dicted scores are served to the user. There has been a great

1http://www.netflix.com/
2http://www.amazon.com



deal of work on efficient algorithms for finding top-k items in
various settings. In classic top-k settings, the scores of items
on each of m features are available from m score-sorted lists.
The challenge is to devise top-k algorithms that access the
least number of items. This challenge is met by the TA and
NRA family of algorithms [6] and their numerous descen-
dants [3, 10, 17, 18, 21]. Compared with the classic settings,
finding top-k in item-based CF raises two unique major chal-
lenges: (1) Unlike in previous work, we need to deal with the
fact that the aggregate score of every candidate item must
be determined based on entries from a different set of lists.
This is because the N most similar items for every candidate
item may be different in a given user profile. (2) Weighted
average is not a monotone aggregate function, a property
leveraged by classic top-k algorithms. While there has been
some recent work on top-k algorithms with non-monotone
aggregate functions [10, 18, 21], to our knowledge, no pre-
vious work on top-k addresses the combination of variable
set of lists to aggregate from and non-monotone aggregate
functions.

Our goal in this paper is to devise an approach for item-
based CF3 that is scalable while retaining the accuracy of
known CF algorithms. We show that a direct approach
based on extending TA/NRA-like ideas to the framework
of CF either calls for unrealistic preprocessing and storage
requirements or leads to algorithms which end up accessing
as many entries as certain naive algorithms to be discussed
later. Thus, we propose an alternative approach based on
abstracting the key computation in CF by means of two
operations that we call probe and explore. Probe is the
process of identifying which (N) lists must be aggregated
for a given candidate item and explore is the process of find-
ing top-k items to be recommended, having found the lists
to be aggregated. Our approach is based on using a simi-
larity threshold value to make the probe step efficient. We
propose a probabilistic cost-based approach whereby we can
express the overall expected cost of our top-k algorithm as a
function of the similarity threshold and determine the best
value of the threshold that minimizes the cost.

We propose a scalable recommender system based on the
core item-based CF method described above, with an acrhi-
tecture consisting of the following layers (see Fig. 1): (i)
Data layer, consisting of the user/item ratings matrix; (ii)
Intermediate layer, consisting of the item-item similarity
matrix, sufficient statistics and required routines for effi-
ciently keeping the similarity matrix up-to-date. This layer
also maintains the data structures used by top-k algorithms,
and keeps them current; (iii) Application layer, including ef-
ficient top-k algorithms running on the top of the intermedi-
ate layer data. This layer invokes the probe operation using
the similarity threshold determined through cost-based op-
timization, and finds top-k items via the explore operation.

Top-k algorithms can work independently from the inter-
mediate layer and access up to date data structures from
that layer. We explore the design space by considering two
straightforward top-k algorithms and then propose a two-
phase top-k algorithm. In the first phase, we calculate a
threshold on similarity values. The similarity threshold is
found in such a way as to maximize (resp., minimize) the
probability that items with similarity values larger (smaller)
then the threshold are among the N nearest neighbors of

3Henceforth, unless specified otherwise, by CF we mean
item-based CF.
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Figure 1: Layered architecture and its components

items. Efficiency and scalability come from the fact that
after the first phase, as a result of using similarity thresh-
old, a huge portion of the similarity matrix is filtered and
the size of the problem is reduced significantly. The second
phase performs a straightforward computation of predicted
ratings using the surviving values. We define an objective
function which is an upper bound on the expected cost of
both phases put together and find the optimal value of the
threshold that minimizes the cost. We model the similarity
matrix with probability distribution(s) in order to facilitate
probabilistic analysis. We propose an efficient algorithm for
finding top-k recommendations. We make the following con-
tributions:

∙ We propose (Fig. 1) a layered system for item-based
collaborative filtering. Our system is highly scalable
and efficient while retaining the accuracy of CF algo-
rithms. It also keeps the similarity matrix up-to-date
with respect to new users and items added to data, as
well as new ratings. This makes our system suitable
for requirements of modern recommender systems.

∙ We propose two naive algorithms that serve as a base-
line for calibrating the performance of the algorithms
we consider. This naturally leads to a hybrid algorithm
that combines their strengths (Sec. 3).

∙ We show that an approach based on extending TA/NRA
style algorithms either requires an unreasonable amount
of preprocessing and storage or leads to algorithms
which can access as many entries as certain naive al-
gorithms (Sec. 4).

∙ We design a novel top-k algorithm for item-based col-
laborative filtering. The algorithm is based on find-
ing a similarity threshold value that optimizes the ex-
pected cost (Sec. 5).

∙ We evaluate the algorithms theoretically and empiri-
cally in terms of their running time and quality of top-
k results. We empirically show our top-k algorithm
is superior to the baseline methods in providing con-
sistent high quality top-k recommendations in a more
scalable way (Sec. 5 and Sec. 7).

Sec. 2 discusses the related work on scalable item-based
CF methods and top-k algorithms. Sec. 8 concludes the
paper.



2. RELATED WORK
Item-based CF and Scalability: There has been extensive
work on collaborative filtering. The prevalent approaches
fall into the categories of user-based, item-based, model-
based CF or fusion approaches. We refer the reader to [1,7,8]
for excellent surveys. User-based methods predict unknown
ratings based on ratings of N nearest users who have rated
the item. This requires computing and maintaining an n×n
user-user similarity matrix. The number of users n is typi-
cally much larger than the number of items m. Item-based
CF was first proposed in [5, 14] to overcome these limita-
tions. In addition to improving scalability, it has been found
that pairwise item similarities are usually more reliable than
pairwise user similarities and result in better accuracy [14].
In item-based CF, the rating of an active user on a candi-
date item is predicted based on her ratings on N items most
similar to the candidate item. Sarvar et al. [14] propose a
scalable approach which relies on storing only N (between
10 and 30) most similar items to every item rather than the
whole matrix. A general drawback of item-based CF arises
when the active users rated fewer than N items, resulting in
loss of accuracy. In extreme cases, it may be impossible to
make reasonable prediction of rating for some (user, item)
combinations. A similar comment applies to user-based CF.
Model-based methods [4] assume the ratings matrix has
been generated from a model and use the observed data to
learn optimal parameter values of the model. Despite their
efficiency they suffer from lack of explainability. Besides,
since they find model parameters through optimization, they
have a training phase. Changing parameters incrementally
and adapting to changes in data is not a trivial problem.

In sum, item-based CF is one of the popular approaches
for collaborative filtering and devising scalable and efficient
algorithms for its computation is of great importance. In-
deed, there have been several works in the literature that aim
at improving scalability of item-based methods [15, 19, 20].
In [15], singular value decomposition (SVD) is applied first
in order to represent users and items in a lower dimensional
space. Neighborhood formation is based on this compact
representation of the original set of ratings. Our main focus
is on top-k algorithms that run on top of the original and up
to date similarity matrix. Another line of work has focused
on instance selection for improving scalability [15, 19, 20].
Rather than considering the set of all users and items for
finding nearest neighbors, they find a small subset that re-
sults in better accuracy compared to other subsets. Instance
selection can indeed improve scalability albeit at the expense
of accuracy. Besides, our approach is orthogonal to instance
selection and one could use both instance selection together
with our efficient top-k algorithms for improving scalability.
Top-K Algorithms: Top-k algorithms have been studied
extensively. Most of the related work builds on top of clas-
sic TA and NRA algorithms [6]. These algorithms assume a
monotone aggregate function and the set of lists from which
the aggregation is performed is known beforehand. Com-
pared to these algorithms, in our problem we face two major
challenges: (i) our aggregation function is not monotone; (ii)
the set of lists from which values are to be aggregated is not
fixed and could change from item to item. Several recent
works address the issue of non-monotone aggregation func-
tions [10, 18, 21] although the issue of dealing with different
sets of lists to aggregate scores from has not been addressed
before, to our knowledge. The main idea leveraged in all

cases is defining an upper bound on the score of unseen ob-
jects and a lower bound on the score of top-k items. The
algorithm stops when the former becomes smaller than the
latter. As we show in the paper, an adaptation of TA/NRA-
like approaches to deal with changing set of lists for aggre-
gating scores from leads to an algorithm which can be arbi-
trarily worse than the optimal algorithm on some instances.
In contrast, we propose a significantly different algorithm
for computing top-k items. It is based on organizing top-k
computation in terms of probes and explores and choosing
an optimal similarity threshold using cost-based optimiza-
tion. We propose a scalable exact algorithm and an even
faster approximate algorithm.

3. PRELIMINARIES AND NAIVE
ALGORITHMS

In collaborative filtering, data is represented as a sparse
n×m matrix R, with entry rij , the rating of itℎ user on jtℎ

item, taking on integer values from the set {1, 2, ..., C}, for
some C > 1.

The main challenge is to predict the missing ratings in
R. Henceforth, we use rij to refer to the existing ratings of
itℎ user on jtℎ item. We refer to itℎ user (row) as ui and
to jtℎ item (column) as vj . Notice that from a behavioral
perspective, we can identify the itℎ user (resp., jtℎ item)
with row ui (resp., column vj). When we refer to ui (resp.,
vj) below, we mean either user i (resp., item j) or row i
(resp., column j). We use r ∈ ui (resp., r ∈ vj) to denote an
existing rating in user ui’s row (item vj ’s column). We use
⌢
r ij for the predicted value of the active user ui’s unknown
rating on a candidate item vj . In the rest of this paper we
use �i to refer to the number of items rated by ui and � to
denote the average number of items rated by any user.

Prediction of
⌢
r ij in item-based collaborative filtering is

done typically by taking the weighted average of ratings of
ui on N most similar items to vj . More formally, we can
use the following equation, where N(vj , ui) denotes the set
of N items that are most similar to vj and are rated by ui:

⌢
r ij = (

N∑
x=1

sxj × rix) / (
∑

vy∈N(vj ,ui)

syj) (1)

Problem Studied: Given an active user ui, the problem is
to efficiently find the top-k items with the highest predicted
rating. We call this the problem of finding top-k recom-
mendations. Predicting the rating of a candidate item vj
requires identifying the N items that are most similar to vj
and are rated by ui, and then aggregating their ratings using
Eq. 1.

The first natural question, given the body of work on
the TA/NRA family of top-k algorithms, is whether we can
adapt those algorithms and design efficient top-k algorithms
for finding top-k recommendations. We address this ques-
tion in Section 4. In the next subsections, we present two
naive algorithms that will serve as baselines for the top-k
algorithms considered in this paper. For convenience, for a
given item vj , by the N nearest neighbors of vj we mean the
N most similar items to vj .

3.1 Algorithm Naive-1
For both Algorithms Naive-1 and Naive-2, we assume pair-

wise item similarities are materialized. A straightforward



procedure for finding top-k items with respect to ui is as
follows:

1. Predict the score4 of each individual candidate item,
vj , using Eq. 1. This involves finding N most similar
items to vj in ui’s profile, i.e., the set N(vj , ui). Find-
ing K items with highest values in a list of m items
has been studied extensively in the literature as the
K-Select problem [9]. Here, since values of N are in
the range 10-30 in practice, we can perform this task
by a simple scan of the list and maintain a priority
queue. This is doable in O(mlogN). Since N is typi-
cally a small number, this approach is typically more
efficient than the best deterministic algorithm for the
general K-Select problem which takes Θ(10m) using
the median of medians approach [9] and we prefer to
use it.

After finding N nearest neighbors of each item (rated

by ui), aggregating their ratings and calculating
⌢
r ij

takes O(N) time. Thus, the total cost of predicting the
score of an individual candidate item is O(mlogN+N)
and the cost of predicting scores of all candidate items
is O(m2logN +mN). In practice, it is possible to im-
prove this by searching for N nearest neighbors of vj
only within the list of items rated by the user, which
will result in O(m�ilogN +mN) cost where �i is the
number of items rated by user ui. This improvement
is possible provided the list of items rated by any given
user is stored separately in addition to the ratings ma-
trix. Storing such information adds a cost of O(n�) to
the storage, where � is the average number of items
rated by a user. This is of the same order as the cost
of efficiently storing the sparse ratings matrix and we
can assume access to this information.

2. Once the score of every item is calculated in previous
step, find k items with highest scores in O(mlogk).

The total running time of the above algorithm isO([�ilogN+
N + logk]×m).

We can see that finding the top-k items to recommend to
a given user involves two steps: (i) Probe every candidate
item in order to find the N items in the user’s profile that are
most similar to it. (ii) Explore the list of candidate items
and calculate their scores and then find the top-k items that
have the highest scores. Step (ii) is necessary in order to
find the best scoring k items. For any item, determining its
score requires that we know the N most similar items to it,
which is addressed by step (i).

The probe step involves O(m�ilogN) operations while ex-
plore requires O(m(logk +N)) operations. In practice, val-
ues of N are typically 30 or smaller. Also, logk does not
typically exceed 5, the main reason being we don’t want to
overwhelm users with too many recommendations5. Exis-
tence of a �i factor in the probe cost suggests that the probe
component in the cost of Algorithm Naive-1 dominates the
explore cost. To put this in perspective, for instance, in the
MovieLens dataset [11] with 1 Million ratings the average
value of �i is around 165. Also in Netflix [12] dataset with
100M ratings and 500k users, the average number of ratings
per user is 200.

4We use score and rating interchangeably.
5Netflix (www.netflix.com) recommends a list of 25 items to
users

3.2 Algorithm Naive-2
We define a data structure, L, besides similarity matrix

which is a collection of sorted lists, one for each item. A
schematic of L is illustrated in Figure 2. Denote by Li ∈ L
the list associated with item vi. Elements of Li are pairs of
the form (item pointer, similarity) and lists are sorted in
non-increasing similarity w.r.t. vi; item pointer is a pointer
to the actual memory location where item resides or simply
the item id. Pointers are used to have a unified represen-
tation of items between the ratings matrix R and the sim-
ilarity lists L. We use Lij to denote the jtℎ entry of list
Li. Lij .similarity denotes the similarity of jtℎ most similar
item to vi. Each of the sorted lists in L is maintained as a
priority queue to facilitate efficient updates as item similar-
ities change over time. Algorithm Naive-2 works as follows:

1. Mark all �i items rated by ui which takes time O(�i).

2. For every candidate item vj , read Lj from the head of
the list until N marked items are found.

3. Calculate the aggregate scores and find k items with
highest scores in time O(mlogk).

There is a total of m items out of which �i are marked.
Thus, a randomly chosen item has equal probability of be-
ing at any position of the list. Therefore, we can assume
�i marked items divide the list into �i + 1 buckets. The
expected number of unmarked items in each bucket is (m−
�i)/(�i + 1) and the expected number of items to visit un-

til N marked items are observed is N + N × (m−�i)
(�i+1)

or

O(Nm/�i) which makes the expected running time of al-
gorithm O(mN(m/�i) +mlogk).

It is easy to verify Algorithm Naive-2 is expected to be
more efficient than Algorithm Naive-1 when �i >

√
Nm/logN .

Combining the two algorithms, using Naive-1 when �i ≤√
Nm/logN and Naive-2 when �i >

√
Nm/logN , results

in a procedure with expected running time O(mlogk+ m×
min(�ilogN,Nm/�i)). We call this Algorithm Hybrid. A
point worth making is that the theoretical“switchover”value
of �i >

√
Nm/logN was obtained based on the worst case

expected cost of the Algorithms Naive-1 and Naive-2. In
our experiments, we empirically explore the best switchover
value on the Netflix data set.

4. CLASSIC TOP-K ALGORITHMS
Since TA/NRA style algorithms rely on the aggregation

function being monotone, a straightforward approach for
leveraging those algorithms is to turn the problem into one
where the aggregate function is monotone. In Eq. 1, define
the contribution of item vx rated by user ui to the predicted
rating of item vj as exj = sxjrix/

∑
vy∈N(vj ,ui)

syj . It is easy

to see the predicted rating is
⌢
r ij =

∑
vx∈N(vj ,ui)

exj . The

TA/NRA family of algorithms can now be applied since sum
is a monotone aggregation function. However, in order to
realize this, we need to maintain N lists storing similarities
of each candidate item vj to each of its N nearest neighbors
that are rated by ui, for each user ui. This requires find-
ing the N most similar items for every candidate item that
are rated by each user and it requires an O(nmN) storage,
which is prohibitive. Besides storage, it requires keeping the
list of N nearest neighbors of every item up to date for every
user which is also computationally expensive. In practice,



we only need to find top-k recommendations for every user
when they enter the system.

L_mm

Items 

rated 

by u_i

Candidate 

items 

L_1 L_m

L_11

Figure 2: Schematic of data structure L storing
item-wise similarities in non-increasing order. We
assume active user ui has rated first �i items.

In this paper, we seek efficient top-k algorithms with effi-
cient storage requirements. More specifically, the minimum
storage requirement is the ratings matrix and the material-
ized pairwise item similarities. Since we do not want to store
this information on a per user basis, we need to materialize
all pairwise similarities in general. A data structure consist-
ing of lists corresponding to every item, storing similarities
to other items in non-increasing order, is an efficient imple-
mentation of the similarity information and we will assume
the top-k algorithms have access to this information. This
data structure, called L, is schematically depicted in Fig. 2
where we assume active user ui has rated the first �i items.
We discuss two different possible realizations of TA/NRA
style algorithms using the above idea and show there are
instances where adaptations of TA/NRA algorithms will ac-
cess all the entries accessed by one of the naive algorithms
discussed earlier. This will set the stage for developing more
efficient algorithms.

More specifically, we consider algorithms that access en-
tries in columns of L in sorted similarity order. Once they
read a similarity value between a candidate item and one
of the �i items rated by the user, they wait until they can
decide whether the rated item is among the N nearest neigh-
bors of candidate item or not.6 After finding a new neighbor
for a candidate item, they update the necessary upper and
lower bounds. Finally they terminate once the lower bound
on the score of top-k items becomes no less than the up-
per bound on the score of partially observed objects. In the
rest, we call such algorithms ”classic algorithms”. We con-
sider two types of classic algorithms: (i) those which access
columns of L corresponding to items rated by ui in sorted
order; (ii) those which access columns of L corresponding to
candidate items. We make no assumptions about the order
on which lists are chosen for probing and the depth until
which each of them is probed. We prove in both cases for
any classic algorithm as mentioned above, there exists an in-
stance on which the algorithm will access as many instances
as one of the naive algorithms.

THEOREM 1. Let CA be any classic algorithm that

6In some situations decision can be made immediately

reads similarity values from those columns of L that cor-
respond to items rated by ui. There is an instance on which
CA will access as many entries as Algorithm Naive-1.

Proof. Consider an instance where there are N items
rated C (maximum score) by user ui. Call them (ui’s) fa-
vorite items. Assume there is at least one item among the
top-k whose aggregate score is less than C. Let Smin =
min({Ljm.similarity∣vj ∈ ui}) which is the minimum sim-
ilarity value in the bottom row of L, among columns corre-
sponding to items rated by ui. Choose S1 and S2 such that
S2 < S1 < Smin. Add a new candidate item to L, vnew,
such that the last entry of every list corresponds to vnew.
Set similarities of vnew with the N favorite items to S1, and
with the rest of items to S2. We will show any classic algo-
rithm needs to access all of the entries of the �i columns in
order to find the top-(k + 1) items.

Any classic algorithm will access entries in the �i columns
in sorted order. Finding the top-(k+1) items is not possible
unless all the N nearest neighbors of vnew are found. This
is because: (i) vnew is among the top-(k + 1) items, since
its aggregated score is C; (ii) The lower bound on the score
of the top-(k + 1) items remains less than the upper bound
on the the score of partially observed items until all the N
nearest neighbors of vnew are seen. This is because there is
at least one item among the top-(k + 1), whose score is less
than maximum possible score C.

Finding all of the N nearest neighbors of vnew requires
reading all of the entries at the bottom of the �i lists. This
is due to the fact that the maximum similarity of vnew to
items rated by ui is less than Smin. Therefore, CA can’t use
other similarity values in order to find N nearest neighbors
of vnew. But then reading all of the similarities between
vnew and the �i items rated by the user forces CA to read
all of the entries in all the �i lists since it reads entries of L
in sorted order.

THEOREM 2. Let CA be any classic algorithm that
reads similarity values from those columns of L that cor-
respond to candidate items. There is an instance on which
CA will access as many entries as Algorithm Naive-2.

Proof. Consider an instance where there are no items
rated C (maximum score) by user ui. Assume the instance
is such that there are no two candidate items whose N near-
est neighbors are exactly the same. Consider the sequence of
similarity values accessed by CA and let’s call it Seqs. No-
tice that the order in which similarity values appear in Seqs
does not depend on ratings of ui since these are similarities
w.r.t. candidate items (not rated by ui). It only depends
on the order in which candidate lists are probed and until
which depth. Also note that no list will be probed beyond
the point where the N tℎ most similar item is observed. CA
will terminate at some point when the lower bound on the
score of top-k items becomes no less than the upper bound
on the score of partially observed objects. Assume this ter-
mination criterion is removed from the algorithm and Seqs
is continued until the last N tℎ nearest neighbor is observed.
Call the item whose N tℎ nearest neighbor is observed last
vlast. We create a new instance by changing ratings of ui
on N nearest neighbors of vlast to C. Obviously, vlast will
be the top item in the new instance. Now, the upper bound
on the score of partially observed items will remain greater
than the lower bound on the score of top-k items, unless the
N nearest neighbors of vlast (and thus of all items) are ac-



cessed. Therefore any classic algorithm will access as many
entries of L as Algorithm Naive-2.

The above two theorems highlight the fact that in the-
ory the performance of classic algorithms can be as bad
as the two naive algorithms in terms of the number of en-
tries of L they access. It is worth noting however that an
efficient implementation of the classic algorithms needs to
maintain the lower and upper bounds, which requires care-
ful bookkeeping and may lead to additional storage and
computational cost. Besides, getting good lower and upper
bounds with non-monotone aggregate functions is an addi-
tional challenge. Motivated by these issues, we propose an
alternative two-phase approach to the top-k recommenda-
tions problem based the operations probe and explore. The
details are described in the following section. As a preview,
we will show (Sec. 5.2) that for various choices of values for
the parameters �i and N , the expected cost of our two-phase
algorithm in terms of entries accessed rarely exceeds that of
the two naive algorithms and is most of the time much less.
A point worth noting is unlike our two-phase algorithm, the
performance of classic algorithms cannot be predicted based
on the values of these parameters alone, since for any choice,
we can always find an instance where the classic algorithms
access as many entries as one or the other naive algorithm.

5. A TWO-PHASE ALGORITHM
Recall, between the steps probe and explore (Sec. 3), probe

is much more expensive. To facilitate efficient implementa-
tion of probe, in this section, we describe a two-phase process
which is the basis for our efficient top-k algorithm.

5.1 Two-Phase Algorithm
We start with the data structure L described in Sec. 3

and extend it by adding a third element to every entry. We
call the new data structure LP . Specifically, in LP , an entry
LPij is a triple where LPij .item pointer and LPij .similarity
are the same as the corresponding elements in L. The third
element LPij .prob, represents the probability that any other
similarity value in L is larger than LPij.similarity. Al-
though all of the similarities are available in the similarity
matrix, reading all of the relevant similarities is costly. We
use these probabilities to make probabilistic decisions during
execution. Making such decisions, we seek to avoid accessing
all similarity values for rated items (unlike Algorithm Naive-
1) or accessing all similarity values of candidate items until,
for each of them, the N nearest neighbors are found (unlike
Algorithm Naive-2). So we first read only values that have
a high probability of being among the N most similar items
of the candidate items. We do this by finding a threshold
and filtering all entries with prob values above it. Then, we
search for N nearest neighbors of candidate items among the
surviving values. It is possible that for some items we have
missed some or all of the nearest neighbors. In such cases,
we probe for the remaining neighbors only for those items.
Obviously, choosing the right threshold value is of great im-
portance. We do this through cost based optimization.
LPij.prob values are estimated through modeling of simi-

larity matrix with an appropriate distribution, the details of
which we will explain later. As we will show later, when we
model similarity matrix with a distribution, there is no need
to materialize prob values. Instead, the probability thresh-
old can be directly translated into a similarity threshold. For

simplicity of presentation, here let us assume these proba-
bilities are given. Notice that elements of LP that contain
higher similarity values, have lower prob values. Therefore,
keeping columns of LP sorted in non-increasing order of sim-
ilarities is identical to keeping them sorted in non-decreasing
order of prob values.

Fig. 3 illustrates the two-phase process as well as naive
algorithms for an active user (ui), who has rated 3 out of 7
items. In Fig. 3, on the left side of the top row, the three
columns of LP corresponding to items rated by ui are shown
and all entries with prob values below an example threshold
value of � = 0.19 are highlighted. On the right side, inverted
lists of candidate items are shown. These lists contain only
the surviving similarity values. Assuming N = 2, we are
done with finding neighbors of v4 and v7. We have found
the nearest neighbor of v5 as well and only need to find the
second nearest neighbor among the remaining items rated by
ui (i.e., v1 and v2). This reduces the execution time for three
out of four candidate items compared to Algorithm Naive-1,
which needs to search for the nearest neighbors of all items
among all �i items rated by ui (see Fig. 3, bottom right).
However, note that the two-phase approach still needs to
pay the cost of reading some irrelevant similarity values such
as s13. In addition, finding the remaining neighbors of v5

requires at least a scan of the �i items rated by the user.
All of this underscores the importance of choosing the right
threshold for purpose of pruning. We do this by cost-based
optimization.

Fig. 3 (bottom left) also illustrates how Algorithm Naive-
2 works. In this specific example, almost half of the items
are rated and the scenario is in favor of this algorithm.7

However, the two-phase process accesses only 11 entries as
opposed to 16 by Naive-2 and 12 by Naive-1. Our purpose in
this example is just to illustrate how the two-phase process
works and the need for cost-based optimization in choosing
the probabilistic threshold. Toward the end of Sec. 5.2, we
compare the expected cost of the two-phase algorithm with
the cost of Algorithms Naive-1 and Naive-2.

Following the two phases of probe, the explore step is
applied in order to find the top-k items.

In order to compare two phase process to classic top-k al-
gorithms, in Fig. 3, assume v5 is one of the top-k items. Also
assume ui has provided the maximum rating (C) to both of
the nearest neighbors of v5. In this case, the upper bound on
the score of partially observed items (in the sense of the clas-
sic top-k algorithms) won’t drop until we have found both of
the nearest neighbors of v5. Furthermore, we need to make
sure there is no other similarity value between v5 and other
items rated by the user which are larger than the ones we
have read. It is easy to verify that doing so either requires
reading 5 more entries or it requires reading 3 more entries
and performing rigorous book keeping to keep track of under
which lists we have observed every item, an expensive step
in itself. In the worst case, this could be as bad as read-
ing all entries which is even worse than Algorithm Naive-1.
Therefore, we propose an alternative approach based on the
two-phase process and choose the threshold based on cost-
based optimization.

5.2 Choosing Threshold Prob Value �

7In practice, e.g., in Netflix, the number of items rated by
a user on an average is a small fraction of the number of all
items, which makes Algorithm Naive-2 perform even worse.
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Figure 3: An example of running the two phase probe step using a prob threshold of � = 0.19 and comparing
it to naive algorithms

We already illustrated with an example how given a thresh-
old on prob values, the probe step is performed in two phases.
We choose this threshold value in such a way as to minimize
an upper bound on the expected overall cost of the algo-
rithm. In this section we introduce the necessary functions
that serve as components of the cost function.

DEFINITION 1. Let v be an item in a user’s profile,
vc be a candidate item, s be the similarity of v w.r.t. vc, and
p be the corresponding prob value. We use Q(p) to denote
the probability that v is among the N nearest neighbors of
vc.

Assume �i is the number of items rated by user ui. Let
vj be one of the items rated by ui and let vc be a candidate
item (and thus unrated by ui) with similarity s to item vj .
Let p be the corresponding prob value, i.e., the probability
that any other given similarity value in LP is larger than s.
We define a Bernoulli random variable Xℓ, where Xℓ = 1 if
vj is the ℓtℎ most similar item to vc among items rated by
ui and Xℓ = 0 otherwise. We have:

P (Xℓ = 1) =

(
�i − 1

ℓ− 1

)
pℓ−1(1− p)�i−ℓ (2)

In Equation 2, P (Xℓ = 1) is equivalent to ℓ− 1 successful
trials out of �i − 1 where p is the probability of success,
i.e., that some other similarity value in LP is higher than s.
Now let’s define another random variable, Y , which takes on
value 1 if vj is one of the N nearest neighbors of vc among
items rated by ui and 0 otherwise. Equation 3 defines Q(p)
in terms of Y :

Q(p) = P (Y = 1)

=
N∑
ℓ=1

P (Xℓ = 1)

=
N−1∑
ℓ=0

(
�i − 1

ℓ

)
pℓ(1− p)�−ℓ−1

(3)

DEFINITION 2. For a given user ui, define the core
set of ui to consist of all of the similarity entries that con-
tribute to the scores of all candidate items, i.e., similarity
values between all candidate items and their N nearest neigh-
bors in ui’s profile.8

Assuming there are m items and m >> �i for any given ui,
there are O(m) candidate items. Thus the core set consists
of O(Nm) similarity values. For any given entry l of LP ,
P (l.similarity ∈ Core) = Q(l.prob). This means in order
for a similarity value to be in the core set, it has to be among
the N nearest neighbors of the candidate item corresponding
to l.item pointer.

DEFINITION 3. We use S� to denote the set of sur-
viving similarity values in phase 1, after filtering out all en-
tries from LP whose prob values are no less than the thresh-
old value �, as described earlier and illustrated with Fig. 3.

Notice, Core−S�a is the set of all similarity values in the
core set that are not obtained in phase 1 and hence would

8Note, two different pairs of items having the same exact
similarity value, are counted as two different member entries
of the core set.



need to be processed in the second phase. We have the fol-
lowing result, establishing an upper bound on the expected
size of this set.

PROPOSITION 1. For any threshold value �a, Q(�a)m�i
is an upper bound on the expected size of ∣Core− S�a ∣.

Proof. Let A = {LPj� ∣ LPj�.prob > �a and vj ∈ ui}.
Notice, ∀l ∈ A, Q(l.p) < Q(�a). We already know P (l.s ∈
Core) = Q(l.p).
→ E(∣A ∩ Core∣) = ∣A∣ ×Q(l.p)
→ E(∣A∩Core∣) < Q(�a)m�i. Since ∣A∩Core∣ = ∣Core−

S�a ∣, the proof is complete.

Given a threshold value �a, in the first phase all entries
with prob value below �a are read resulting in an expected
number of at most m�i�a values that are carried forward to
the next phase. This is due to the fact that the expected
number of entries with pointers to candidate item vc, are
�i�a and there are at most m candidate items. Finding N
highest values in list of length �i�a results in the expected
cost of �ilog(N)�a for a single candidate item. We know
the expected number of missing entries from Core in S�a is
at most Q(�a)m�i. Here, we consider a worst case scenario.
Let’s assume all of the missing entries belong to different
items. Also assume for all of these items we perform the
task of finding N nearest neighbors from scratch on a list
of �i items. Therefore, an upper bound on the expected
number of items for which the probe step needs to be done
from scratch is Q(�a)m�i.

9 We also know that m�i�a is an
upper bound on the number of irrelevant similarity values
(similarities between items rated by the user). Taking all
these factors into account, an upper bound on the expected
overall cost of both phases, given a threshold value �a on
prob values is provided in Equation 4.

C(�a) = Q(�a)m�i
2 log(N)

+(m−Q(�a)m�i) log(N)�i�a

+m�i�a
m�i×= Q(�a)�i log(N)(1− �a) + �a(1 + log(N))

(4)

Since the variable of the function is �a, we drop the m�i
which is factored out in the rest. The optimal value of
threshold (�) given the cost function can be found as fol-
lows:

� = arg min
�a

(C(�a)) (5)

As can be seen in Equation 4, there are two competing
components. On one hand, the expected number of missing
entries from Core set decreases if we use a larger threshold.
On the other hand, using a large threshold results in a weak
pruning in the first phase and it won’t be effective enough to
improve the efficiency of the second phase. Finding optimal
threshold value requires optimization of the cost function.
We will first show the cost function in Equation 4, has only
one minimum as long as �i ≥ 2 and N ≥ 2, and then explain
how to perform the optimization. Before that, we need the
following two important lemmas.
9We consider this worst case scenario only in our optimiza-
tion. Our implementation takes advantage of the partial
list of neighbors already found and performs the task more
efficiently.

LEMMA 1. The cost function C(�a) has at least one
minimum as long as 0 < �a < 1, �i ≥ 2 and N ≥ 2.

Proof. Equation 6, provides derivative of the cost func-
tion after dropping the m�i factor.

∂C(�a)
∂�a

= ∂Q(�a)
∂�a

�i log(N)(1− �a)

−Q(�a)�i log(N) + (1 + log(N))
(6)

We need to take derivative of the Q function with respect
to �a as well.

∂Q
∂�

= −(�i − 1)(1− �)�i−2

+[
N−1∑
ℓ=1

(
�i − 1

ℓ

)
ℓ× �ℓ−1(1− �)�i−ℓ−1

−

(
�i − 1

ℓ

)
(�i − ℓ− 1)× �ℓ(1− �)�i−ℓ−2]

While

�+1∑
ℓ=�

[

(
�i − 1

ℓ

)
ℓ× �ℓ−1(1− �)�i−ℓ−1

−

(
�i − 1

ℓ

)
(�i − ℓ− 1)× �ℓ(1− �)�i−ℓ−2]

=

(
�i − 1

�

)
�× ��−1(1− �)�i−�−1

−

(
�i − 1

�+ 1

)
(�i − �− 2)× ��+1(1− �)�i−�−3

This is because the the second term inside the sum when
ℓ = �, is canceled with the first term when ℓ = �+ 1. Alto-
gether, we can simplify the sum and represent the derivative
of Q in Equation 7.

∂Q(�a)

∂�a
= −

(
�i − 1

N − 1

)
(�i−N)�N−1

a (1− �a)�i−N−1 (7)

Now, it could be verified easily that C(�a) is a degree �i
polynomial and therefore continuous for 0 < �a < 1. Also

lim
�a→0

(C′(�a)) = −�i log(N) + log(N) + 1

Which is negative when �i ≥ 2 and N ≥ 2. And,

lim
�a→1

(C′(�a)) = log(N) + 1

Since the sign of derivative changes from negative to posi-
tive at least once we conclude that Cost function (C(�)) has
at least one minimum.

In the expression for C′(�a), the derivative of C(�a) w.r.t.
�a, the sub-expression that depends on �a is given by:

B(�a) = log(N)�i[Q
′(�a)(1− �a)−Q(�a)] (8)

where Q′(�a) is the derivative of Q(�a). We have:

LEMMA 2. The function B(�a) has only one minimum
if 0 < �a < 1.



Proof.

B(�a) = log(N)�i

×[−

(
�i − 1

N − 1

)
(�i −N)�a

N−1(1− �a)�i−N

−Q(�a)]→

B′(�a) = log(N)�i × (

−

(
�i − 1

N − 1

)
(�i −N)

×[(N − 1)�a
N−2(1− �a)�i−N

−(�i −N)�a
N−1(1− �a)�i−N−1]

−

(
�i − 1

N − 1

)
(�i −N)�a

N−1(1− �)�i−N−1)

We set B′(�a) = 0→

�a
N−2(1− �a)�i−N−1(N − 1− (�i − 2)�a) = 0

The only value between 0 and 1 that can make B′(�a) = 0
is �a = (N−1)/(�i−2). It could be verified that the second
derivative of B at this point is positive and therefore B(�a)
has only one minimum in the range.

We now have:

THEOREM 3. The cost function C(�a) given in Equa-
tion 4 has only one minimum under the following assump-
tions

0 < �a < 1, �i ≥ 2, N ≥ 2.

Proof. Using Lemma 2, we know that C′(�a) has only
one minimum. Let’s call the value of �a at this point �min.
This means C′(�a) is monotonically decreasing for 0 < �a <
�min and monotonically increasing for �min ≤ �a < 1. There-
fore, there are at most two possible points at which C′(�a)
could cross the x-axis. We know

lim
�a→0

(C′(�a)) = −�i log(N) + log(N) + 1

which is negative given �i ≥ 2 and N ≥ 2. Since the value
of C′(�a) is monotonically decreasing until �min, it can’t
cross the x-axis in this range. Therefore, given the fact that
C′(�a) is monotonically increasing after �min, there could
be at most one point at which it crosses the x-axis. Using
Lemma 1 we know C(�a) has at least one minimum. There-
fore, the function C(�a) has exactly one minimum under the
given assumptions.

Notice the assumptions are quite reasonable in practice.
Finding the only zero of C′(�) in closed form is intractable
since it’s a high degree polynomial. Instead, we use a numer-
ical approach for doing this. In practice it takes only a few
milliseconds to closely approximate the only zero of C′(�a)
using binary search. A few milliseconds are quite affordable
since we found the amount of time required to provide top-k
items is typically less than the delay before a web page is
loaded.

Using the optimal threshold value obtained from our op-
timization step, we compare the theoretical upper bound on

expected cost of the two-phase algorithm with cost of Algo-
rithm Naive-1 and the expected cost of Algorithm Naive-2,
for different values of �i and N . Since Naive-1 needs to pro-
cess all of the �i items rated by the user, its exact cost can
be calculated as described in Sec. 3.

Figure 4: Comparison of our theoretical upper
bound on the cost of probe step to Naive1(N1) and
Naive2(N2) algorithms for m = 17000 and different
values of �i = 50, 100, 200, 500. Y-axis represents the
cost of probe step in terms of the expected number
or required operations for the given parameters.

Figure 4 compares our theoretical upper bound on the
expected cost of the probe step with the same cost for Algo-
rithms Naive-1 and Naive-2. We fix m = 17000, number of
movies in the Netflix dataset. We use four different values of
�i and change N from 2 to 20. We use Equation 4 to calcu-
late an upper bound on the expected number of operations
for the two-phase algorithm. We use the cost of log(N)m�i
for Algorithm Naive-1 and Nm2/�i for Naive-2 (which are
the dominant terms of their cost expressions). The aver-
age number of ratings in the Netflix dataset for a user is
around 200. Figure 4 shows for even very small values of �i,
the two-phase algorithm works slightly better than Naive-1
while Naive-2 has the worst performance. The performance
of Naive-1 gets worse for larger �i and the two-phase algo-
rithm performs much better than Naive-1. As discussed ear-
lier, for larger values of �i, Naive2 has a relatively smaller
expected cost (see Figure 4). The majority of the users in
the Netflix dataset (≈ 430, 000), have less than 500 ratings
each and more than half (≈ 270, 000) have between 50 and
500 ratings. In our experimental results, we compare all of
the algorithms Naive-1, Naive-2, Hybrid and, the two-phase
algorithm.

5.3 Estimating prob values
We described our two-phase process using an extension

LP of the data structure L by adding the so-called prob val-
ues. Corresponding to every similarity value s, there is a
prob value p which is an estimate of the probability of any



other similarity value in LP being greater than s. In prac-
tice, since a descending ordering of entries in columns of L
by similarity is equivalent to an ascending ordering of entries
by prob values, there is no reason to store the prob values,
and we can just use the data structure L. Alternatively, the
threshold � on prob values could be converted to a similarity
threshold.

We estimate prob values through fitting a probability dis-
tribution to all existing similarity values in L. We con-
sider three different distributions – uniform, Gaussian and
Gamma. In the case of Gamma distribution since input
values must be positive, we add a constant integer to all
similarity values in order to make sure they are all posi-
tive.10 However, in the final weighted sum, we use the orig-
inal values. Since these are all parametric distributions, we
can use similarity values and maximum likelihood estima-
tion (MLE) to find optimal parameters. In the case of uni-
form distribution, parameter estimation is trivial. We only
need to keep minimum and maximum similarity values and
no MLE is required. Since the ratings data keeps chang-
ing, update is an important issue. Updating the parameters
for uniform distribution with respect to the changes in data
is straight forward. We just need to keep the minimum
and maximum similarity values refreshed. In the case of the
other two distributions, sufficient statistics need to be main-
tained. For instance in the case of Gaussian distribution we
need to keep track of mean and standard deviation of simi-
larity values. In the case of Gamma distribution parameter
estimation is a little more challenging but still possible. Up-
dating parameters of this distribution is also trivial through
keeping sufficient statistics. We refer the reader to (refer-
ence here) for details of parameter estimation through MLE
for Gamma distribution. In our experiments, we compare
the three distributions against each other and also compare
the two-phase algorithm with other algorithms. Once we
find the optimal threshold �, we can solve � = 1− CDF (s)
for s in order to find the similarity threshold. Here, CDF
refers to the cumulative density function of any of the above
distributions. For lack of space, we omit the details of the
methods for efficiently updating the parameters for the three
distributions and refer the reader to [16] for details.

6. UPDATING SIMILARITY MATRIX
Several different similarity measures have been proposed

for item-based collaborative problem [1] . Pearson correla-
tion, Cosine and Jaccard are some of the popular examples.
Among all of these, Pearson correlation has been applied
widely in practice. It is possible to provide guidelines in or-
der to keep the similarity matrix updated for most o these
measures. Here, we show how this is doable for Pearson cor-
relation measure since it has been more popular than others.
Equation 9, shows how similarity is calculated using Pearson
correlation coefficient between two items vi and vj .

s(i, j) =

∑
u∈Iij

(R(u,vi)−r̄vi )(R(u,vj)−r̄vj )√ ∑
u∈Iij

(R(u,vi)−r̄vi )2
∑

u∈Iij

(R(u,vj)−r̄vj )2

Iij = vi ∩ vi

(9)

It measures the similarity between two items using only
ratings of users who have rated both items (Iij). The main

10Recall, Pearson correlation coefficient lies in [−1, 1].

idea for partially updating the similarity matrix is as follows:

1. Define the similarity matrix (L) as a materialized view
on the top of other matrices containing sufficient statis-
tics for calculating similarity

2. Given one or a set of new ratings, identify which entries
of which matrices need to be updated and perform the
updates

Equation 10 provides the sufficient statistics that need to
be stored in order to be able keep similarities updated.

Aij =
∑
u∈Iij

R(u, vi)R(u, vj)

Bij =
∑
u∈Iij

R(u, vi), Ci = r̄vi

Dij =
∑
u∈Iij

R(u, vi)
2, Eij =∣Iij ∣

(10)

Keeping the similarity matrix updated, requires storing
four m × m matrices (A,B,D,E) and a vector of size m
(C), containing averages of values as shown in Equation 10.
This is in addition to the similarity matrix itself. Since we
are keeping similarities in a data structure L and columns of
L need to be sorted by similarity, every column of L could
be stored as a priority queue. Given the sufficient statis-
tics that Equation 10 provides, we can rewrite and define a
materialized view to store similarities in Equation 11.

s(i, j) =
Aij − CjBij − CiBji + EijCiCj√

(Dij + EijCi
2 − 2CiBij)(Dji + EijCj

2 − 2CjBji)
(11)

Storing the similarity matrix as materialized view has its
own challenges in practice. In this work, we just provide
guidelines for keeping the matrix updated and our focus is
more on top-k algorithms. We will study this problem in
detail in our future work.

7. EXPERIMENTS

7.1 Data Set and Experimental Setup
In this section, we report the performance of our algo-

rithm as well as the two naive algorithms with respect to
several parameters. We use the Netflix dataset with 100M
ratings from approximately 500K users on 17,770 movies.
The rating values range from 1 to 5. All of the experiments
were done on a Linux machine with 32GB of main memory
and 2.93GHZ-8MB Cache CPU. All algorithms were imple-
mented in C.

As discussed earlier, we use Pearson correlation coeffi-
cient as our similarity measure. We further normalize ev-
ery row of the similarity matrix before constructing the
data structure L, as follows. We first subtract the mean
value of the row. Then we do a simple normalization using
s := (s−min)/(max−min), where max and min represent
the maximum and minimum similarities in the row. We do
this in order to make sure higher similarity values in some
rows do not affect the whole distribution. It is important to
note that this operation does not change the order of nearest
neighbors in the columns of L, for this property is crucial
for algorithms other than Naive-1. Finally, we use the orig-
inal similarity values rather than the normalized ones for
predicting unknown scores.



7.2 Choosing the Best Distribution
Recall, prob values associated with entries in L are not

physically materialized but are meant to be inferred by fit-
ting the existing similarities in L to an appropriate distri-
bution. As mentioned in Section 5.3, we use MLE to fit a
probability distribution to the similarity matrix. In order to
choose the best distribution, we experimented with uniform,
Gaussian, and Gamma distributions. To measure their ef-
fectiveness, we randomly chose 100 users and measured the
average performance of the two phase algorithm, with each
of the three different distributions used for estimating the
prob values.

According to our empirical results, and as Fig. 5 shows,
we found Gaussian distribution to be the most suitable ac-
cording to its performance. Uniform distribution provided
competitive results. However, we found Gamma distribu-
tion completely uncompetitive. Thus, in the rest of our
experiments, we only report our results for the two-phase
algorithm, based on estimating prob values using Gaussian
distribution.

Figure 5: Performance of the Two-phase algorithm
using different distributions for estimating probe val-
ues

7.3 Algorithms Compared
Next, we ran tests to compare the two-phase algorithm

with Algorithms Naive-1, Naive-2, and Hybrid. Using the
same random set of users as used above for gauging the
distributions’ effectiveness, we measured the average perfor-
mance of all algorithms. We preferred to use a random set
of users for this purpose since it has the advantage of not
being limited to any value (or narrow range of values) of �i.

Figure 6 shows the relative performance of Algorithms
Naive-1, Hybrid, and Two-Phase, for finding the top-10 rec-
ommendations (i.e., k = 10). We found Naive-2 much slower
than other algorithms on average, making its inclusion in the
figure difficult. To put this in perspective, when N = 10,
while Naive-1 took about 0.08s, Naive-2 took 3.7s, or about
45 times worse. Recall, in Sec. 3, we theoretically derived the
“switchover” value of �i for the Hybrid algorithm to switch

from Naive-1 to Naive-2. We empirically found a different
switchover value was more effective for making the perfor-
mance of Hybrid more competitive. We found that if we
use Naive-1 for any user who has rated less than 1500 rat-
ings and Naive-2 for the rest, Hybrid’s performance becomes
most competitive. We note that 1500 is larger than the the-
oretical switchover value of �i provided in Sec. 3. This is
due to the fact that in many cases, the performance of Al-
gorithm Naive-1 is better than its worst case running time.
This is expected because the tentative list of top N most
similar items maintained by the algorithm does not need to
get updated every time during the execution. We empiri-
cally found that Naive-2 starts getting more efficient than
Naive-1 for values of �i greater than 1500. As can be seen in
Fig. 6, the two phase algorithm outperforms all algorithms
on average. Comparing this to Fig. 4 confirms our theoret-
ical results that our algorithm have a better expected cost
compared to naive algorithms.

Figure 6: Average performance of Naive-1, Hybrid
and the Two-phase algorithm (TPH) on a randomly
selected set of users.

7.4 Probe versus Explore
However, the gap between the algorithms does not too

much increase with N . We justify this by the same obser-
vation we made about hybrid algorithm earlier. An efficient
implementation of the Naive-1 algorithm does not need to
compare every item on the list of rated items to all of the
current top N items during execution. Therefore, Naive-1
performs better than expected in practice. It is also worth
mentioning that the execution cost shown in both of the fig-
ures corresponds only to the probe step. The cost of explore
step is the same for all algorithms. We found the explore step
typically takes less than a millisecond in our experiments for
N = 10. This confirms the validity of our argument about
probe being the dominant component of cost.

7.5 Scalability
A brief discussion of what scalability means in this context

is in order. First of all, since we assume similarities are pre-
computed, the number of users will make no difference to the
running time of any of the algorithms. We found that all the
algorithms discussed scale linearly w.r.t. number of items in



the system, even though as already observed, the two-phase
algorithm outperforms other algorithms. Thus, we decided
to measure scalability of algorithms w.r.t. the average num-
ber of items rated by a user, i.e., the average size of the
profile of an active user. Given the different approaches
adopted by the various algorithms, we expect the average
profile size to reflect their relative strengths and weaknesses
as well as the tradeoff between Naive-1 and Naive-2.

Thus, we chose 5 different ranges of values for �i. We
randomly chose 5 users from the Netflix dataset who have
rated a number of items in each of the ranges. Fig. 7, shows
average performance of the algorithms for each value.

 

Figure 7: Performance of different algorithms with
respect to different values of �.

We can see that for small values of �, Algorithm Naive-
2 is very inefficient. The two-phase algorithm outperforms
Naive-1 algorithm in all cases. The gap between Naive-1 and
the two-phase algorithm increases with �i. Naive-2 becomes
more efficient than Naive-1 as expected for large values of
�i. However, even for a considerably large value of �i such
as 2000, which is significantly in favor of Naive-2, and is ex-
tremely rare in the Netflix data set, we found that the two-
phase algorithm performs as good as Naive-2. This confirms
the scalability and reliability of the presented two-phase ap-
proach. This should be contrasted with our technical results
in Section 4 showing that for any values of the parameters,
the classic top-k algorithms can have an unpredictable per-
formance, in that on some instances they access as many
entries as the naive algorithms.

7.6 Cost-based Optimization
Finally, in order to evaluate the significance of our cost-

based optimization, we choose 4 different ranges of values

for �i. Again, in each range we found 5 users and found
their top-k recommendations. We used N = 10 and ran
the two-phase algorithm with changing similarity threshold
values as well as the optimal value obtained from cost-based
optimization algorithm.

Figure 8: Performance of TPH with respect to dif-
ferent values of similarity threshold, for different val-
ues of �.

Fig. 8 shows the running time of algorithm using different
similarity threshold values. It can be seen from this figure
that as argued and shown in Section 5, the running time also
follows the same shape as the cost function defined in that
section. We can see in all cases, the curve has only one min-
imum. This is due to the tradeoff that exists between the
two phases of the algorithm. We show the optimal threshold
value resulting from our optimization approach as well. Al-
though the number of ratings might be different for each of
the users in the range, we obtain the threshold using median
as �i. In some cases, obviously, choosing the right value of
the threshold is of more importance. Our selected thresh-
old values are reported in the title of each sub-figure and it
can be verified that in all cases the value obtained from our
method is quite close to the optimal threshold value. This
can be seen best when �i ∈ [950, 1050] where choosing the
right threshold is of more importance due to the shape of the
curve. The optimal threshold value in this case is between
0.4 and 0.5. Our algorithm finds 0.46 as the best threshold
value which actually results in a running time faster than
both of the points examined here. Using 0.46 as similar-
ity threshold in this case, the two-phase algorithm finds N
nearest neighbors of all items in 0.21(s).

8. CONCLUSIONS
While tremendous strides have been made in recommender

systems in developing and tuning algorithms with high ac-
curacy of prediction, the issue of scalability, particularly for



finding top-k recommendations for an active user, as op-
posed to predicting the scores of items, has received rela-
tively less attention. This is the primary focus of this paper,
where we concentrate on item-based collaborative filtering, a
popular approach in recommender systems that boasts high
accuracy of prediction. We show that direct adaptations to
classic top-k algorithms such as the TA/NRA family leads
to algorithms which either require unrealistic preprocessing
and storage or end up accessing as many entries from sim-
ilarity lists as certain naive algorithms on some instances,
regardless of the problem parameters. We develop a novel
approach based on abstracting the work required for find-
ing top-k recommendations as two key operations – probe
and explore, the former by far being the expensive one. Our
approach is to use a similarity (or probabilistic) threshold
that cuts down the number of entries accessed by the algo-
rithm where the threshold is chosen in order to optimize the
expected cost of the algorithm. We prove the cost function
has a unique minimum which greatly facilitates the use of
numerical approaches in determining the optimal threshold.
We demonstrate using extensive experiments on the Netflix
data set that the algorithm we propose for top-k recommen-
dations based on item-based collaborative filtering is highly
scalable and analyze its relative performance compared to
other algorithms for various choices of parameters.

Several problems remain open. The data in a recom-
mender system is subject to frequent change. It is important
to update the similarities as well as the prob values. In [16],
we describe some key ideas for maintaining the distributions
over the similarity matrix refreshed, by maintaining suffi-
cient statistics. It would be interesting to also develop an
efficient algorithm for incrementally updating the similarity
values. Finally, developing top-k algorithms for other rec-
ommender approaches such as model-based methods is an
important direction for future work.
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