TAX: A Tree Algebra for XML*

H. V. Jagadish Laks V. S. Lakshmanan
University of Michigan University of British Columbia
jag@eecs.umich.edu laks@cs.ubc.ca
Divesh Srivastava Keith Thompson
AT&T Labs—Research University of Michigan
divesh@research.att.com kdthomps@eecs.umich.edu
Abstract

Querying XML has been the subject of much recent investigation. A formal bulk algebra is essential
for applying database-style optimization to XML queries. We develop such an algebra, called TAX (Tree
Algebra for XML), for manipulating XML data, modeled as forests of labeled ordered trees. Motivated both
by aesthetic considerations of intuitiveness, and by efficient computability and amenability to optimization,
we develop TAX as a natural extension of relational algebra, with a small set of operators. TAX is complete
for relational algebra extended with aggregation, and can express most queries expressible in popular XML
query languages. It forms the basis for the TIMBER XML database system currently under development by
us.

1 Introduction

XML has emerged as the lingua franca for data exchange, and even possibly for heterogeneous data representation.
There is considerable interest in querying data represented in XML. Several query languages, such as XQuery [7],
Quilt [6], XML-QL [12], and XQL [22], have recently been proposed for this purpose.

This leads us to the question of implementation. If we expect to have large data sets managed using XML,
then we must be able to evaluate efficiently queries written in these XML query languages against these data sets.
Experience with the successful relational technology tells us that a formal bulk algebra is absolutely essential for
applying standard database style query optimization to XML queries.

An XML document is often viewed as a labeled ordered rooted tree. The DOM [26] application interface
standard certainly treats XML documents in this way. There often are, in addition, cross-tree “hyperlinks.”
In our model, we distinguish between these two types of edges. A similar approach has been adopted in [20].
With this model in mind, in this paper we develop a simple algebra, called Tree Algebra for XML (TAX), for
manipulating XML data modeled as forests of labeled, ordered, rooted trees. The primary challenges we address
are: (1) how to permit the rich variety of tree manipulations possible within a simple declarative algebra, and
(i) how to handle the considerable heterogeneity possible in a collection of trees of similar objects (e.g., books).
If we look at popular XML query languages, most (including XQuery, which is likely to become the standard)
follow an approach of binding variables to tree nodes, and then manipulating the use of these variables with free
use of looping constructs where needed. A direct implementation of a query as written in these languages will
result in a “nested-loops” execution plan. More efficient implementations are frequently possible — our goal is
to devise a bulk manipulation algebra that enables this sort of access method selection in an automated fashion.

We begin in Section 2 by discussing the issues in designing a bulk manipulation algebra for XML. This leads
up to our data model in Section 3. A key abstraction in TAX for specifying nodes and attributes is that of the
pattern tree, presented in Section 4. We describe the TAX operators in Section 5. In Section 6, we show that TAX
is complete for relational algebra extended with aggregation, and also establish translation theorems identifying
substantial classes of queries expressible in popular XML query languages that can be translated to TAX. TAX

*The work of Jagadish and Thompson was supported by NSF under grant 11S-9986030, while that of Lakshmanan was supported
by NSERC (Canada) and a seed grant from TIT - Bombay.

has been designed with an efficient implementation very centrally kept in mind. In Section 7, we discuss a few
key issues regarding query evaluation and optimization using TAX, and mention some implementation choices
made in TIMBER, a native XML database system under development by us. We discuss related work in Section 8
and conclude in Section 9.

2 Design Considerations

A central feature of the relational data model is the declarative expression of queries in terms of algebraic
expressions over collections of tuples. Alternative access methods can then be devised for these bulk operations.
This facility i1s at the heart of efficient implementation in relational databases.

If one is to perform bulk manipulations on collections of trees, relational algebra provides a good starting point
— after all most relational operations (such as selection, set operations, product) are fairly obvious operations
one would want to perform on XML databases. The key issue here is what should be the individual members
of these collections in the case of XML. In other words, what is the correct counterpart in XML for a relational
tuple?

Tree Nodes: One natural possibility is to think of each DOM node (or a tagged XML element, along with its
attributes, but not its subelements) as the XML equivalent of a tuple. Each element has some named attributes,
each with a unique value, and this structure looks very similar to that of a relational tuple. However, this approach
has some difficulties. For instance, XML manipulation often uses structural constructs, and element inclusion
(i.e., the determination of ancestor-descendant relationship between a pair of nodes in the DOM) is a frequently
required core operation. If each node is a separate tuple, then determining ancestor-descendant relationships
requires computing the transitive closure over parent-child links, each of which is stated as a join operation
between two tuples. This is computationally prohibitive. Clever encodings, such as in [27], can ameliorate this
difficulty, but we are still left with a very low level of query expression if these encodings are reflected in the
language and data model. Indeed, such encodings should be viewed as implementation techniques for efficient
determination of ancestor-descendant relationships, that can be used independent of which data model and
algebra we choose.

An alternative data model is to treat an entire XML tree (representing a document or a document fragment) as
a fundamental unit, similar to a tuple. This solves the problem of maintaining structural relationships, including
ancestor-descendant relationships. However, trees are far more complex than tuples: they have richer structure,
and the problem of heterogeneity is exacerbated. There are two routes to managing this structural richness.

Tuples of Subtrees: One route, inspired by the semantics of XML-QL [12], is to transform a collection of
trees into a collection of tuples in a first step of query processing; a sensible way is to use tuples of bindings
for variables with specified conditions. Much of the manipulation can then be applied in purely relational
terms to the resulting collection of tuples. Trees in the answer can be generated in one final step. However,
repeated relational construction and deconstruction steps may be required between semantically meaningful
operations, adding considerable overhead. Furthermore, such an approach would lead to limited opportunities
for optimization.

Pure Trees: The remaining route is to manage collections of trees directly. This route sidesteps many of
the problems mentioned above, but exacerbates the issue of heterogeneity. It also presents a major challenge
for defining algebraic operators, in view of the relative complexity of trees compared to tuples. Our central
contribution in this paper is a decisive response to this challenge.

We introduce the notion of a pattern tree, which identifies the subset of nodes of interest in any tree in a
collection of trees. The pattern tree is fixed for a given operation, and hence provides the needed standardization
over a heterogeneous set. All algebraic operators manipulate nodes and attributes identified by means of a
pattern tree, and hence they can apply to any heterogeneous collection of trees! With this innovation, we show
most operators in relational algebra carry over to the tree domain, with appropriate modifications. We only need
to introduce a couple of additional operators to deal with manipulation of the tree structure.

3 Data Model

The basic unit of information in the relational model is a tuple. The counterpart in our data model is an
ordered, labeled, rooted tree, the data tree, such that each node carries data (its label) in the form of a set of
attribute-value pairs.

For XML data, each node corresponds to an element, the information content in the node represents the
attributes of the element, while its children nodes represent its subelements. For XML, we assume each node
has a special attribute called tag whose value indicates the type of the element. A node may have a content
attribute representing its atomic value, whose type can be any one of several atomic types of interest: int,
real, string, etc. The notion of node content generalizes the notion of PCDATA in XML documents. For pure
PCDATA nodes, this tagname could be just PCDATA, or it could be a more descriptive tagname if one exists. The
notions of TD and TDREFS in XML are treated just like any other attributes in our model. See Figure 1(a) for
a sample data tree. Node contents are indicated in parentheses.

We assume each node has a virtual attribute called pedigree drawn from an ordered domain.! Operators of
the algebra can access node pedigrees much like other attributes for purposes of manipulation and comparison.
Intuitively, the pedigree of a node carries the history of “where it came from” as trees are manipulated by
operators. Since algebra operators do not update attribute values, the pedigree of an existing node is not
updated either. When a node is copied, all its attributes are copied, including pedigree. When a new node is
created, it has a null pedigree. As we shall show later, appropriate use of the pedigree attribute can be valuable
for duplicate elimination and grouping, and for inducing/maintaining tree order in query answers. It is useful to
regard the pedigree as “document-id + offset-in-document.” Indeed, this is how we have implemented pedigree in
TIMBER, our implementation of TAX. While pedigree is in some respects akin to a lightweight element identifier,
it is not a true identifier. For instance, if a node is copied, then both the original and the copy have the same
pedigree — something not possible with a true identifier.

A relation in a relational database is a collection of tuples with the same structure. The equivalent notion in
TAX is a collection of trees, with similar, not necessarily identical, structure. Since subelements are frequently
optional, and quite frequently repeated, two trees following the same “schema” in TAX can have considerable
difference in their structure.

A relational database is a set of relations. Correspondingly, an XML database should be a set of collections.
In both cases, the database is a set of collections. While this is rarely confusing in the relational context,
one frequently has the tendency in an XML context to treat the database as a single set, “flattening out” the
nested structure. To fight this tendency, we consistently use the term collection to refer to a set of tree objects,
corresponding to a relation in a relational database. The whole database, then, is a set of collections. Relational
implementations have found it useful to support relations as multi-sets (or bags) rather than sets. In a similar
vein, we expect TAX implementations to implement collections as multi-sets, and perform explicit duplicate
elimination, where required.

Each relational algebra operator takes one or more relations as input and produces a relation as output.
Correspondingly, each TAX operator takes one or more collections (of data trees) as input and produces a
collection as output.

4 Predicates and Patterns

4.1 Allowable Predicates

Predicates are central to much of querying. While the choice of the specific set of allowable predicates is
orthogonal to TAX, any given implementation will have to make a choice in this matter, and this can have a
significant effect on the complexity of expression evaluation. For concreteness, we use a representative set of
allowable predicates, listed below, with a clear understanding that this set is extensible.

For a node (element) $i, any attribute attr and value val from its domain, the atom $i.attr 6 val is
allowed, where 6 is one of =, #,>, etc.?2 As a special case, when attr is of type string, a wildcard comparison

! Pedigrees are not shown in our example data trees to minimize clutter.
2We also allow the variants $i._ = val and $i.attr = _ ; the former says val appears as a value of some attribute, while the
latter says the attribute attr is defined for node $i.

bib $1 $1.tag = book &

$2.tag = year &
pC ad s2content<1988&
00k book book $3tag = author
$2 $3 (b)
< = i) < = - < = =]
g £ 3 g 8 EE 2 & 8 E 3 s
B 2 5 z w88 >» g ¥ 8§ I g $1.tag = book &
g = 2 2 I F = 92 B & F g 2 $1 $2.tag = publisher &
- = = = - a g g - = = = pc $2.content = "*Science*" &
S S < 3 @ g pC pc $3.tag = author &
2 9’;(3 é > i $4.tag = author &
5) 2 o g B $3 BEFORE $4 &
3 5 g & 3 3 $2 g B4 Sconent="dok'g
= 3 < =3 < 3 $4.content = "Jill"
g e
@ . (©
Figure 1: (a) A one-tree XML database, and (b),(c) Two pattern trees
such as attr = “x*val*”, where val is a string, is allowed. Similarly, for two nodes $i and $j, and attributes

attr and attr’, the atom $i.attr 6 $j.attr’ is allowed. Specifically, the attribute could be the pedigree:
predicates of the form $i.pedigree 6 $j.pedigree, where § is = or #, are also allowed. In addition, atoms
involving aggregate operators, arithmetic (e.g., $§i.attr + $j.attr’ = 0), and string operations (e.g., $i.attr
= $j.attr’-“terrorism”), are allowed. Finally, we have predicates based on the position of a node in its tree.
For instance, $i.1index = first means that node $i is the first child of its parent. More generally, index($1,
$j) = n means that node $i is the n*® node among the descendants of node $j. Similarly, $i ¢ $j, where 6
is one of =,#,BEFORE, means that node $i is the same as, is different from, or occurs before node $j. These
positional predicates are based on the preorder enumeration of the relevant data tree.

4.2 Pattern Tree

A basic syntactic requirement of any algebra is the ability to specify attributes of interest. In relational algebra,
this 1s accomplished straightforwardly. Doing so for a collection of trees is non-trivial for several reasons. First,
merely specifying attributes is ambiguous: attributes of which nodes? Second, specifying nodes by means of id is
impossible, since by design, we have kept the model simple with no explicit notion of object id. Third, identifying
nodes by means of their position within the tree is cumbersome and can easily become tricky.

If the collections (of trees) we have to deal with are always homogeneous, then we could draw a tree identical
to those in the collection being manipulated, label its nodes, and use these labels to unambiguously specify nodes
(elements). In a sense, these labels play a role similar to that of column numbers in relational algebra. However,
collections of XML data trees are typically heterogeneous. Besides, we frequently we do not even know (or care
about) the complete structure of each tree in a collection: we wish only to reference some portion of the tree

that we care about. Thus, we need a simple, but powerful means of identifying nodes in a collection of trees.

We solve this problem using the notion of a pattern tree, which provides a simple, intuitive specification of
nodes and hence attributes of interest. It also is particularly well-suited to graphical representation.

Definition 4.1 (Pattern Tree) Formally, a pattern tree (pattern for short) is a pair P = (7, F), where
T = (V, E) is a node-labeled and edge-labeled tree such that:

e cach node in V has a distinct integer? as its label;
e cach edge is either labeled pc (for parent-child) or ad (for ancestor-descendant).

e [is a formula, i.e. a boolean combination of predicates applicable to nodes. |

3Labels are denoted $i, for integer i.

book book book book book

[oz6T]r0A
Dioer Jioyre
[oz6T ek
[l1c]oure
[Ge6T 10k
[1oer 1oy
[oz6T]50A
D1oer]ioyire
[l1c]soupre
[s86T]R0A
DoecJ1oyire

@ (b)

Figure 2: Results of various operations applied to the database of Figure 1(a)

While the formal semantics of patterns are given in the next subsection, here we give some examples. Fig-
ure 1(b) shows a pattern that asks for books published before 1988 and having at least one author. The edge
label pc indicates that year must be a direct subelement of book, while the edge label ad indicates that author
could be any nested descendant subelement. As another example, the pattern in Figure 1(c) asks for books
published by a publisher whose name contains the string “Science” and authored by Jack and Jill in that order.
In both examples, see how the tree and the formula F interact.

We have chosen to allow ancestor-descendant (ad) edges, in addition to the basic parent-child (pc) edges, in
a pattern tree because we believe that one may often wish to specify just such a relationship without involving
any intervening nodes, a feature commonly found in XML query languages.

Pattern trees in TAX also permit attributes of nodes to be compared with other attributes of (other) nodes,
analogously to selection predicates in relational algebra permitting different attributes to be compared. See, for
instance, Figure 1(c), where the positions of two nodes are compared using the BEFORE predicate.

4.3 Witness Tree

A pattern tree P = (T, F) constrains each node in two ways. First, the formula F' may impose value-based
predicates on any node. Second, the pattern requires each node to have structural relatives (parent, descendants,
etc.) satisfying other value-based predicates specified in F'. Of these, the value-based predicates are in turn
based on the allowable set of atomic predicates (see Section 4.1) applicable to pattern tree nodes.

Formally, let C be a collection of data trees, and P = (T, F) a pattern tree. An embedding of a pattern P
into a collection C is a total mapping h : P—C from the nodes of T" to those of C such that:

e h preserves the structure of 7', i.e. whenever (u,v) is a pc (resp., ad) edge in T, h(v) is a child (resp.,

descendant) of h(u) in C.

e The image under the mapping h satisfies the formula F'.

Let h : P—C be an embedding and let u be a node in 7" and n a node in C such that n = h(u). Then we say

the data tree node n matches the pattern node u (under the embedding h). Note that an embedding need not
be 1-1, so the same data tree node could match more than one pattern node.

Note also that we have ignored order among siblings in the pattern tree as we seek to embed it in a data tree.
Siblings in a pattern tree may in general be permuted to obtain the needed embedding. We have chosen to permit
this because such queries seemed to us to be more frequent than queries in which the order of nodes in the pattern
tree is material. Moreover, if maintaining order among siblings is desired, this is easily accomplished through
the use of ordering predicates (such as BEFORE), and can even be applied selectively. For example, Figure 1(c)
specifies a pattern that seeks books with authors Jack and Jill, with Jack appearing before Jill, and having
a publisher ‘¢ ‘*Science*’’ though we do not care whether the publisher subelement of book appears before

or after the author subelements. Thus, TAX permits the graceful melding, even within a single query, of places
where order is important and places where it is not.

We next formalize the semantics of pattern trees using a notion of witness trees. Each embedding of a pattern
tree into a database induces a witness tree of the embedding:

Definition 4.2 (Witness Tree) Let C be a collection of data trees, P = (T, F') a pattern tree, and h : P—C
an embedding. Then the witness tree associated with this is the data tree, denoted h¢(P) defined as follows:

e anode n of C is present in the witness tree if n = h(u) for some node u in the pattern P, i,e. n matches
some pattern node under the mapping h.

e for any pair of nodes n,m in the witness tree, whenever m is the closest ancestor of n in C among those
present in the witness tree, the witness tree contains the edge (m, n). Intuitively, each edge in the witness
tree corresponds to a sequence of one or more edges in the input data tree that has been collapsed because
only the end-point nodes of the sequence are retained in the witness tree.

e the witness tree preserves the order on the nodes it retains from C, i.e. for any two nodes in h®(P), whenever
m precedes n in the preorder node enumeration of C, m precedes n in the preorder node enumeration of

h€ (P) as well.

Let I € C be the data tree such that all nodes of the pattern tree T' map to I under h. We then call I the
source tree of the witness tree h¢ (P). We also refer to I (P) as the witness tree of I under h. |1

The meaning of a witness tree should be straightforward. The nodes in an instance that satisfy the pattern
are retained and the original tree structure is restricted to the retained nodes to yield a witness tree. If a
given pattern tree can be embedded in an input tree instance in multiple places, then multiple witness trees are
obtained, one for each embedding. For example, Figure 2(a) shows three witness trees resulting from embedding
the pattern of Figure 1(b) into the database of Figure 1(a) in three different places. The structure of all three
witness trees is the same three-node structure, by definition, but the database nodes bound are different. Tt is
permissible for the same database node to appear in multiple witness trees. For instance, the same book appears
in the first and second witness trees, once for each possible author node binding.

4.4 Tree Value Function

Given a collection of trees, we would like to perform ordering and grouping operations along the lines of ORDERBY
and GROUPBY in SQL. In fact, ordering is required if (ordered) trees are to be constructed from (unordered)
collections.

However, we once again have to take into account the possible heterogeneity of structure in a collection of
trees, making it hard to specify the nodes at which to find the attributes of interest. We solve this problem in
a rather general way, by proposing the notion of a tree value function (TVF) that maps a data tree (typically,
source trees of witness trees) to an ordered domain (such as real numbers). While the exact nature of TVFs
may be orthogonal to the algebra, we assume below they are primitive recursive functions on the structure of
their argument trees. We typically assume the codomain of a TVF is (partially) ordered. When used for sorting
purposes, it must be totally ordered. A simple example tree value function might map a tree to the value of an
attribute at a node (or a function of the tuple of attribute values associated with one or more nodes) in the tree
(identified by means of a pattern tree); an example using TVFs is presented in Section 5.5. Just like pattern
trees, TVFs are used in conjunction with a variety of operators in our algebra.

5 The Operators

All operators in TAX take collections of data trees as input, and produce a collection of data trees as output.
TAX is thus a “proper” algebra, with composability and closure. The notions of pattern tree and tree value
function introduced in the preceding section play a pivotal role in many of the operators.

5.1 Selection

The obvious analog in TAX for relational selection is for selection applied to a collection of trees to return the
input trees that satisfy a specified selection predicate (specified via a pattern). However, this in itself may not
preserve all the information of interest. Since individual trees can be large, we may be interested not just in

knowing that some tree satisfied a given selection predicate, but also the manner of such satisfaction: the “how”
in addition to the “what”. In other words, we may wish to return the relevant witness tree(s) rather than just a
single bit with each data tree in the input to the selection operator.

To appreciate this point, consider selecting books that were published before 1988 from a collection of books.
Let it generate a subset of the input collection, as in relational algebra. But if the input collection comprises a
single bibliography data tree with book subtrees, as in Figure 1(a), the selection output would return the original
data tree, leaving no clue about which book was published before 1988.

Selection in TAX takes a collection C as input, and a pattern P and adornment sL as parameters, and returns
an output collection. Each data tree in the output is the witness tree induced by some embedding of P into C,
modified as possibly prescribed in st.. The adornment list, si., lists nodes from P for which not just the nodes
themselves, but specified structural “relatives” (e.g., siblings, parent, ancestors, descendants, etc.) of it, need
to be returned. A frequently used important special case is the set of descendants of a node. (An element is
expected to include all nested subelements in typical XML and XQuery semantics, for instance.) To keep the
exposition as simple as possible, we restrict adornments in the foregoing to all descendants: if a node is mentioned
in the adornment list, all its descendants are returned in addition to the witness tree. If the adornment list is
empty, then just the witness trees are returned. Formally, the output U’P,SL(C) of the selection operator is a
collection of trees, one per embedding of P into C. The output tree associated with an embedding h : P—C is
defined as follows.

e A node n in the input collection C belongs to the output iff » matches some pattern node in P under h, or
n is a descendant of a node m in C which matches some pattern node w under h and w’s label appears in
the adornment list SL.

e Whenever nodes n, m belong to the output such that among the nodes retained in the output, n is the
closest ancestor of m in the input, the output contains the edge (n, m). Intuitively, the output tree preserves
the structure of the input, restricted to the retained nodes.

e The relative order among nodes in the input is preserved in the output, i.e. for any two nodes n, m in the
output, whenever n precedes m in the preorder enumeration of C, n precedes m in the preorder enumeration
of the output.

Contents of all nodes, including pedigrees, are preserved from the input. As an example, let C be a collection
of book elements in Figure 1(a), and let P be the pattern tree in Fig 1(b). Then U'P,SL(C) produces exactly the
collection of trees in Fig 2(a) if the adornment list SL is empty. On the other hand, if sU includes $1, then the
entire subtree is retained for each book (node $1) in the result.

Because a specified pattern can match many times in a single tree, selection in TAX is a one-many operation.
This notion of selection is strictly more general than relational selection.

5.2 Projection

For trees, projection may be regarded as eliminating nodes other than those specified. In the substructure
resulting from node elimination, we would expect the (partial) hierarchical relationships between surviving nodes
that existed in the input collection to be preserved.

Projection in TAX takes a collection C as input and a pattern tree P and a projection list PL as parameters. A
projection list is a list of node labels appearing in the pattern P, possibly adorned with . The output mp ., (C)
of the projection operator is defined as follows.

¢ A node n in the input collection C belongs to the output iff there is an embedding h : P—C such that n
matches some pattern node in P whose label appears in the projection list PL, or n is a descendant?® of a

node m in C which matches some pattern node w, and w’s label appears in the projection list PT, with a
ko

o Whenever nodes n, m belong to the output such that among the nodes retained in the output, n is the closest
ancestor of m in the input, the output contains the edge (n, m). Intuitively, the output tree preserves the

4Other relatives are permitted as for selection, but suppressed in our exposition for brevity.

structure of the input data tree, with every edge in the output tree corresponding to an ancestor-descendant
path in the input data tree.

e The relative order among nodes is preserved in the output, i.e., for any two nodes n, m in an output tree,
whenever n precedes m in the preorder enumeration of C, n precedes m in the preorder enumeration of the
output tree.

Contents of all nodes, including pedigrees, are preserved from the input. As an example, suppose we use the
pattern tree of Figure 1(b) and projection list {$1,$2,$3}, and apply a projection to the database of Figure 1(a).
Then we obtain the result shown in Figure 2(b).

A single input tree could contribute to zero, one, or more output trees in a projection. This number could be
zero, if there is no witness to the specified pattern in the given input tree. It could be more than one, if some of
the nodes retained from the witnesses to the specified pattern do not have any ancestor-descendant relationships.
This notion of projection is strictly more general than relational projection. If we wish to ensure that projection
results in no more than one output tree for each input tree, all we have to do is to add a new root node labeled
$0 to the pattern tree, with an ad edge to the previous root of the pattern tree, and include $0 in the projection
list pL.

Projection can also be used to return entire trees from the input collection that have an embedding of a
pattern tree. To do so, all we have to do is to add a new root node labeled $0 to the pattern tree, with an ad
edge to the previous root of the pattern tree, and include $0* in the projection list PL..

In relational algebra, one is dealing with “rectangular” tables, so that selection and projection are orthogonal
operations: one chooses rows, the other chooses columns. With trees, we do not have the same “rectangular”
structure to our data. As such selection and projection are not so obviously orthogonal. Yet, they are very
different and independent operations, and are generalizations of their respective relational counterparts. Compare
the projection result shown in Figure 2(b) for the pattern tree of Figure 1(b) and the database of Figure 1(a),
with the selection result shown in Figure 2(a) for the same pattern tree and database.

5.3 Product

The product operation takes a pair of collections C and D as input and produces an output collection corre-
sponding to the “juxtaposition” of every pair of trees from C and D. More precisely, C x D produces an output
collection as follows.

o for each pair of trees 1; € C and I € D, C x D contains a tree, whose root is a new node, with a tag name
of tax_prod_root, a null pedigree, and no other attributes or content; its left child is the root of T}, while
its right child is the root of Tj.

e for each node in the left and right subtrees of the new root node, all attribute values, including pedigree,
are the same as in the input collections.

The choice of a null pedigree for the newly created root nodes reflects the fact that these nodes do not have
their origins in the input collections. Since data trees are ordered, C x D and D x C are not the same. This
departure from the relational world is justified since order is irrelevant for tuples but important for data trees
which correspond to XML documents.

As in relational algebra, join can be expressed as product followed by selection. For example, the reviews
collection of Figure 3(a), joined with the books collection of Figure 1(a), by taking the product and applying a
selection with the pattern shown in Figure 3(b), yields the result shown in Figure 3(c).

We can also derive other operators. For instance, the left outerjoin of the same collections, with the same
conditions, results in a collection that includes the tree of Figure 3(d) in addition to Figure 3(c).

5.4 Set Operations

As in the relational model, we fall back on set theory for set union, intersection and difference. The only issue is
to specify when two elements (data trees) should be considered identical. Since our trees are ordered, obtaining

review review
tax_prod_root tax_prod_root

review . review
review

$3

$3.content = $6.content &
$3.tag = book-title &
$6.tag = title &

$2.tag = review &

$4.tag = book &

$5.tag = author

|S1maT18ma1A8)

[Awwnq v g 01 moH]spn-300q

[1oarepliamalnal

[wauoay L Buiyanoip]apn-xooq
[oeclioyine

[Awwng v g 01 moH]s|1-3400q
[Awwnq v ag 01 moH]apn
[waloay Buiyonoip]Jepn-xooq

(a) (b) (c) (d)

Figure 3: (a) An input collection, (b) A pattern tree, (¢) A Join Result, and (d) An additional left outerjoin
result

a correspondence between nodes is straightforward. We then require that all attributes at corresponding nodes,
including tag, pedigree, and content, be identical. Formally, two data trees 71,75 are equal iff there exists an
isomorphism ¢ : T3 —T5 between the two sets of nodes that preserves edges and order, and furthermore, for every
value-based atom of the form “attribute f value”, the atom is true at a node n in T3 iff it is true at node ¢(n)
in Ty. Given this notion of identity, union, intersection, and difference are defined in the standard way. Multi-set
versions of these operations are also possible. In particular, for union, we could define the result multiplicity
based on sum or maz.

5.5 Grouping

Unlike in the relational model, we separate grouping and aggregation. The rationale is that grouping has a
natural direct role to play for restructuring data trees, orthogonally to aggregation. For lack of space, we present
only grouping here.

The objective is to split a collection into subsets of (not necessarily disjoint) data trees and represent each
subset as an ordered tree in some meaningful way. As a motivating example, consider a collection of book
elements grouped by title. We may wish to group this collection by author, thus generating subsets of book
elements authored by a given author. Multiple authorship naturally leads to overlapping subsets. We can
represent each subset in any desired manner, e.g., by the alphabetical order of the titles or by the year of
publication.

In relational grouping, it is easy to specify the grouping attributes. In our case, we will need to use a tree
value function for this purpose. We formalize this as follows.

The groupby operator v takes a collection as input and the following parameters.

e A pattern tree P; this is the pattern used for grouping. Corresponding to each witness tree T; of P, we
keep track of the source tree /; from which it was obtained.

e A grouping tree value function that partitions the set W of witness trees of P against the collection C.
Typically, this grouping function will be instantiated by means of a grouping list that lists elements (by
label in P), and/or attributes of elements, whose values are used to obtain the required partition. The
default comparison of element values is “shallow”, ignoring subelement structure. Element labels in a
grouping list may possibly be followed by a ‘*’, in which case not just the element but the entire sub-tree
rooted at this element is matched.

e An ordering tree value function orfun that maps data trees to a totally ordered domain. This function is
used to order members of a group for output, in the manner described below.

tax_grouping_basi tax_group_subroot tax_grouping_basi tax_group_subroot

book book

g g
o >
g g
g E
.E~<g~<8 _'~<g
g8 3 & 3 g8 3
B o= B 2 B =
S g8 & 8 s =
s A

Figure 4: Grouping the witness trees of Fig 2(a) by Author ($3.content in the pattern tree, shown in Fig-
ure 1(b)), and ordering each group by year (orfun = $2.content)

The output tree S; corresponding to each group Wi is formed as follows: the root of S; has tag tax_group root,
a null pedigree and two children; its left child £ has tag tax grouping basis, a null pedigree, and a sub-tree
rooted at this node that captures the grouping basis; its right child r has tag tax_group_subroot, a null pedigree;
its children are the roots of source trees corresponding to witness trees in W, arranged in increasing order w.r.t.
the value orfun(Tj), I; being the source tree associated with the witness tree 7;. Source trees having more than
one witness tree will appear more than once in the output — once corresponding to each witness tree.

When a grouping operation is performed, the result should include not just a bunch of groups, but also
“labels” associated with each group identifying the basis for creation of this group. In relational systems, this
is the set of grouping attributes for the group. A generic grouping basis function must specify the manner in
which this information is to be retained, under the tax_grouping basis node of the result. In the typical case
of a grouping list being used to partition, the grouping list can also be applied as a projection list parameter
to obtain a projection of the source trees associated with each group, so their existing structure is preserved.
These projections, by definition, must all be identical within a group, except for their pedigree. By convention,
we associate the least of the pedigree values for each node, and eliminate the rest. The result is made a child of

the tax_grouping basis node. If the projection returns a forest, the original order is preserved among the trees
in this forest.

Consider the database of Figure 2(a). Apply grouping to it based on the pattern tree of Figure 1(b), grouped
by author, and ordered by year. The result is shown in Figure 4. If this grouping had been applied to an XML
database consisting of one tree for each book in the example database of Figure 1(a), one of the books (published
in 1970) would appear in two groups, one for each of the authors. Lastly, if we apply grouping to this same
collection using a TVF that maps each book to its number of authors, then we will obtain a collection of books
grouped by number of authors, with the books in a group ordered in a manner dictated by the ordering TVF.

A few words regarding the way collections of source trees are partitioned are in order. For every node label
of the form $i in the grouping list, we use a shallow notion of equality: two matches of this node are equal
provided their contents (set of attribute-value pairs, except for pedigree) are identical. For every node label of
the form $i* in the grouping list, we use a deep notion of equality. Under this, two matches of this node are equal
provided there is an isomorphism between the subtrees rooted at these matching nodes, that preserves order and
node contents (except for pedigree). Note the difference with tree equality, based on isomorphism that preserves
pedigree as well, which was used as a basis of defining set operations in Section 5.4. In short, equality can be

shallow or deep, and it can be by value (without pedigree) or by complete tree equality (including pedigree).
The appropriate notion should be used in each circumstance.

Duplicate Elimination by Value: Due to the presence of the pedigree attribute, two distinct nodes in the
input, even if identical in value, are not considered duplicates for purposes of set operations. However, there is

often the need to eliminate duplicates by value of (specified) attributes. For example the distinct operator in
XQuery would require it. We can show

Lemma 5.1 (Duplicate Elimination): Duplicate elimination of nodes by value can be expressed in TAX.

10

Other Operators: One can also define operators for aggregation, for renaming, and for structural manipulation
of trees (e.g., reordering). Both pattern trees and TVFs play a central role in their definitions. These are discussed
in the full version of this paper.

6 Expressive Power of TAX

In this section, we establish results on the expressive power of TAX. First, we show that it is complete for
relational algebra extended with aggregation. A central motivation in designing TAX is to use it as a basis for
efficient implementation of high level XML query languages. Later in this section we examine the expressive
power of TAX w.r.t. popular XML query languages.

6.1 Translating Relational Queries

Lemma 6.1 (Independence): The operators in TAX are independent, i.e., no operator can be expressed
using the remaining ones. [

Theorem 6.1 (Completeness for RA with Aggregation): There is an encoding scheme Rep that
maps relational databases to data tree representations such that, for every relational database D, and for every
expression @ in relational algebra extended with aggregation, there is a corresponding expression @’ in TAX

such that Q'(Rep(D)) = Rep(Q(D)). 1

6.2 Translating XML Queries

We begin with the following definition.

Definition 6.1 (Canonical XQuery Statement) A canonical XQuery statement is a “FLWR” expression
of XQuery [7] such that: (i) the variable declaration range in each FOR and LET clause is a path expression;
(ii) there are no function calls or recursion in any expression; and (iii) all regular path expressions used involve
only constants, wildcards and may further use ’/> and ’//”. |

Theorem 6.2 (Canonical XQuery Translation): Let @ be a canonical XQuery statement such that no
new ancestor-descendant relationships not present in the input collection are introduced by). Then there is an
expression £ in TAX that is equivalent to Q. [

While space limitations prevent us from including the proof here, we give some examples below.

Similar translation theorems can be shown for Quilt, XML-QL, XQL, and so on, suppressed here for brevity.®
From our experience, we have found that most interesting XML queries arising in practice can be translated
to TAX. We have consciously chosen to keep recursion outside the algebra, and have thus managed to devise a
clean algebra with a small set of simple and intuitive operators. Furthermore, for queries involving recursion, an
implementation of TAX can provide an explicit support for iteration. This is similar to implementing deductive
databases via relational algebra plus iteration.

We conclude this section by giving one example illustrating the translation of XQuery into TAX. The example
also demonstrates some of the optimizations possible in TAX.

Example 6.1 Consider the classic XQuery query that takes a document arranged by book, with publisher a
subelement of book, and rearrange it by publisher, ordering books under each publisher by title lexicographically:

FOR $p IN distinct(document ("x.xml'")//book/publisher/name)
RETURN
<books>
<publisher>

5 Interestingly, several queries requiring the use of Skolem functions in XML-QL can be expressed in TAX, which doesn’t have
this feature.

11

o 51

§1

$1
P\ e/ \ a pe/| e
pc
§1 §2 8 % 5
R %
° p $1.tag = tax_prod_root & 2 q
pc $1.tay = name
£ $2.4a= name & s
8 P2 $1.tay = book & $tag =title
$2.ag = publisher & $liag= books&
$1.tag = ook & Ritag=name& P5 $2.tag = publisher &
$2tay = publisher & $4tag= ifle $2tag=name & $3tag = book & $3tay = publications &
$Bta=name $.tag = publisher & $6.tag = title & : $tag=title
$5tag = name & $2.content = S5.content | f_g mapswitnesstreesto $2.content
p R By f_0 maps source treesto $3.content o5

Figure 5: Pattern trees for translation of a XQuery query (Ex:6.1) into TAX

<name> $p </name>
</publisher>
<publications>
FOR $b IN document ("x.xml")//book[publisher/name = $p],
$t IN $b/title
RETURN
<title> $t </title>
ORDERBY $t
</publications>
</books>

A straightforward translation of this yields:

Eo = DE(7ps, s13(op1,(3(C)))

Here P1, P2 etc. are pattern trees defined in Figure 5, C is the input collection, and Fj is an intermediate
result comprising the collection of bindings for the publisher name variable, $p. DF is shorthand for duplicate
elimination by value, obtained as a grouping (by everything) operator followed by projection (see Lemma 5.1).
We then form:

E1 = EO j><]P4 (Jp37{}(6))

Here, < denotes left outerjoin® (taking the pattern P4 as parameter). E; is another intermediate result after
evaluating the inner FOR loops and constraining variable values through a left outerjoin on $p. Next, we obtain:

Ey = vps,.t.(E1)

where f, is a grouping TVF which maps witness trees of the pattern P5 to the value of the content of the match
of $2, i.e. $2.content, and f, is an ordering TVF which maps source trees of witness trees to the value of the
content of the match of $3, i.e. $3.content. Here, we assume the ordering in the latter domain is ascending
lexicographic order. Thus, F5 puts the output together, in correct structure and order. Finally, the desired output
is produced by renaming tax_group_root to books, tax _group basis to publisher, and tax_group_subroot to
publications in the collection F5, and then projecting the result using the pattern P6 and the projection list
PL = {$1,$2«,9$3,$4}.

It can be shown that the selection and projection in Ey can be simplified to a single projection using the
pattern P1 and the projection list PL = {$3}. Furthermore, and independently of this simplification, the entire
outerjoin can be eliminated and E; can be replaced by the simpler expression apg (1(C). The resulting collection
can then be grouped and further manipulated as before. The details are beyond the scope of this paper. |

6Defined analogously to relational algebra, taking into account the heterogeneity.

12

7 Optimization and Evaluation

7.1 Implementation Issues

In a typical relational query implementation, the first step is a selection, based on an index if available, or else
through a full scan. Joins are implemented on the data streams that result. A similar strategy has been adopted
in the TiIMBER implementation of TAX. The first thing that happens is the matching of a pattern tree, which
could be through a database scan, an indexed access, or a combination of indexed accesses and targeted processing
of index entries. (See [2] for a study of alternative access methods for pattern tree matching.) Once witness trees
(embeddings of the pattern tree in the database) have been found, each operator manipulates these witness trees
as required. Note that pattern trees are independently specified by each operator in a TAX expression. The first,
typically a selection, operator actually finds witnesses in the base data. Subsequent operators evaluate pattern
tree embeddings on suitable intermediate results.

Finally, a word about pedigree. TAX assumes the availability of pedigree — where would this come from in a
real system? There is no unique answer, but the TIMBER system uses the position of an element in a document
for this purpose. In fact, the introduction of this additional attribute is costless, because it is required as part of
the physical implementation, serving a role akin to RId in a relational database. A very similar notion is used in
the Niagara system [23], bearing testament to the “naturalness” of this notion.

7.2 Derived Operators

Join, one of the most important operators in relational database implementations, is regarded a derived operator.
Yet, in terms of expressing queries as well as of evaluating them, one thinks of joins directly. Similar arguments
apply in TAX. Using just the primitive TAX operators, some simple tasks could require complex expressions.
Appropriate derived operators can help. Moreover, direct implementation of some of these derived operators can
be substantially more efficient than evaluation of a sequence of primitive operators. We have seen the value of
join and left-outer-join operators above. Other derived operators can be defined as needed.

7.3 Operator Identities

Operator identities are essential to query rewriting and optimization. TAX operators have most of the usual
identities one would expect. For instance, set union and intersection are associative and commutative; all TAX
operators except Groupby (subject to appropriate constraints on predicates that may appear in pattern trees)
distribute over set operations; and so on. For brevity, we only discuss a few issues of particular interest.

Product is not commutative since data trees are ordered. Furthermore, it is not associative either. However,
Cartesian product immediately followed by a reorder on the root node of the result is indeed commutative.
Similarly, Cartesian product can be rendered associative by projecting out the virtual product root node due to
the first product operation, which is now a child of the root after the second product operation. This extra node
is retaining information regarding the parenthesization that we wish to lose to assure associativity. Once this
node is projected out, the result is a single product root with three symmetric children, thereby assuring the
associativity of the product. Similar observations hold for joins.

The associativity and commutativity of join is critical for the join reordering central to much of query
optimization. In light of the foregoing discussion, join operations can be reordered in a TAX query optimizer,
provided that enough care is exercised. Specifically, TAX expressions can have the additional reorder and project
operators inserted where such insertions can be shown not to affect the final answer, and then these operators
can be combined with the joins to render them associative/commutative as shown above. There are many cases
where the final answer will not be affected — examples include when the result of a join is projected on to one
of the two operands of the join, for self-joins, and so on. Besides, the associative version of join seems to be
more natural in practice. Lastly, as demonstrated in Example 6.1, selection-projection cascades can sometimes
be simplified into a single projection and joins can be eliminated altogether. These issued are explored in the
full version.

13

8 Related Work

There is no shortage of algebras for data manipulation. Ever since Codd’s seminal paper [8] there have been efforts
to extend relational algebra in one direction or another. Klug’s work on aggregation [18] is worth mentioning
in particular, as is the stream of work on the nested relational model. There is a grammar-based algebra for
manipulating tree-structured data [15], shown equivalent to a calculus. The tree manipulations are all performed
in the manner of production rules, and there is no clear path to efficient set-oriented implementation. Also, this
work predates XML by quite a bit, and there is no obvious means for mapping XML into this data model.

Tree pattern matching is a well-studied problem, with notions of regular expressions, grammars, etc. being
extended from strings to trees (cf. [13, 16]). These ideas have been incorporated into an object-oriented database,
and an algebra developed for these in the Aqua project [24]. The focus of this algebra is the identification of
pattern matches, and their rewriting, in the style of grammar production rules. Our notion of tree pattern and
witness trees follows Aqua in spirit. However, Aqua has no counterpart for most TAX operators.

Algebras and query languages have also been proposed over graphs [11, 21]. These algebras focus on pattern
matching in graphs. Since trees are a special case of graphs, our notions of pattern tree match may appear at
first glance to be a special case of these works. However, there are differences in complexity of evaluation and in
several details, such as the notion of order so important to XML trees. Moreover, in graphs there is no simple
notion of ancestor/descendant — just a much heavier weight notion of reachability. A consequence is that these
algebras spend considerable intellectual effort on managing recursion, an issue that we are able to side-step by
explicitly including ancestor/descendant as a primitive. In short, graph algebras should indeed be considered
intellectual precursors of the current work, but the specifics of XML trees are such that TAX cannot simply be
a considered a specialization.

In the context of the Web, we should mention GraphLog [11], Hy+ [10], etc., and the recently proposed
models for semi-structured data (see, e.g., Lorel [1] and UnQL [5]); all propose query languages, with more or
less effort at an accompanying algebra.

Even in the XML context, several algebras have been proposed. [3] is an influential early work that has
impacted XML schema specification. However, there is no real manipulation algebra described in that paper.
[14] proposes an algebra carefully tailor-made for Quilt. This algebra, like the XDuce system [17], is focused on
type system issues. In [9], the authors present an algebra for XML, defined as an extension to relational algebra,
that is practical and implemented. However, the main object of manipulation in this algebra, as in XML-QL, is
the tuple and not the tree. A “bind” operator is used to create sets of (tuples of) bindings for specified labeled
nodes. Due to the consequent loss of structure, this scheme very quickly breaks down when complex analyses
are required. Similarly, [19] describes a navigational algebra for querying XML, treating individual nodes as the
unit of manipulation, rather than whole trees. SAL [4] is an algebra for XML documents viewed as a graph, with
ordered lists of nodes as the unit of manipulation. The major intellectual focus of this algebra are operators for
manipulating ordered lists. There are other contributions, such as the notion of a “data exception” to handle
missing values, a notion necessitated by the algebra’s use of SQL (and hence the relational model underlying it)
as the query language exemplar. Finally, [25] deals with many aspects of XML updates. In this paper, we do
not consider updates.

9 Summary and Status

We have presented TAX, a Tree Algebra for XML, which extends relational algebra by considering collections of
ordered labeled trees instead of relations as the basic unit of manipulation. In spite of the potentially complex
structure of the trees involved, and the heterogeneity in a collection, TAX has only a couple of operators more
than relational algebra. Furthermore, each of its operators uses the same basic structure for its parameters.

While we believe that the definition of TAX is a significant intellectual accomplishment, our primary purpose
in defining 1t is to use it as the basis for query evaluation and optimization. We are currently building the
TimBER XML database system using TAX at its core for query evaluation and optimization. Work on query
optimization is currently underway.

14

References

[1] S. Abiteboul, D. Quass, J. McHugh, J. Widom, and J. Wiener. The Lorel query language for semistructured
data. Journal on Digital Libraries, 1(1), 1996.

[2] S. Al-Khalifa, H. V. Jagadish, N. Koudas, J. M. Patel, D. Srivastava, and Y. Wu. Structural joins: Efficient
matching of XML query patterns. Submitted for publication.

[3] D. Beech, A. Malhotra, and M. Rys. A formal data model and algebra for XML. W3C XML Query Working
Group Note, Sep. 1999.

[4] C. Beeri and Y. Tzaban. SAL: An algebra for Semi-Structured Data and XML. ACM SIGMOD Workshop
on the Web and Databases, pp. 37-42, Philadelphia, PA| June 1999.

[5] P. Buneman, S. Davidson, G. Hillebrand, and D. Suciu. A query language and optimization techniques for
unstructured data. In Proc. ACM SIGMOD, June 1996.

[6] D. Chamberlin, J. Robie, and D. Florescu. Quilt: An XML query language for heterogeneous data sources.
In Proc. Int. Workshop on Web and Databases, May 2000.

[7] D. Chamberlin, D. Florescu, J. Robie, J. Simeon, and M. Stefanescu. XQuery: A query language for XML.
W3C Working Draft. 15 Feb. 2001.

[8] E. F. Codd. A relational model of data for large shared data banks. CACM 13(6), pp. 377-387, 1970.

[9] V. Christophides, S. Cluet, and J. Simeon. On wrapping query languages and efficient XML integration. In
Proc. SIGMOD, pages 141-152, 2000.

[10] M. Consens and A. Mendelzon. HyT: A hygraph-based query and visualization system. In Proc. SIGMOD,
pages 511-516, 1993.

[11] M. P. Consens and A. O. Mendelzon. Graphlog: A visual formalism for real life recursion. In Proc. PODS,
Apr. 1990.

[12] A. Deutsch, M. Fernandez, D. Florescu, A. Levy, and D. Suciu. A query language for XML. In Proc. Int.
World Wide Web Conf, 1999.

[13] J. Doner. Tree acceptors and some of their applications JCSS Vol. 4, pages 406-451, 1970.

[14] M. Fernandez, J. Simeon, and P. Wadler. An algebra for XML query. In Proc. FST TCS, Delhi, December
2000.

[15] M. Gyssens, J. Paredaens, and D. Van Gucht. A grammar-based approach towards unifying hierarchical
data models. In Proc. ACM SIGMOD, pages 263-272, 1989.

[16] C. M. Hoffmann and M. J. O’Donnell. Pattern-matching in trees. JACM Vol. 29, pages 68-95, 1982.

[17] H. Hosoya and B. C. Pierce. XDuce: A Typed XML Processing Language. In Proc. Int. Workshop on Web
and Databases, May 2000.

[18] A. C. Klug. Calculating constraints on relational expressions. TODS 5(3) pp. 260-290, 1980.

[19] B. Ludascher, Y. Papakonstantinou, and P. Velikhov. Navigation-driven evaluation of virtual mediated
views. In Proc. EDBT, pp. 150-165, 2000.

[20] Y. Papakonstantinou and V. Vianu. DTD inference for views of XML data. In Proc. PODS, 2000.

[21] J. Paradaens, J. Van den Bussche, D. Van Gucht, et al. An Overview of GOOD ACM SIGMOD Record,
March 1992.

[22] J. Robie (ed.). XQL ’99 proposal. http://metalab.unc.edu/xql/xql-proposal.html

[23] J. Shanmugasundaram, H. Gang, K. Tufte, C. Zhang, D. DeWitt, and J. F. Naughton. Relational databases
for querying XML documents: Limitations and opportunities. In Proc. VLDB, 1999.

[24] B. Subramanian, T. W. Leung, S. L. Vandenberg, S. B. Zdonik. The AQUA approach to querying lists and
trees in object-oriented databases. In Proc. ICDE, 1995.

[25] 1. Tatarinov, Z. G. Ives, A. Y. Halevy, and D. S. Weld. Updating XML. In Proc. SIGMOD, 2001.
[26] World Wide Web Consortium. The document object model. http://www.w3.org/DOM/

[27] C. Zhang, J. F. Naughton, D. J. DeWitt, Q. Luo, and G. M. Lohman. On supporting containment queries
in relational database management systems. In Proc. SIGMOD, 2001.

15

