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ABSTRACT
Top-k query processing is an important building block for
ranked retrieval, with applications ranging from text and
data integration to distributed aggregation of network logs
and sensor data. Top-k queries operate on index lists for a
query’s elementary conditions and aggregate scores for result
candidates. One of the best implementation methods in this
setting is the family of threshold algorithms, which aim to
terminate the index scans as early as possible based on lower
and upper bounds for the final scores of result candidates.
This procedure performs sequential disk accesses for sorted
index scans, but also has the option of performing random
accesses to resolve score uncertainty. This entails scheduling
for the two kinds of accesses: 1) the prioritization of different
index lists in the sequential accesses, and 2) the decision on
when to perform random accesses and for which candidates.

The prior literature has studied some of these scheduling
issues, but only for each of the two access types in isolation.
The current paper takes an integrated view of the scheduling
issues and develops novel strategies that outperform prior
proposals by a large margin. Our main contributions are
new, principled, scheduling methods based on a Knapsack-
related optimization for sequential accesses and a cost model
for random accesses. The methods can be further boosted by
harnessing probabilistic estimators for scores, selectivities,
and index list correlations. In performance experiments with
three different datasets (TREC Terabyte, HTTP server logs,
and IMDB), our methods achieved significant performance
gains compared to the best previously known methods.

1. INTRODUCTION

1.1 Motivation
Top-k query processing is a key building block for data dis-

covery and ranking and has been intensively studied in the
context of information retrieval [6, 21, 26], multimedia sim-
ilarity search [10, 11, 12, 22], text and data integration [15,
18], business analytics [1], preference queries over product
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catalogs and Internet-based recommendation sources [3, 22],
distributed aggregation of network logs and sensor data [7],
and many other important application areas. Such queries
evaluate search conditions over multiple attributes or text
keywords, assign a numeric score that reflects the similar-
ity or relevance of a candidate record or document for each
condition, then combine these scores by a monotonic ag-
gregation function such as weighted summation, and finally
return the top-k results that have the highest total scores.
The method that has been most strongly advocated in re-
cent years is the family of threshold algorithms (TA) [12, 14,
25] that perform index scans over precomputed index lists,
one for each attribute or keyword in the query, which are
sorted in descending order of per-attribute or per-keyword
scores. The key point of TA is that it aggregates scores on
the fly, thus computes a lower bound for the total score of
the current rank-k result record (document) and an upper
bound for the total scores of all other candidate records (doc-
uments), and is thus often able to terminate the index scans
long before it reaches the bottom of the index lists, namely,
when the lower bound for the rank-k result, the threshold,
is at least as high as the upper bound for all other can-
didates. Additionally, for promising candidates, unknown
scores for some attributes can be looked up with random
accesses, making the score bounds more precise.

When scanning multiple index lists (over attributes from
one or more relations or document collections), top-k query
processing faces an optimization problem: combining each
pair of indexes is essentially an equi-join (via equality of the
tuple or document ids in matching index entries), and we
thus need to solve a join ordering problem [8, 15, 20]. As
top-k queries are eventually interested only in the highest-
score results, the problem is not just standard join ordering
but has additional complexity. [15] have called this issue
the problem of finding optimal rank-join execution plans.
Their approach is based on a DBMS-oriented compile-time
view: they consider only binary rank joins and a join tree to
combine the index lists for all attributes or keywords of the
query, and they generate the execution plan before query ex-
ecution starts. An alternative, run-time-oriented, approach
follows the Eddies-style notion of adaptive join orders on a
per tuple basis [2] rather than fixing join orders at compile-
time. Then the query optimization for top-k queries with
threshold-driven evaluation becomes a scheduling problem.
This is the approach that we pursue in this paper. In con-
trast to [2, 15] we do not restrict ourselves to trees of binary
joins, but consider all index lists relevant to the query to-
gether.
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List 1 List 2 List 3

Doc17 : 0.8 Doc25 : 0.7 Doc83 : 0.9

Doc78 : 0.2 Doc38 : 0.5 Doc17 : 0.7

· Doc14 : 0.5 Doc61 : 0.3

· Doc83 : 0.5 ·
· · ·
· Doc17 : 0.2 ·
· · ·

Round 1 (SA on 1,2,3)

Doc17 : [0.8 , 2.4]
Doc25 : [0.7 , 2.4]
Doc83 : [0.9 , 2.4]
unseen: ≤ 2.4

Round 2 (SA on 1,2,3)

Doc17 : [1.5 , 2.0]
Doc25 : [0.7 , 1.6]
Doc83 : [0.9 , 1.6]
unseen: ≤ 1.4

Round 3 (SA on 2,2,3!)

Doc17 : [1.5 , 2.0]
Doc83 : [1.4 , 1.6]
unseen: ≤ 1.0

Round 4 (RA for Doc17)

Doc17 : 1.7
all others < 1.7
done!

Figure 1: A top-1 computation on three index lists,
with three rounds of sorted access, followed by one
round of random access.

The potential cost savings for flexible and intelligent sche-
duling of index-scan steps result from the fact that the de-
scending scores in different lists exhibit different degrees of
skew and may also be correlated across different lists. For
example, dynamically identifying one or a few lists where
the scores drop sharply after the current scan position may
enable a TA-style algorithm to eliminate many top-k candi-
dates much more quickly and terminate the query execution
much earlier than with standard round-robin scheduling or
the best compile-time-generated plan. These savings are
highly significant when index lists are long, with millions of
entries that span multiple disk tracks, and the total data vol-
ume rules out a solution where all index lists are completely
kept in memory (i.e., with multi-Terabyte datasets like big
data warehouses, Web-scale indexes, or Internet archives).

As an example for the importance of scheduling strate-
gies, consider a top-1 query with three keywords and the
corresponding index lists shown in Fig. 1. In the first two
rounds, the first two documents from the top of the three
lists are scanned, and lower and upper bounds on the final
scores of the encountered documents are computed. At this
point we have seen all potential candidates for the top docu-
ment (because we know that the top document has a score of
at least 1.5, while any document not yet encountered at all
has a score of at most 1.4). However, if we stopped sorted
accesses now, we might have to do up to five random ac-
cesses (one for Doc17, two for Doc25, and two for Doc83)
to resolve which document has the highest score. In this
situation a clever algorithm will opt to continue with sorted
accesses. In the third round, now two documents from list
2 are scanned, one from list 3, and none from list 1. This is
to bring down the threshold for unseen documents as much
as possible and at the same time maximize the chance of en-
countering one of our candidate documents in a list where
we have not yet seen it. In our example, this indeed hap-
pens: the threshold drops considerably, we no longer have
to consider Doc25, and we get new information on Doc83.
The algorithm now estimates that one more random access
is likely to be enough to resolve the top document (because
Doc17 is likely to get a better score than Doc83). It there-
fore stops doing sorted accesses and does a random access

for Doc17 (the most promising in the example), after which
the top document is indeed resolved and the algorithm can
stop. The details of when our algorithms perform which
kind of accesses on which lists and why are given in Sec. 4
and 5.

1.2 Problem Statement
The problem that we address in this paper is how to sched-

ule index-access steps in TA-style top-k query processing in
the best possible way, integrating sequential index scans and
random lookups. Our goal is to minimize the sum of the ac-
cess costs, assuming a fixed cost cS for each sorted access
and a fixed cost cR for each random access. The same as-
sumptions were made in [11]. We also study how to leverage
statistics on score distributions for the scheduling of index-
scan steps. The statistics that we consider in this context
are histograms over the score distributions of individual in-
dex lists and also the correlations between index lists that
are processed within the same query. For the prediction
of aggregated scores over multiple index lists, we efficiently
compute histogram convolutions at query run-time.

Throughout this paper, we assume that the top-k algo-
rithm operates on precomputed index lists. We realize that
this may not always be possible, for example, when a SQL
query with a stop-after clause uses non-indexed attributes in
the order-by clause. The latter situation may arise, for ex-
ample, when expensive user-defined predicates are involved
in the query [9, 10, 20] (e.g., spatial computations or con-
ditions on images, speech, etc.). In these cases, the query
optimizer needs to find a more sophisticated overall execu-
tion plan, but it can still use a threshold algorithm as a
subplan on the subset of attributes where index lists are
available. However, for text-centric applications and for
semistructured data such as product catalogs or customer
support, there is hardly a reason why the physical design
should not include single-attribute indexes on all attributes
that are relevant for top-k queries. Such application classes
tend to be dominated by querying rather than in-place up-
dates, and the disk space cost of single-attribute indexes is
not an issue. The methods presented in this paper aim at
such settings.

1.3 Related Work
The original scheduling strategy for TA-style algorithms

is round-robin over all lists (mostly to ensure certain theo-
retical properties). Early variants also made intensive use
of random access (RA) to index entries to resolve missing
score values of result candidates, but for very large index
lists with millions of entries that span multiple disk tracks,
the resulting random access cost cR is 50 - 50,000 times
higher than the cost cS of a sorted access (SA). To rem-
edy this, [12, 14] proposed the NRA (No RA) variant of TA,
but occasional, carefully scheduled RAs can still be useful
when they can contribute to major pruning of candidates.
Therefore, [11] also introduced a combined algorithm (CA)
framework but did not discuss any data- or scoring-specific
scheduling strategies.

[14] developed heuristic strategies for scheduling SAs over
multiple lists. These are greedy heuristics based on limited
or crude estimates of scores, namely, the score gradients up
to the current cursor positions in the index scans and the
average score in an index list. This leads to preferring SAs
on index lists with steep gradient [14].
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[9] and [5, 22] developed the strategies MPro, Upper, and
Pick for scheduling RAs on “expensive predicates”. They
considered restricted attribute sources, such as non-indexed
attributes or Internet sites that do not support sorted ac-
cess at all (e.g., a streetfinder site that computes driving
distances and times), and showed how to integrate these
sources into a threshold algorithm. [22] also considered
sources with widely different RA costs or widely different
SA costs (e.g., because of different network bandwidth or
server load). Our computational model differs from these
settings in that we assume that all attributes are indexes
with support for both SA and RA and that all index lists
are on the same server and thus have identical access costs.
For our setting, MPro [9] is essentially the same as the Upper
method developed in [5, 22].

Upper alternates between RA and SA steps. For RA
scheduling, Upper selects the data item with the highest
upper bound for its final score and performs a single RA
on the attribute (source) with the highest expected score
(with additional considerations to source-specific RA costs
and eliminating “redundant” sources, which are not rele-
vant here). This is repeated until no data item remains that
has a higher upper bound than any yet unseen document
could have; then SA are scheduled in a round-robin way un-
til such a data item appears again. [5] also developed the
Pick method that runs in two phases. In the first phase,
it makes only SA until all potential result documents have
been read. In the second phase, it makes RA for the missing
dimensions of candidates that are chosen similarly to Upper.

Our own recent work [29] has used histograms and dy-
namic convolutions on score distributions to predict the to-
tal score of top-k candidates for more aggressive pruning;
the scheduling in that work is standard round-robin, how-
ever. Probabilistic cost estimation for top-k queries has been
a side issue in the recent work of [30], but there is no con-
sideration of scheduling issues. Our TopX work on XML IR
[28] included specific scheduling aspects for resolving struc-
tural path conditions, but did not consider the more general
problem of integrated scheduling for SAs and RAs.

The RankSQL work [16, 20] considers the order of binary
rank joins at query-planning time. Thus, at query run-time
there is no flexible scheduling anymore. For the planning-
time optimization, RankSQL uses simple statistical models,
assuming that scores within a list follow a Normal distri-
bution [16]. This assumption is made for tractability, to
simplify convolutions. Our experience with real datasets in-
dicated more sophisticated score distributions that are very
different from Normal distributions, and we use more pow-
erful statistics like explicit histograms with histogram con-
volutions computed at query time to deal with them.

1.4 Contribution
This paper makes several novel contributions:

• It develops novel strategies for sorted-access (SA) sche-
duling in TA-style top-k query processing that are
based on a knapsack-related optimization technique.

• It develops a statistics-based cost model for random-
access (RA) scheduling that employs statistical score
predictors, selectivity estimators, and estimation of
correlations among attribute values and/or keywords
and provides an integrated strategy that combines SA
and RA scheduling.

• It shows how these methods are best integrated into a

high-performance top-k query engine that uses a com-
bination of low-overhead merge joins with TA-style
processing based on inverted block-index structures.

• It presents stress tests and large-scale performance ex-
periments that demonstrate the viability and signifi-
cant benefits of the proposed scheduling strategies.

On three different datasets (TREC Terabyte, HTTP server
logs, and IMDB), our methods achieve significant perfor-
mance gains compared to the best previously known meth-
ods, Fagin’s Combined Algorithm (CA) and variants of the
Upper and Pick [5, 22] algorithms: a factor of up to 3 in terms
of abstract execution costs, and a factor of 5 in terms of ab-
solute run-times of our implementation. We also show that
our best techniques are within 20 percent of a lower bound
for the execution cost of any top-k algorithm from the TA
family; so we are fairly close to the optimum scheduling.

2. COMPUTATIONAL MODEL

2.1 Query and Data Model
We consider data items, structured records or text (or

semistructured) documents, dj (j = 1 . . . N), each contain-
ing a set of attribute values or keywords (terms) that spawn
an M -dimensional Cartesian-product space. We associate
with each record-value or document-term pair a numeric
score that reflects the “goodness” or relevance of the data
item with regard to the value or term. For example, for a
price attribute of structured records, the score could be in-
versely proportional to the amount (cheaper is better), for a
sensor the score could depend on the deviation from a target
point (e.g., a desired temperature or the set value of a con-
trol parameter), and for text or semistructured documents
the score could be an IR relevance measure such as TF·IDF
or the probabilistic BM25 score derived from term frequen-
cies (TF) and inverse document frequencies (IDF) [13]. We
denote the score of data item dj for the ith dimension by sij .
Scores are often normalized to the interval [0, 1], with 1 be-
ing the best possible score. We will assume such normalized
scores in this paper, but this is not a critical assumption.

Top-k queries are essentially partial-match queries on the
M -dimensional data space: 1 < m ≤ M (usually m � M)
conjunctions of primitive conditions of the form attribute =
value or document contains term, but the conditions are in-
terpreted as relaxable so that not matching one of them does
not disqualify a candidate item for the query result and ap-
proximate matches are scored and ranked. Like most of the
literature, we assume that the total score of an item is com-
puted by a monotonic score aggregation function from the
per-value or per-term scores of the item, e.g., using weighted
summation. A top-k query returns k matches or approxi-
mate matches with the highest total scores.

2.2 Inverted Block-Index
The data items containing specific values or terms and

their corresponding scores are precomputed and stored in
“inverted” index lists Li (i = 1..M), with one such list per
data dimension (value or term). The entries in a list are
<itemID, score> pairs. The lists may be very long (mil-
lions of entries) and reside on disk. We partition each in-
dex list into blocks and use score-descending order among
blocks but keep the index entries within each block in itemID

order. This is key to a low-overhead maintenance of the
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fairly extensive bookkeeping information that is necessary
for TA-style query processing. We coin this hybrid struc-
ture Inverted Block-Index. The block size is a configuration
parameter that is chosen in a way that balances disk seek
time and transfer rate; a typical block size would be 32,768.
More details on this index data structure and how we use it
for high-performance query processing can be found in [4].

2.3 Query Processing
Our query processing model is based on the NRA and CA

variants of the TA family of algorithms. An m-dimensional
top-k query (with m search conditions) is primarily pro-
cessed by scanning the corresponding m index lists in de-
scending score orders in an interleaved manner (and by mak-
ing judicious random accesses to look up index entries of
specific data items). Without loss of generality, we assume
that these are the index lists numbered L1 through Lm. For
numerical or categorical attribute-value conditions that are
not perfectly matched, the query processor considers “alter-
native” values in ascending order of similarity to the original
value of the query (thus preserving the overall descending-
score processing order). For example, when searching for
year = 1999, after exhausting the index list for the value
1999, the next best lists are those for 1998, 2000, etc. Al-
though this relaxation involves additional lists, we treat this
procedure as if it were a single index scan where the list for
1999 is conceptually extended by “neighboring” lists.

When scanning the m index lists, the query processor col-
lects candidates for the query result and maintains them in
two priority queues, one for the current top-k items and an-
other one for all other candidates that could still make it into
the final top-k. For simpler presentation, we assume that the
score aggregation function is simple summation. The query
processor maintains the following state information:

• the current cursor position posi for each list Li,
• the score values highi at the current cursor positions,

which serve as upper bounds for the unknown scores
in the lists’ tails,

• a set of current top-k items, d1 through dk (renum-
bered to reflect their current ranks) and a set of data
items dj (j = k + 1..k + q) in the current candidate
queue Q, each with

– a set of evaluated dimensions E(dj) in which dj

has already been seen during the scans or by ran-
dom lookups,

– a set of remainder dimensions Ē(dj) for which the
score of dj is still unknown,

– a lower bound worstscore(dj) for the total score
of dj which is the sum of the scores from E(dj),

– an upper bound bestscore(dj) for the total score
of dj which is equal to

worstscore(dj) +
∑

ν∈Ē(dj)

highν

In addition, the following information is derived at each step:

• the minimum worstscore min-k of the current top-k
docs, which serves as the stopping threshold,

• the bestscore that any currently unseen document can
get, which is computed as the sum of the current highi,

• and for each candidate, a score deficit δj = min-k −
worstscore(dj) that dj would have to reach in order to
qualify for the current top-k.

The top-k queue is sorted by worstscore values, and the can-
didate queue is sorted by descending bestscore values. Ties
among scores may be broken by using the concatenation of
<score, itemID> for sorting. The invariant that separates
the two is that the rank-k worstscore of the top-k queue
is at least as high as the best worstscore in the candidate
queue. The algorithm can safely terminate, yielding the
correct top-k results, when the maximum bestscore of the
candidate queue is not larger than the rank-k worstscore of
the current top-k, i.e., when

min
d∈top-k

{worstscore(d)} =: min-k ≥ max
c∈Q

{bestscore(c)}

More generally, whenever a candidate in the queue Q has
a bestscore that is not higher than min-k, this candidate
can be pruned from the queue. Early termination (i.e., the
point when the queue becomes empty) is one goal of efficient
top-k processing, but early pruning to keep the queue and
its memory consumption small is an equally important goal
(and is not necessarily implied by early termination). The
candidate bookkeeping is illustrated in Fig. 2.

Figure 2: Top-k and candidate bookkeeping.

In the rest of the paper we will primarily use the IR-
oriented terminology of documents and terms. It is straight-
forward to carry over our methods and results to settings
with numerical or categorical attributes of structured records.

2.4 Taxonomy of Scheduling Strategies
Different algorithm within the TA-sytle family differ in

the ways how they handle three fundamental issues: (1)
how SAs are scheduled, (2) how RAs are scheduled, and (3)
how RAs are ordered. This section presents a taxonomy of
the different possibilities for each dimension, classifies the
existing approaches in this scheme and points out the new
approaches presented in this paper.

2.4.1 SA-Scheduling
RR: Schedule SA in a round-robin manner across the lists
(TA, NRA, CA, Upper, and Pick).
KSR: Schedule different amounts of SA per list in order to
maximize the reduction of scores at the future scan positions
for a fixed batch of sorted accesses, using a Knapsack-based
optimization algorithm (see Sec. 4.1).

KBA: Schedule different amounts of SA per list in order to
maximize an aggregated benefit among all candidates cur-
rently being in the queue for a fixed batch of sorted ac-
cesses, using a Knapsack-based optimization algorithm (see
Sec. 4.2).

2.4.2 RA-Scheduling
Never: Perform SA only (NRA).

All: After each round of SA, perform full RA for each new
candidate to retrieve its final score; no candidate queuing is
required (TA).
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Top: After each round of SA, schedule RA on the currently
best candidates in the queue (including the not yet fully
evaluated documents currently in the top-k). An extreme
instance of such an algorithm is Upper that schedules RA for
all candidates that have a higher bestscore than the current
bestscore of a yet unseen document.
Each: After each round of SAs, schedule a balanced amount
of RA according to the current cost ratio cR/cS between RA
and SA performed so far (CA).

Last: Perform only batches of SAs initially and, at some
point in the algorithm, switch to performing only RA, thus
scheduling the full amount of RA to eliminate all the re-
maining items in the queue. One algorithm in this class is
Pick that switches from SA to RA as soon as the best score
that an unseen document can get drops below the current
min-k threshold. In contrast, our algorithms (see Sec. 5.1
and 5.2) stop the SA batches according to the estimated cost
for the remaining RA (i.e., corresponding to the estimated
number of candidates in the queue that need to be looked
up to raise min-k above the bestscore of the currently best
candidate).

2.4.3 RA-Ordering
Best: Perform RAs in descending order of bestscore(dj)
(CA, Upper and Sec. 5.1).

Ben: Perform RAs according to a cost model, i.e., propor-
tionally to the probability p(dj) that dj gets into the top-k
results (see Sec. 5.2).

Any algorithm for TA-style top-k query processing now
corresponds to a triplet, for example, the NRA scheme cor-
responds to RR-Never, TA corresponds to RR-All, CA is
RR-Each-Best, and Upper corresponds to RR-Top-Best. In
Sections 4 and 5, we will investigate the more sophisticated
combinations. Our best results will be obtained by the com-
bination KSR-Last-Ben.

2.5 Computing Lower Bounds
[12] proved that the CA algorithm has costs that are al-

ways within a factor of 4m + k of the optimum, where m is
the number of lists and k is the number of top items we want
to see. Even for small values of m and k, this factor is fairly
large (e.g., 22 if we want the top-10 of a 3-word query), and,
it seems, way too pessimistic. [5] presented a way to com-
pute a lower bound on the cost of individual queries for the
special case of queries with only a single indexed attribute
We extend their approach to our setting where all lists can
be accessed with sorted and random accesses. For any top-
k query processing method, after it has done its last SA,
consider the set X of documents which were seen in at least
one of the sorted accesses, and which have a bestscore not
only above the current min-k score, but even above the final
min-k score (which the method does not know at this time).
If only a fraction of each list has been scanned, this set X is
typically of considerable size. Now it is not hard to see that
the method must do an RA for every document from X in
order to be correct.

Therefore, the following construction gives a lower bound
on the cost of top-k method: try all possible combinations
of scan depths in each of the input lists, and for each such
combination compute the cost of scanning until this depth
plus the cost of the then absolutely necessary RAs. In this
computation, we restrict ourselves to scan depths that are

multiples of a certain block size. Note that the outlined
computation is not a real top-k algorithm itself, but merely
serves to determine lower bounds for comparison.

3. PROBABILISTIC FOUNDATIONS

3.1 Score Predictor
In this section we develop the details for estimating the

probability p(d) that a candidate document d with non-
empty remainder set Ē(d) may qualify for the top-k results.
The way how we estimate p(d) depends on the assumptions
that we make about the distribution of the unknown scores
that d would obtain from each remaining list; for each miss-
ing dimension, we consider a random variable Si for the
score of d in that dimension. As we don’t know the actual
distribution of the Si unless we have read the whole list,
we have to model or approximate the distribution. We use
histograms [17] as an efficient and commonly used means
to compactly capture arbitrary score distributions. In our
application, we precompute a histogram for the score distri-
bution of each index list, discretizing the score domain for
each index list into H buckets with lower buckets bounds
s1, . . . , sH and storing the respective document frequency
and the cumulated document frequency for each of the his-
togram buckets. Using the approximated distributions of
the scores in each list, we can estimate the probability that
a candidate document can get enough score mass from its
remaining lists to enter the top-k as

ps(dj) := P

⎡
⎣ ∑

i∈Ē(dj)

Si > δj |Si ≤ highi

⎤
⎦

As this involves the sum of random variables, we need to
compute the convolution of the corresponding distributions
to compute this probability. Our previous paper [29] has
shown how to do this efficiently at query run-time. Among
the techniques presented there, the current paper adopts
histogram convolutions, which are recomputed periodically
after every batch of SA steps. The computational overhead
for the convolutions was never a bottleneck in the overall
top-k algorithm.

3.2 Selectivity Estimator
The score predictor implicitly assumes that a document

occurs in all its missing dimensions, hence it inherently over-
estimates the probability that a document can get a score
higher than the current min-k. For a more precise estima-
tion, we take the selectivity of the lists into account, i.e., the
probability that a document occurs in the remaining part of
a list. For a single list Li with length li and a total dataset
size of n documents, this probability is

qi(d) :=
li − posi

n − posi

For a partially evaluated document d with a set Ē(d) of
remainder dimensions, the probability q(d) that d occurs in
at least one of the dimensions in Ē(d) is computed as

q(d) := P [d occurs in at least one list in Ē(d)]

= 1 − P [d does not occur in any list in Ē(d)]

= 1 −
∏

i∈Ē(d)

(1 − qi(d))

assuming independence for tractability. This independence
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assumption can be relaxed by the covariance-based tech-
nique mentioned in Sec. 3.4.

3.3 Combined Score & Selectivity
We write A(d, Y ′) for the probabilistic event that d occurs

in all lists Y ′ and in none of the remaining lists in Ē(d)\Y ′,
and O(d, Ē(d)) for the probabilistic event that d occurs in
at least one of the dimensions in Ē(d). Then the combined
probability that a document d can reach the top-k can be
estimated as follows:

p(d) := P [d ∈ top-k]

=
∑

Y ′⊆Ē(d)

P [A(d, Y ′) ∧
∑
i∈Y ′

Si > min-k]

≤
∑

Y ′⊆Ē(d)

P [A(d, Y ′) ∧
∑

i∈Ē(d)

Si > min-k]

= P [O(d, Ē(d)) ∧
∑

i∈Ē(d)

Si > min-k]

= P [
∑

i∈Ē(d)

Si > min-k|O(d, Ē(d))] · P [O(d, Ē(d))]

= ps(d) · q(d)

This corresponds to a conjunctive combination of the prob-
abilities from the score predictor and selectivity estimates.

3.4 Feature Correlations
Assuming that documents occur independently in differ-

ent lists may lead to a crude and practically useless estima-
tor as terms used in queries are frequently highly correlated.
To capture this in our probability estimator, we precompute
pairwise term covariances for terms in frequent queries (e.g.,
derived from query logs). For two such terms and their cor-
responding lists Li and Lj , we use a contingency table to
capture co-occurrence statistics for these terms. We denote
by li the length of list Li and by lij the number of docs
that are in both Li and Lj . We then consider the random
variable Xi which is 1 if some doc d is in Li (the same dis-
tribution for all d, but not the same value, of course), and
0 otherwise. To predict Xj(d) after knowing Xi(d) = 1, we
have to compute the covariance cov(Xi(d),Xj(d)) of Xi and
Xj . Following basic probability theory, we can estimate this

covariance as cov(Xi, Xj) =
lij

n
− li·lj

n2 .
We show how feature correlations can be exploited for

a better estimation of selectivities. We want to estimate
the probability qi(d) that a document d occurs in the re-
mainder of the list Li given that it already has occurred
in some lists E(d), using the pairwise covariances of Li

with the lists in E(d). First we consider the case where
E(d) = {j} consists of a single list. Using the equality
P [Xi ∧ Xj ] = P [Xi]P [Xj ] + cov(Xi, Xj) for Bernoulli ran-
dom variables, we can derive

P [Xi|Xj ] =
P [Xi ∧ Xj ]

P [Xj ]

=
P [Xi]P [Xj ] + cov(Xi, Xj)

P [Xj ]

=
li
n
· lj

n
+

lij

n
− li·lj

n2

lj
n

=
lij
lj

We would like to estimate P [Xi = 1|E(d)] := P [Xi =

1|X1 = 1, X2 = 1, ..., Xj = 1] with E(d) = {1, 2, . . . , j} and
the elements of E(d) conveniently renumbered. As we only
have pairwise covariance estimates, we work with the ap-
proximation P [Xi = 1|E(d)] ≥ maxj∈E(d) P [Xi = 1|Xj = 1]
which yields

qi(d) = P [Xi = 1|E(d)]

≥ max
j∈E(d)

P [Xi = 1|Xj ] = max
j∈E(d)

lij
lj

We can plug this correlation-aware estimation for the prob-
ability that a document occurs in a single list in the selectiv-
ity estimator from Sec. 3.2 and the combined score predictor
from Sec. 3.3.

4. SORTED ACCESS SCHEDULING
Index lists are processed in batches of b sorted accesses.

That is, the query engine fetches b index entries from all
m query-relevant index lists, and these b entries can be dis-
tributed arbitrarily across the lists. The priority queue Q
for result candidates is rebuilt with updated priorities after
each round of b such steps. For our inverted block index,
as we described it in Sec. 2.2, we choose b as a multiple of
the block size. Since the blocks are sorted by item IDs, the
required bookkeeping can then be efficiently implemented
via merge joins, without the need for any priority queue or
hash data structure. Note that this implies a slightly coarser
granularity of the TA-style query processing.

Our overriding goal is to minimze the weighted sum of
sorted-access (SA) and random-access (RA) steps for com-
puting the top-k results of a query: cS ×#SA+ cR ×#RA.
In this section, we assume a fixed strategy for RAs (e.g., no
RAs at all in an NRA-style method or periodic RAs for the
best candidates after every cR/cS rounds of SAs), and focus
on the SA cost part. Our goal in SA scheduling is to opti-
mize the individual batch sizes bi (i = 1..m) across all the
lists, i.e., choose b1, . . . , bm so as to maximize some benefit
function under the constraint

∑m
i=1 bi = b. For the block-

organized index, the units of the scheduling decisions are en-
tire blocks. In the following we will present our methods in
terms of SAs to individual index entries; the block-oriented
variant follows in a straightforward manner.

Inspired by the earlier work on simple scheduling heuris-
tics [14], our first method aims to reduce the scores at the
index scan positions, the highi bounds, as quickly as possi-
ble. The rationale of this strategy is that low highi values
result in lower bestscores of all top-k candidates, which in
turn enables us to prune more candidates earlier. It turns
out, however, that this strategy does not perform well in
many cases. We have developed a more general and typ-
ically better performing scheduling strategy that considers
an explicit notion of benefit of a candidate in Q and aggre-
gates over all candidates for a judicious decision on the bi

steps. The benefit function will be defined so as to strive
for low SA costs in the overall objective function (weighted
sum of SAs and RAs). Both strategies lead to the NP-hard
knapsack problem, hence we have coined them KSR (Knap-
sack scheduling for Score Reduction) and KBA (Knapsack
scheduling for Benefit Aggregation).

4.1 Knapsack for Score Reduction (KSR)
Given the current scan positions pos1, . . . , posm, we are

looking for a schedule of b1, . . . , bm steps (with b1+· · ·+bm =
b), such that we maximize the total reduction in bestscores
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of the documents currently present in our candidate queue.
For a candidate document d ∈ Q, bestscore(d) reduces by
Δi = highi−scorei(posi+bi) if i ∈ Ē(d) and by 0 if i ∈ E(d)
when we scan bi elements further into list Li and do not see
the document d in the list Li. Since the probability of seeing
a particular document by scanning a small part of a list is
close to zero, the expected reduction in bestscore(d) can be
considered as Δi. Hence the expected aggregated reduction
in bestscores for all documents in Q is given by wiΔi where
wi = |{d ∈ Q|i ∈ Ē(d)}| is the number of documents for
which a reduction in bestscore is expected by scanning into
list Li. We can easily estimate the scorei(posi + bi) from
the precomputed histograms, assuming a uniform distribu-
tion of scores within a histogram cell. We can now define
our objective function for the choice of bi values: maximize
the score reduction SR(b1, . . . , bm) =

∑m
i=1 wiΔi, where we

treat the Δi values as a (deterministic) function of the bi

choices (ignoring potential estimation errors caused by the
histograms). This problem is NP-hard, as we can reduce the
well-known knapsack problem to it (see [4]). However, in
all our applications the number m of lists is relatively small
and we schedule only a small multiple of m in every round,
so that we can actually check all possible combinations in
very little time compared to the reads and merges.

4.2 Knapsack for Benefit Aggregation (KBA)
The knapsack scheduling framework introduced in the

previous subsection is intriguing and powerful, but solely
aiming to reduce the scores at the scan positions as quickly
as possible is not the best optimization criterion. It allows
us to identify some low-scoring candidates and prune them
earlier, but it does not necessarily lead to more informa-
tion about the high-scoring candidates. We do not only
want to reduce the bestscore bounds of some candidates as
much as possible, but are actually more concerned about
the bestscore bounds of those candidates that are close to
the min-k threshold and, more generally, would prefer a
modest bestscore reduction of many candidates over a big
reduction for some smaller fraction only. To address these
issues we now define an explicit formalization of the benefit
that we obtain from scanning forward by (b1, . . . , bm) po-
sitions in the m index lists, taking into consideration not
only the current scan positions and score statistics, but also
the knowledge that we have compiled about the documents
seen so far during the scans. Benefit will be defined for each
document, and we will then aggregate the benefits of all
documents in the current top-k or the candidate queue Q.

Observe that if a candidate document d has already been
seen in list Li, then neither bestscore(d) nor worstscore(d)
changes when we scan Li further. So, for each list Li, we
shall consider only the documents d ∈ Q which are not seen
in Li, i.e. i ∈ Ē(d). The probability qbi

i (d) that a document
d is seen in Li in the next bi steps is

qbi
i (d) = P [d in next bi elements of Li|E(d)]

= P [d in next bi|d ∈ Li ∧ E(d)] · P [d ∈ Li|E(d)]

=
bi

li − posi
· P [d ∈ Li|E(d)]

=
bi

li − posi
· P [Xi = 1|E(d)]

≥ bi

li − posi
· max

j∈E(d)

lij
lj

If a document d is actually found in Li by scanning fur-
ther to depth bi, the worstscore of d increases, which in turn
contributes to increasing min-k and thus pruning more doc-
uments. The expected gain in worstscore(d) when list Li

is scanned further to depth bi is given by qbi
i (d)μ(posi, bi)

where μ(posi, bi) is the mean score of the documents from
current scan position posi to posi + bi. We can estimate
μ(posi, bi) as well from the precomputed histogram. Simi-
larly, we can estimate the reduction in bestscore of a candi-
date document d ∈ Q with regard to list Li as (1−qbi

i (d))Δi,
if it is not seen in the next bi steps. Now we can define our
benefit function for every candidate document d ∈ Q not
already seen in list Li as

Beni(d, bi) = qbi
i (d)μ(posi, bi) + (1 − qbi

i (d))Δi

and the total benefit of scanning to depth bi in Li as

Beni(bi) =
∑

d∈Q,i∈Ē(d)

Beni(d, bi)

Finally, we can define the overall benefit for a schedule s =
(b1, . . . , bm) by a simple benefit aggregation:

Ben(s) =
m∑

i=1

Beni(bi)

So we are looking for a schedule s for which the benefit
Ben(s) is maximized. This notion of overall benefit includes
an implicit weighting of lists, by giving higher weight to
the lists for which we have many documents in the queue
that have not yet been seen there and which would benefit
from a significant reduction of the highi bounds for these
lists. Thus scanning on these lists could make the decisive
difference between pruning many candidates or having to
keep them in the queue.

5. RANDOM ACCESS SCHEDULING
Random-access (RA) scheduling is crucial both in the

early and the late stages of top-k query processing. In the
early stage, it is important to ensure that the min-k thresh-
old moves up quickly so as to make the candidate pruning
more effective as the scans proceed and collect large amounts
of candidates. Later, it is important to avoid that the al-
gorithm cannot terminate merely because of a few pieces of
information missing about a few borderline candidates. In
the following we present various strategies for deciding when
to issue RAs and for which candidates in which lists. Some
of them have a surprisingly simple heuristic nature, others
are cost-model-driven. Following the literature [9, 22], we
refer to score lookups by RA as probing.

5.1 Last-Probing
In Last-Probing, just as in CA, we do a balanced number

of RAs, that is, we see that the total cost of the RAs is
about the same as the total cost of all SAs. In CA, this
is trivially achieved by doing one random access after each
round of �cR/cS� SA. In Last-Probing, we perform RAs only
after the last round, that is, we have a phase of only SAs,
followed by a phase of only RAs.

We do this by estimating, after each round, the number
of RAs that would have to be done if this were the last
round of SAs. Two criteria must be met for this round of
SA being the last. First, the estimated number of RA must
be less than �cR/cS� times the number of all SA done up to
this point Second, we must have

∑m
i=1 highi ≤ min-k, since
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only then we can be sure that we have encounterd all the
top-k items already. We remark that in all our applications,
the second criterion is typically fulfilled long before (that is,
after much fewer rounds than) the first criterion.

A trivial estimate for the number of random lookups that
would have to be done if we stopped doing SAs at a certain
point, is the number of candidate documents which are then
in our queue. Clearly, this estimate is an upper bound.
When the distribution is very skewed, it is in fact quite a
good estimate, because then each document in the queue has
a positive but only very tiny probability of becoming one of
the top-k items. For more uniform score distributions like
BM25, however, it turns out than we can do much better.

Consider the queue after some round, and assume an or-
dering of the documents by descending bestscores, i.e., high-
est bestscore first. For the ith document in that ordering,
let Wi and Bi denote its worstscore and bestscore, respec-
tively, and by Fi its final score (which we do not know before
doing random accesses, unless Wi = Bi). Now consider the
lth document (in the bestscore ordering), and let k′ be the
number of top-k items with worstscore below Bl. Then it
is not hard to see that there will be a random lookup for
this lth document, if and only if at most k′ of the l− 1 doc-
uments d1, . . . , dl−1 have a final score larger than Bl. Let
Rl be the random indicator variable that is 1 if that hap-
pens and 0 otherwise. Let pi,l := P [Fi > Bl], which can be
computed as described in Sec. 3.1. Since the pi,l are small,
and l tends to be large, the number of i for which Fi > Bl

can be approximated very accurately by a random variable
Xl with a Poisson distribution with mean p1,l + · · ·+ pl−1,l.
We then have E(Rl) = P [Rl = 1] = P [Xl < k], which can
be computed very efficiently and accurately by means of the
incomplete gamma function [27].

As described so far, the probabilities p1,l, . . . , pl−1,l would
have to be computed from scratch for every document. The
time for computing

∑
l E(Rl) as an estimate for the number

of RA would then be quadratic in the number of documents
in the queue. We improve on this by approximating pi,l =
P [Fi > Bl] by

p̃i,l = P [Fi > min-k] · Bl − min-k

Bi − min-k

Note that by the bestscore ordering we have that Bl ≤ Bi,
for i < l. It then suffices to compute P [Fi > min-k], once
for each document i, and to maintain, while processing the
documents in order of descending bestscores, the number of
top-k items which are smaller than the current document,
which can be done in linear overall time. It is not hard to
see, that from these quantities,

∑l−1
i=1 p̃i,l can be computed

in constant time, for any given l.
When doing the random accesses, it plays a role in which

order we process the documents for which we do random
lookups. In the basic Last-Probing, we simply order them
by decreasing bestscore (Last-Best); this is similar to CA,
which after each round of sorted accesses does an RA for
the candidate document with the highest bestscore. In the
next section, we see a more sophisticated ordering.

5.2 Ben-Probing
The Beneficial Probing strategy, Ben-Probing for short,

extends the Last-Probing by a probabilistic cost model for
assessing the benefit of making RAs versus continuing with
SAs in the index scans. The cost comparison is updated
periodically every b steps, i.e., whenever we need to make

an SA-scheduling decision anyway. The cost is computed
for each document d in the candidate queue or the current
top-k separately; obviously SA costs per document are then
fractions of the full SA costs as index-scan steps are amor-
tized over multiple documents. Then we can either schedule
RAs for individual documents based on the outcome of the
cost comparison, or we can batch RAs for multiple candi-
dates and would then simply aggregate the per-candidate
RA costs. In the following, we first develop the cost esti-
mates and then come back to the issue of specific scheduling
decisions. We denote the number of documents in the pri-
ority queue by q = |Q|.

For both cost categories, we consider the expected wasted
cost (EWC) which is the expected cost of random (or sorted)
accesses that our decision would incur but would not be
made by an optimal schedule that would make random look-
ups only for the final top-k and traverse index lists with
minimal depths. To compute the EWCs, we set the cost of
an SA to 1 and the cost of an RA to cR/cS , hence the model
uses only the cost ratio, not the actual costs.

For looking up unknown scores of a candidate document
d in the index lists Ē(d), we would incur |Ē(d)| RA which
are wasted if d does not qualify for the final top-k result.
We can compute this probability using the combined score
estimator from Sec. 3.3 and exploiting correlations as shown
in Sec. 3.4, as

P [d /∈ top-k] = 1 − p(d)

= 1 − pS(d) · q(d)

= 1 − pS(d) ·
⎛
⎝1 −

∏
i∈Ē(d)

(1 − qi(d))

⎞
⎠

≤ 1 − pS(d) ·
⎛
⎝1 −

∏
i∈Ē(d)

(
1 − max

j∈E(d)

lij
lj

)⎞
⎠

Then the random accesses to resolve the missing scores have
expected wasted cost:

EWCRA(d) := |Ē(d)| · (1 − p(d)) · cR

cS
Analogously, the next batch of b SA for an additional

depth bi at index list Li, with
∑

i bi = b, incurs a fractional
cost to each candidate in the priority queue, and these total
costs are shared by all |Q| candidates. For a candidate d,
the SA are wasted if either we do not learn any new infor-
mation about the total score of d (that is, when we do not
encounter d in any of the m remainder dimensions), or if we
encounter d, but it does not make it to the top-k. Denoting
the probability of seeing d in the ith list in the next bi steps
as qbi

i (d) like in Sec. 4.2, we can compute the probability
qb(d) of seeing d in at least one list in the batch of size b as

qb(d) := 1 − P [d not seen in any list]

= 1 −
∏

i∈Ē(d)

(1 − P [d seen in Li in next bi steps])

= 1 −
∏

i∈Ē(d)

(
1 − qbi

i (d)
)

Hence the probability of not seeing d in any list is 1− qb(d).
The probability that d is seen in at least one list, but does
not make it to the top-k can be computed as qS(d) :=
(1 − pS(d)) · qb(d) analogously to Sec. 3.3. Then the total
costs for the next batch of b SA are shared by all candidates
in Q, and this incurs expected wasted cost:
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EWCSA :=
b

|Q| ·
∑
d∈Q

(
(1 − qb(d)) + (1 − pS(d)) · qb(d)

)

=
b

|Q| ·
∑
d∈Q

(
1 − qb(d) · pS(d)

)

We can now replace the real costs (as counted by Last-Pro-
bing) with the expected wasted costs EWCRA and EWCSA

for the Ben-Probing. In order to trigger random accesses
for specific candidates, we always consider the cumulated
EWCRA costs and compare them to the cumulated EWCSA

of all batches done so far. For Last-Ben, we exclusively
perform SA batches until the sum of the expected wasted
costs of all remaining candidates in the queue is less than the
cumulated expected wasted costs of all previous SA batches;
we then perform the RAs for all documents in the queue in
ascending order of the documents’ EWCRA.

For each candidate d, we actually perform the RAs one at
a time in ascending order of index list selectivity li/n, for
all i ∈ Ē(d), thus counting a single RA for each candidate
and list. We may safely break this sequence of RAs on d, if
bestscore(d) ≤ min-k, hence drop that candidate, and save
some RA costs for another candidate.

6. EXPERIMENTS

6.1 Data Collections & Setup
We consider three structurally different data collections:

the TREC Terabyte collection, movie data from IMDB, and
a huge HTTP server log. The TREC Terabyte benchmark
collection1 consists of more than 25 million Web pages from
the .gov domain, mostly HTML and PDF files with a total
size of about 426 gigabytes. It provides a set of 50 keyword
queries like “kyrgyzstan united states relations” or “women
state legislature” with an average length of m=2.9 and a
maximum of m=5. One particularity of the TREC queries
is that they come with larger description and narrative fields
that allow the extraction of larger keyword queries. We
indexed the collection with BM25 and a standard TF·IDF
scoring model [13].

We imported movie information from the Internet Movie
Database IMDB2 for more than 375,000 movies and more
than 1,200,000 persons (actors, directors, etc.) into a four-
attribute relational table with the schema Movies(Title,

Genre, Actors, Description) where Title and Descrip-

tion are text attributes and Genre and Actors are set-
valued categorical attributes. Genre typically contains two
or three genres, and actors were limited to those that ap-
peared in at least five different movies. For similarity scores
among genres and among actors we precomputed the Dice
coefficient for each pair of Genre values and for each pair of
actors that appeared together in at least five movies. So the
similarity for genres or actors x and y is set to

2 · #{movies containing x and y}
#{movies containing x} + #{movies containing y}

and the index list for x contains entries for similar values
y, too, with scores weighted with the similarity of x and y.
A typical query is Title="War" Genre=SciFi Actors="Tom

Cruise" Description="alien, earth, destroy". We com-
piled 20 queries of this kind by asking colleagues.

1http://www-nlpir.nist.gov/projects/terabyte/
2http://www.imdb.org

The Internet Traffic Archive3 provides a huge HTTP server
log with about 1.3 billion HTTP requests from the 1998
FIFA soccer world championship. We aggregated the infor-
mation from this log into a relational table with the schema
Log(interval,userid,bytes), aggregating the traffic (in
bytes) for each user within one-day intervals. Queries ask
for the top-k users, i.e., the k users with the highest aggre-
gated traffic, within a subset of all intervals (like “from June
1 to June 10”); our query load consists of 20 such queries.

We compared our new algorithms against the best prior
methods. The main competitors turned out to be NRA and
CA. We also implemented a full merge of the index lists (fol-
lowed by a partial sort to obtain the top-k results). The full
merge is not very competitive in cost, because each element
is accessed, but it is actually a tough competitor in terms of
running time, because of the significant bookkeeping over-
head incurred by all the treshold methods. We further com-
puted the lower bound from Sec. 2.5 to assess how close our
algorithms get to the optimum.

We also ran our experiments for the RA-extensive thresh-
old algorithms TA, Upper[5, 22] and Pick[5]. In our setting,
where both sorted and random access is possible and a ran-
dom access is much more expensive than a sorted access
(the lowest ratio we consider is 100), all these methods per-
formed considerably worse than even the full merge baseline,
in terms of both costs and running times, and for all values
of k and cR/cS we considered. For example, for k=10 and
cR/cS=1000 on Terabyte-BM25, they resulted in total cost
72,389,140 (TA), 31,496,440 (Upper), and 3,798,549 (Pick),
compared to 2,890,768 for the full merge, 788,511 for NRA
and 386,847 for our best method. We therefore did not
include these methods in our charts. Note that, as we dis-
cussed in Sec. 1.3, MPro, Upper and Pick were actually de-
signed for a different setting, where some lists are accessible
by random access only.

We focus on experiments with the Terabyte collection with
BM25 scores as this is the most challenging and most real-
istic collection and scoring model; main results for the two
other collections are presented afterwards. Unless stated
otherwise, we use a cost ratio cR/cS=1,000 and a block
size b=32,768 for the experiments which is reasonable for
our implementation. We report the average query cost as
COST = #SA + cR/cS · #RA computed over the whole
batch of queries as our primary performance measure.
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Figure 3: Average costs for Terabyte-BM25 of our
best algorithm compared to various baselines and a
computed lower bound, for varying k.

3http://ita.ee.lbl.gov
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6.2 Terabyte Runs
Fig. 3 presents the average cost savings of our best ap-

proach (KSR-Last-Ben) which outperforms all our three base-
lines by factors of up to 3. Even for k=1,000, there is a 50%
improvement over all three baselines. Note that the end user
of top-k results (as in web search) would typically set k to
10–100, whereas application classes with automated result
post-processing (such as multimedia retrieval) may choose
k values between 100 and 1,000. Especially remarkable is
the fact that we consistently approach the absolute lower
bound by about 20% even for large k, whereas both CA and
NRA increasingly degenerate; CA even exceeds the FullMerge
baseline in terms of access cost for k > 200.
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Figure 4: Average running times in milliseconds of
our best algorithm compared to FullMerge and NRA,
for Terabyte-BM25 and varying k.

Fig. 4 shows the average runtimes we achieve per query,
measured on a 2-processor Opteron 250 server with 8 giga-
bytes of RAM and all data loaded from a SCSI raid. Average
runtimes for our algorithms are in the order of 30–60ms for
10≤ k ≤100, even when the total list length is in the mil-
lions, which outperforms the NRA and FullMerge baselines
by a factor of up to 5. Interestingly, for k >20 our true
baseline for measuring runtimes is no longer CA, because
it is already outperformed by the DBMS-style FullMerge.
Here, NRA is already out of the question because of its
high overhead in index access costs (Fig. 3) and its addi-
tional need for candidate bookkeeping, whereas the amount
of access costs saved by our improved scheduling approaches
(KSR-Last-Ben) more than compensates the bookkeeping
overhead. To pick just one example, the full merge on the
query “kyrgyzstan united states relations”, which has a total
list volume of over 15 million doc ids, takes about one sec-
ond, while our best top-k algorithms, by scanning only about
2% of this volume and by doing about 300 well-targeted ran-
dom lookups, process the same query in about 10ms.

6.2.1 Sorted Access Scheduling
To analyze the benefit of our Knapsack-driven SA schedul-

ing approaches, we fix the RA scheduling to Last-Best and
focus on the individual SA scheduling performance of the
Knapsack optimizations. Fig. 5 shows relatively low perfor-
mance gains in between 2–5% for BM25 scores compared
to round-robin. For more skewed distrubutions such as
TF·IDF, we observe larger benefits of up to 15% for k ≥ 50.
Here, the more sophisticated benefit-optimized Knapsack
(KBA) wins overall.

6.2.2 Random Access Scheduling
We fix the SA scheduling to the basic round-robin strat-

egy and analyze our different RA scheduling approaches.
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Figure 5: Average cost for the different SA schedul-
ing approaches for Terabyte with a BM25 (left) and
a TF·IDF model (right), for varying k.

Fig. 6 shows that we gradually improve our RA schedul-
ing performance as we move from the original CA baseline
over the simple Last-Best strategy toward the more sophis-
ticated cost-driven scheduling Last-Ben. Interestingly, the
step from RR-Each-Best (CA) to RR-Last-Best already pro-
vides 90% of the overall gain we can achieve, whereas the
more complex RR-Last-Ben achieves about 10% more cost
savings with an overall factor of about 2.3 compared to the
CA baseline.
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Figure 6: Average cost for the different RA schedul-
ing approaches for Terabyte-BM25, for varying k.

6.2.3 Varying the Query Size
In the next setup we increase the query size m for the

Terabyte setting by also taking terms from the query de-
scriptions into account, increasing the average query size to
m=8.3 with a maximum of m=15 terms, simulating query
expansion. Increasing the query dimensionality m yields
further performance gains of up to a factor of 2.3 over NRA
and a factor of 4 over CA (see Fig. 7). Note that NRA and
CA essentially scan the whole lists for the larger m; then
NRA has essentially the same costs as FullMerge, while CA
costs almost twice as much, due to its proportional number
of random accesses.

6.2.4 Varying the cR/cS Ratio
By tuning the cR/cS ratio we can easily simulate different

systems setups. Obviously, large ratios punish RA and make
NRA or even FullMerge more attractive. This is the case in
systems with high sequential throughput and relatively low
RA performance (e.g., cR/cS=10,000 for mostly raw disk
accesses with hardly any caching as opposed to cR/cS=100
for a DBMS with lower sequential throughput but higher
RA performance through caching). Fig. 8 shows that for
low values of cR/cS between 100 and 1,000, the combined
scheduling strategies provide the highest cost savings with a
factor of more than 2 for k=100. Even when only very few
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Figure 7: Average costs for Terabyte-BM25 of our
best algorithm (KSR-Last-Ben) compared to vari-
ous baselines, for shorter queries (left) and longer
queries (right), for k = 100.

RA are allowed, a clever scheduling can still make a decisive
difference and improve over NRA or FullMerge.
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6.3 Various Data Collections

6.3.1 IMDB
The largest index lists derived from the IMDB collection

with up to a length of 285,000 entries are generated by the
categorical attributes such as Genres and Years, whereas
the largest inverted lists from text contents only yield a few
thousand entries which are typically scanned through by the
first block. This makes the collection provide an interesting
mixture of short textual lists with quickly decreasing scores
and longer lists of categorical values with a low skew and
many score ties. Fig. 9 shows that the performance gains
here are a bit less than for Terabyte with a factor of 1.5 to
1.8 for 10 ≤ k ≤ 200. For this particular combination of
lists and mixture of score distributions, all top-k algorithms
outperform the FullMerge baseline by a large margin, for
wide ranges of k. Note that we are still able to stay very
close to the lower bound compared to CA and NRA.

6.3.2 HTTP Worldcup Log
The HTTP Worldcup log yields highly skewed score dis-

tributions with a few users having downloaded up to 750
MB per day, whereas the average traffic per user and day
lies between 50-100 KB. Fig. 10 shows that CA (which is
already close to optimal) becomes more competitive to our
best algorithm (KBA-Last-Ben here) with only a factor of
about 1.2 additional cost for k up to 100, because a few ran-
dom accesses on the currently best-scored items typically
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Figure 9: Average cost for IMDB of our best algo-
rithm compared to various baselines and a computed
lower bound, for varying k.

suffice to yield the final top-k results. KBA-Last-Ben almost
touches the lower bound for wide ranges of k. Note that for
these skewed distributions, the benefit-optimized Knapsack
KBA yields the better basis for SA scheduling. Also note
that here NRA ends up scanning the full lists already for
relatively small k.
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Figure 10: Average cost for the HTTP Worldcup
logs of our best algorithm compared to various base-
lines and a computed lower bound, for varying k.

6.4 Discussion of Experiments
For many real-word data sets and score distributions, Fa-

gin’s originally proposed CA algorithm already yields a tough
baseline. Except for extremely skewed distributions and
small values of k, NRA is out of the question, because there is
typically only a marginal difference between the final scores
of the kth and (k + 1)-ranked result which makes the best-
and worstscores converge very slowly and leads to a very late
threshold termination (Fig. 3). On the other extreme, TA
with its high overhead in random I/O is a viable choice only
for setups with an extremely low cR/cS ratio. Our exper-
iments demonstrate that our proposed algorithms perform
much better than CA which is considered the most versatile
variant of Fagin’s algorithm, especially for larger k.

A comparison with two artificially generated Uniform and
Zipf distributions for Terabyte reveals that for uniformly
distributed scores, the round-robin SA scheduling already
provides the best approach, whereas for more skewed distri-
butions (e.g., TF·IDF, Fig. 5, or Zipf) the Knapsack-based
optimizations take effect. Fortunately, the Knapsack imple-
mentations tend to converge exactly to such a round-robin-
like SA schedule in the Uniform case, hence they do not
degenerate, but also cannot improve much over the round-
robin baseline in this case. Generally, a few judiciously
scheduled RA have the potential to yield an order of magni-
tude higher cost savings than the best SA scheduling could.

485



For all setups, our algorithms that postpone random ac-
cesses to a late, more cost-beneficial phase and hence gather
more information about the intermediate top-k and candi-
date items outperform their algorithmic pendants that ea-
gerly trigger random accesses after each batch of sorted ac-
cesses (Fig. 6). For all values of k and cost ratios cR/cS ,
our probabilistic extensions outperform the baseline algo-
rithms by a large margin; moreover, they never degenerate
or lead to higher access costs than their non-probabilistic
counterparts. The simple Last-Probing approach with its
heuristic stopping criterion is already a very solid basis; the
cost-based Ben-Probing beats it merely by another 10% of
costs saved and in fact comes close to the lower bound for
many queries and collections (Fig. 3, 9, and 10). Note that
the iterative evaluation of the cost formulas in Sec. 4, 5.1,
and 5.2 is fairly light-weight so that the overhead of running
the cost models for all candidates after a batch of b SAs is
acceptable with regard to the costs saved in physical I/O.

7. CONCLUSIONS
This paper presents a comprehensive algorithmic frame-

work and extensive experimentation for various data collec-
tions and system setups to address the problem of index
access scheduling in top-k query processing. Unlike more
aggressive pruning strategies proposed in the literature [19,
24, 29] that provide approximate top-k results, the methods
we presented here are non-approximative and achieve major
runtime gains of factors up to 5 over existing state-of-the-
art approaches with no loss in result precision. Moreover,
we show that already the simpler methods of our framework,
coined the Last strategies, provide the largest contribution
to this improvement, and the probabilistic extensions get
very close to a lower bound for the optimum cost. Future
work could investigate the combination of our approach with
approximative pruning strategies; also the extension of our
index access scheduling framework for processing XML data
along the lines of [18, 23] would be very interesting.
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