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We define the class of conjunctive queries in relational data bases, and the generalized 
join operator on relations. The generalized join plays an important part in answering 
conjunctive queries, and it can be implemented using matrix multiplication. It is shown 
that while answering conjunctive queries is NP complete (general queries are PSPACE 
complete), one can find an implementation that is within a constant of optimal. The main 
lemma used to show this is that each conjunctive query has a unique minimal equivalent 
query (much like minimal finite automata). 

I. Example 

Given a relation ReD 2 (as a set of 

ordered pairs), [D]=n, consider the 

following question "do there exist ele- 

ments Xl,X2,X3,X4,X5,X 6 in D such that 

R(x 1,x 2)^R(x3,x 2) ̂ R(x5,x 2) AR(x I,x 4) 

AR(x3,x 4) AR(x5,X 4) ̂ R(x 1,x 6)^R(x3,x 6) 

AR (X5, X6) ?" 

This problem may be solved in the obvious 

way in time 0(n6). But it can also be 

answered in constant time. The answer is 

"true" iff R is a nonempty relation, for 

if R(a,b) is true, let x1=x3=x5=a and 

x2=x4=x6=b. This is an (albeit contrived) 

example of the dramatic improvements in 

speed possible when answering complex 

queries in a data base. 

2. Conjunctive Queries 

The relational model of data, intro- 

duced by Codd [C70] has gained wide popu- 

larity of late [C71a, C71b, C71c, H71, 

AAFS72, BCKH73, C74, D74, DHP74], and 

several data base systems have been imple- 

mented based on this approach, including 

PRTV[T76], SEQUEL [CB74], ZETA/TORUS 

[MST75], INGRES[HSW75], RISS [MM75], RDMS, 

Tymshare, Query-by-Example [Z75], etc. 

Definition. A relational data base 

B = (D, RI, R 2, ..., Rs) 

consists of a nonempty finite set D (the 

domain) and a finite number of relations 

RI,...,R s on D. We will sometimes super- 

script a relation to indicate its rank. 

Thus RPcD p . 
1 

Definition. A first order formula 

has the usual quantifiers V, 3, logical 

connectives v, ^, ~, variables x. (ranging 
1 

over the domain D), constants a. (taken 
1 

from a possible infinite set of constants 

A) and relational operators R i (equality 

is not allowed). 

Note: we are using the usual conven- 

tion of obfuscating names of relations in 

formulas, with those in a corresponding 

model (data base). Constants a. stand 
i 

for themselves in the model - this is a 

slight departure from tradition, and 

implies that distinct constants stand for 

distinct elements in the model. 

Definition. A first order qu#r~ 

is of the form 

(x1,x2,...,Xk).~(xl,...,x k) 

where # is a first-order formula which has 

no free variables other than those in 

Xl,...,x k. The rank of such a query is k. 

Note: variables cannot be repeated in the 

vector (Xl,...,x k) of the query 

(x i ..... Xk).~. 

Definition. A first order query Q 

and a data base B are said to be compatible 

if (i) each relation R i in Q is also in the 

data base B, and (ii) each constant a. in 
1 

Q is an element of the domain D of B. 

Definition. Given a query 

Q=(Xl,...,Xk).~(Xl,...,Xk) compatible 
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with a data base B with domain D, the 

result Res(Q,B) of Q in B is the set 

{(yl,...,yk) EDkl~(yl,...,yk ) is true in B}. 

Definition. Two queries QI,Q2 are 

said to be equivalent QI~Q2 if for every 

data base B compatible w---~-~ both QI' Q2' 

Res(QI,B)=Res(Q2,B). 

Lemma I. The relation ~ above is 

indeed an equivalence relation. 

Reflexivity and symmetry are immediate. 

For the proof of transitivity see the 

appendix. 

Definition. A boolean ~uer~ is of 

the form 

() .~() 

having no free variables. Its result is 

either "true" (the set containing the empty 

vector) or "false" (the empty set). 

Definition. We define a conjunctive 

query to be a first order query of the 

form 

(Xl,X2,...,Xk). ~Xk+lXk+2-..Xm.Al̂ A2A...̂ Ar 
where each A. is an atomic formula, i.e. it 

l 
has the form 

RP3 (Yl ..... Yp) 

where each y is either a variable Xq,q~m, 

or a constant a . 
q 

The following are examples of conjunc- 

tive queries: 

(i) "List all departments that sell pens 

and pencils". Given relation 

Sales (Department, Item) 

the query is 

(x). Sales (x,pen) 

^ Sales(x, pencil). 

(ii) "Give me all second level and higher 

managers in department K10. Given the 

following relation for employees: 

Emp (Name, Salary, Manager, 

Dept.) 

the query is 

(Xl). ZX2X3X4X5X6X7X 8. Emp(x2,x3,x4,x 5) 

^ Emp(x4,x6,xl,x 7) 

^ Emp(xl,x8,Xg,K10). 

(iii) "Are there machine shops x,y such that 

x supplies some part to y and con- 

versely". Given relations 

Output (Shop name, item) 

and Input (Shop name, item) 

the query is 

(). ~x,y,z,w. Input(x,z)AInput(y,w) 

^ Output(x,w) AOutput(y,z). 

Conjunctive queries include a large number 

of queries actually asked in practice, and 

even when a more general first order query 

is needed, parts of it are usually conjunc- 

tive. For example, if v's are allowed as 

well as ^'s in the formula, the query can be 

expressed as a union of conjunctive queries 

(after converting the formula into disjunc- 

tive normal form) which can then be answered 

separately. In fact, the language Query-by- 

Example [Z75] is based on a core of conjunc- 

tive queries, and it is this subpart that 

is learnt and used most readily by the 

so-called naive user [TG75]. 

3. Generalized join 

Definition. Z = {I,2,...,n}. 
n 

Codd [C71G] defined a relational 

algebra including among others, the 

following operations on relations which are 

redefined below with some modifications. 

(i) Cartesian product. Given vectors 

v=(xl,x2,...,x p) and w=(yl,Y2,...,yq), 

v.w denotes the concatenation of v,w 

v.w = (Xl,...,Xp,Yl,...,yq). 
The Cartesian product of relations 

P,Q is 

P×Q = {v.wlv~P ^ wcQ}. 

(ii) Intersection, Given relations P,Q 

of the same rank, their intersection is 

PnQ = {vlv~P ^ vEQ}. 

(iii) Permutation. Given a permutation 
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(iv) 

(v) 

f on Zp, the permutation of a p-ary 

relation P with respect to f is 

Permf(P) = { (Xl, .... Xp) I 

(xf(1),...Xf(p))eP} 

Pro~ection. The projection of a 

relation P of rank p, pal, is 

Proj(P) = { (x I ..... Xp_1) [ 

~Xp. (x I .... ,Xp)~P} 

Join. Given relations PP,Qq and 

r~p,q, the join of P,Q is 

Jr(P,Q) = {(Xl, .... Xp_r+q) I 

(Xl,...,Xp)~P ^ 

(Xp-r+1,...,Xp_r+q) eQ} 

In the special case that r=0, join is 

the same as Cartesian product, 

(vi) Restriction. Given r,s, 1~r<s ~ p, 

the restriction of a p-ary relation P 

is 

Restrictr,s(P) ={ (Xl,...,Xs_1,Xs+ I, 

.... Xp) I (x I .... ,Xs_ I ,x r, 

Xs+ I .... ,Xp)~P}. 

(vii) Selection. Given r~p, constant acA 

(the set of constants) p-ary relation 

P, the selection of P is 

Selectr,a(P) ={(Xl,...,Xr_1,a,Xr+ I, 

...,Xp)~P}. 

(viii) Union Given relations P,Q of the 

same rank, their union is 

PuQ = {vlvEp v v~Q} 

(ix) Difference. Given the relations 

P,Q of the same rank, the difference 

p-Q = {plpcp ^ p/Q} 

(x) Division. Given a p-ary relation P, 

pal, and domain D (implicit), the 

division of P is 

Div P = { (x I ..... Xp_1) I ~XpED, 

(Xl,...,Xp_1,Xp) EP} 

Definition . A relational expression 

is built up from the domain D, the given 

relations R i and using the relational 

operators (i) - (x) above. The compati- 

bility of relational expressions and data 

bases is as for first order queries. The 

result Res(E,B) of a relational expression 

E given a compatible data base B is the 

value of E where R.'s and D have the inter- 
l 

pretations as assigned by B. Two expres- 

sions (or an expression and a query) are 

equivalent (~) if these results are equal 

for every compatible data base. As before, 

is provably an equivalence relation. 

Codd [C71b], using a formalism different 

from ours (quantifiers in first order queries 

are over vectors, not elements; there is no 

domain D; and certain relations such as =, 

<, ~ are treated as special) showed that 

first order queries are essentially the 

same as relational expressions. 

Lemma 2. For each relational expres- 

sion there is an equivalent first order 

query, and vice versa. 

For the proof see the appendix. 

Lemma 3. For each relational expres- 

sion that uses no operation other than 

(i)-(vii) above, there is an equivalent 

conjunctive query, and vice versa. 

The proof is similar to that of 

Lemma 2, and is omitted. 

We now define a new operation called 

generalized join which is a canonical opera- 

tion for conjunctive queries in the sense 

that expressions using the generalized join 

(and selection, restriction) are equivalent 

to the conjunctive queries. 

Definition. Given relations P,Q 

having ranks p,q respectively, integer r, 

0~r~p+q, and injective maps f.:z +Z p p+q' 

such that Zrcf(Zp) ug(Zq), the g: Zq+Zp+q 

generalized join of P,Q with respect to 

r,f,g is defined as 
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Jr,f,g(P,Q)={ (Xl ..... Xr) I ~Xr+ I, .... 

Xp+q. 

(xf(1),xf(2), .... Xf(p))Ep 

A (Xg(1),Xg(2), .... Xg(q)) eQ} 

The subscripts r,f,g will be deleted when 

understood. 

The generalized join of two relations 

corresponds to taking the join of the two 

relations overlapping on specified columns, 

followed by the deletion of specified 

columns. For example, given p4, Q4, r=3, 

f(1)...f(4)=1,2,3,5, and g(1)...g(4)=2,3,4,6, 

J(P,Q)={(Xl,X2,Y2) I ~x3,x4,Y 4. 

P(Xl,X2,X3,X4) A Q(x2,Y2,x3,Y4) } 

(see Fig. I). A good way of computing 

this is by first projecting out the fourth 

columns of P,Q, and then joining the 

results: 

p, = { (Xl,X2,X3) I~x4.P(Xl,X2,X3,X4)} 

Q, = { (Yl,Y2,Y3) I~IY4.Q(Yl,Y2,Y3,Y 4) } 

J(P'Q) = J(P',Q') = { (Xl,X2,Y 2) I 

~x3-P' (Xl,X2,X3)AQ' (x2,Y2,X3)}. 

It may be noted that for each fixed x2, 

J(P,Q) can be obtained as the result of a 

matrix multiplication : 

Let J(P,Q)x 2 { (xl,Y 2) I (Xl,X2,Y 2) 

EJ (P,Q) } 

Px2 { (x 1,x 3) I p (x 1,x2,x 3) } 

and Qx2 = { (x3'Y2) I Q' (x2,Y2,X 3) } 

Then J(P'Q)x2 = P'x2 × Qx2 

where × is boolean matrix multiplication 

(treating P' Qx2 x2, as boolean matrices). 

Techniques as those in [$69, ADKF70, FM71] 

may be used for this purpose. 

Several authors [T74, R75, G75, NS76] 

have considered the problem of efficiently 

computing joins. What has perhaps not 

been explicitly stated is that techniques 

for boolean matrix multiplication can be 

used to advantage for computing joins (and 

generalized joins). Most of the published 

algorithms of which we are aware are similar 

to sparse matrix multiplication schemes. 

Let M(a,b,c) be the time required for 

computing the product of boolean matrices 

of size a×b and bxc. 

Lemma 4. Given relations PoD p, QcD q, 

r, f, g as in the definition of generalized 

joins, let n=IDl, 

s=I{i I Vj.g(j)~f (i) ~r} I 

t=l{i 1 ~j.f (i)=g(j) >r} I 

u=l{j I vi. f (i)~g(j) sr} I 

v=I{i I ~j.f(i)=g(j) ~r} I 

then Jr,f,g(P,Q) can be computed on a random 

access machine in time 

0(nP+nq+n r) + nV.M(nS,nt,nU). 

This lemma provides, in fact, an 

application for the multiplication of even 

highly nonsquare matrices. It may be noted 

that in the special case when s=t=u=v=0 

above, the running time can be reduced to 

0(I) provided our data structure for rela- 

tions is either a set of vectors, or a 

boolean array along with a bit to indicate 

whether or not it is nonempty. 

It is easy to see that relational 

operations (i)-(v) above are special cases 

of the generalized join. In fact, even 

selection would be a special case if we 

had allowed the construct {a} (where aeA 

is a constant) as an argument to the 

generalized join; and restriction would be 

a special case if we relaxed the condition 

that functions f,g in the definition be 

injective. 

We extend the definition of a relational 

expression to allow generalized joins as 

well as operations (i)-(x). 

Lemma 5. Every relational expression 

containing only generalized joins, restric- 

tion and selection is equivalent to some 

conjunctive query; and every conjunctive 

query is equivalent to some relational 

expression containing only generalized 

joins, restriction and selection, and in 
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which selection, restriction are never 

applied to a subexpression containing a 

generalized join. 

The proof is omitted. The second part 

of the lemma asserts that restriction, 

selection operations can be propagated 

to the bottom of the "expression-tree". 

4. Complexit[ Issues 

A query may require exponential time 

to answer if the desired output is large. 

However, even boolean queries are complex. 

Theorem 6. For data bases B and 

compatible boolean queries Q, 

{(Q,B) IResult of Q in B is true} 

is logspace complete in polynomial space. 

In fact, consider the simple data 

base B0=(D,R) where D={0,1}, R={0}. Then 

Theorem 6' For the data base B 0 and 

compatible boolean queries Q, 

{QIResult of Q in Bis true} 

is logspace complete, in polynomial space. 

Theorems 6,6' follow readily from the 

completeness of second order propositional 

calculus. 

Theorem 7. For data bases B and 

compatible conjunctive boolean queries Q, 

{ (B,Q) I Result of Q is true in B} 

is logspace complete in NP. 

Proof. The set is clearly in NP. Its 

completeness follows from,-say, the com- 

pleteness of the clique problem for graphs. 

D 

Thus boolean first-order queries are 

PSPACE-complete whereas conjunctive queries 

are NP-complete. Note that the data base 

itself is part of the input. Usually, 

however, queries are substantially shorter 

than the entire data base. It pays, in 

such cases, to optimize the query as much 

as possible, even if such optimization 

takes a long time with respect to the size 

of the query (but independent of the data 

base). 

5. Quer[ minimization 

The main theorem utilized for optimi- 

zation (Theorem 12) asserts that for every 

conjunctive query there is a unique (up to 

renaming of variables) minimal equivalent 

query, and it is obtained from the original 

query by "combining variables" This 

result is similar to the existence of 

minimal finite automata, which are obtained 

by "combining states" unlike the case 

for deterministic automata, however, mini- 

mizing a conjunctive query is NP-hard. 

In fact, even checking if two given queries 

are the same except for renaming of vari- 

ables, turns out to be logspace equivalent 

to graph isomorphism. 

We assume in the sequel, without loss 

of generality, that in conjunctive queries 

atomic formulas cannot be repeated. 

Definitions. Let Q=!Xl,...,Xk). 

Syl,...,yp.AIA...AAB be a conjunctive 

query. We define AQ={al,...,a q} to be 

the set of constants appearing in Q, 

XQ={Xl,...,Xk} , yQ={yl,...,yp}, we say 

~-is trivial if ~QQ=XQ=YQ={ }- The natural 

model MQ of Q is the following algebraic 

structure: the domain of MQ is 

DQ=XQUYQUAQ, and for every relation R r 

in Q, r~0, the corresponding relation in 

MQ has value {(Zl,...,Zr)~D~IR(Zl,''',Zr ) 

is an atomic formula in Q}. In addition, 

MQ has a finite set of relations taken 

from the disjoint sets {$I,S2 ,...}, 

{SalaeA , the set of constants}, which are 

also disjoint from names for relations 

in data bases. Si,S a stand for unary rela- 

tions, ~4Q contains S i, 1~i~k, having value 

{xi} , and also S a for each aeAQ, having 

value {a}. 

Definition. Given a conjunctive query 

Q as above, a homomorphism h:MQ+MQ, and a 

subset V, XQUAQCVCDQ, such that for all 

zeV, h(z) =z, and for all z, h(z) eV, 

then if Q' is a query such that MQ, = h(MQ), 

we say that Q' is a foldinq of Q. 
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Definition. If conjunctive queries 

QI,Q2 are the same except for renaming 

of variables and reordering of the atomic 

formulas, and quantified variables, we say 

that QI and Q2 are isomorphic. 

Note that QI,Q2 are isomorphic iff 

and are isomorphic. MQ I MQ 2 

Theorem 8. Isomorphism of conjunctive 

queries is logspace equivalent to isomor- 

phism of undirected graphs. 

This result, in a slightly different 

form, has also been shown by Kozen [K76]. 

Proof. Graph isomorphism is trivially 

reducible to the isomorphism of boolean 

conjunctive queries with a single binary 

relation R such that if R(x,y) is an atomic 

formula in the query, then so is R(y,x). 

For the other direction, we first reduce 

isomorphism of conjunctive queries to that 

for undirected node-labeled graphs. For 

query Q=(Xl,...,Xk).~, the corresponding 

labeled graph G is constructed as follows. 

The set of vertices of G includes 

(i) Xl,...,Xk, labeled 1,...,k respectively, 

(ii) each aieA Q labeled a i itself, (iii) 

each yieYQ labeled by the symbol y, 

(iv) for each atomic formula 

Ai=R(Zl,...,z r) in ,~ there are vertices 

Ai,j, 0~j~r of which Ai, 0 is labeled R, 

and Ai, j is labeled j' for ja1, with Ai, 0 

connected to each Ai,i,j~1,~ and Ai, j con- 

nected to the node z.. Isomorphism of 
3 

labeled graphs is easily reduced to iso- 

morphism of unlabeled graphs - the proof 

is omitted here. D 

The next three theorems assert that 

foldings are Church-Rosser upto isomor- 

phism, that they preserve equivalence of 

queries, and that they are hard to find in 

general. 

Theorem 9. If queries Q1,Q2 are 

foldings of Q, then there are isomorphic 

queries QI'' Q2' that are foldings of 

Q1,Q2 respectively. 

This follows from Theorems 10, 12 (whose 

proofs do not use this theorem). 

Theorem 10. If Q2 is a folding of 

QI' then QI~Q2 . 

Proof. If QI is trivial, so is the 

theorem. Otherwise let h be the homomor- 

phism folding Q1=(Xl,...,Xk).~1(Xl,...,Xk ) 

into Q2=(Xl,...,Xk).~2(Xl,...,Xk ) . Since 

~i+#2 (logical implication) is immediate 

from the construction, it suffices to show 

that #2+~i . Let ~i = ~yl,...,yp.AiA...AAr , 

Q2 = ~Yi '''''Yi "AI'A'''^A's" If for any 

compatible dataqbase, and any Zl,...,ZkeD, 

~2(Zl,...,Zk) is true, there exists a 

mapping f:{yil,...,y i }+D for which 

AI'A...AA s' i~ true. qBut extending f to 

g:{yl,...,yp}~D such that g(y)=f(h(y)), we 

see, from the definition of folding, that 

#1(Zl,...,Zk) is also true. 

Theorem 11. { (QI,Q2) IQ2 is a folding 

of QI } is NP complete. This also holds for 

boolean conjunctive queries. 

Proof. It is clearly in NP. To show 

it is complete, we reduce the graph coloring 

problem to it. Given a graph G and integer 

c, we obtain QI,Q2 such that Q2 is a folding 

of QI iff G can be c-colored. There is a 

single binary relation R. Let V be the set 

of vertices in G, and EcV 2 be the symmetric 

relation for the set of edges. Let C be a 

set of c variables disjoint from V. We 

will also use the elements of V for 

variables below: 

QI = ()" ~v. ~C. ((u~,v)~ER(U,V)) ^ 

(uA, wC R(u,v)) 
u~v 

= (). ~C. uAvccR(U,V)- D 
Q2 

u~v 

The main theorem of this section 

asserts that for every conjunctive query 

there is a minimal equivalent query, unique 

up to isomorphism, that can be obtained 

from the original query by folding. It 

should be noted that folding a query cannot 

increase the number of variables or atomic 

formulas in a query, and if the number of 
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variables remains unchanged, the new query 

is isomorphic to the original. 

Theorem 12. For every conjunctive 

query Q there is a folding Q0 such that 

every Q'~Q has a folding Q'0 isomorphic to 

Q0" 
We first prove a lemma. 

Lemma 13. For conjunctive queries 

QI' Q2' QI~Q2 iff there exist homomor- 

phisms RI:MQI+MQ2, and h 2-.MQ2+MQI 

Proof. If part. suppose hl,h 2 exist. 

Then given a compatible data base B with 

domain D, let (Zl,...,Zk)¢Res(Qi,B) be any 

element in the result of QI" Let the matrix 

of QI (the conjunct of atomic formulas) be 

satisfied by the mapping f:DQ ÷D which is 
I the identity function on AQI, and maps the 

i-th variable in XQ into z i. But then, 

the matrix of Q2 islals° satisfied by the 

mapping g:DQ +D, g=foh2, since h 2 is the 

identity function on AQ , and maps the i-th 
2 variable in XQ to the l-th variable in 

2 XQ (and hence g maps it into zi) , and 

IX~ I = IXQ I. Thus (z I ..... Zk) ERes(Q2,B), 

andlit foll~ws that Res (QI'B) cRes(Q2'B) . 

Similarly Res (Q2,B) cRes (QI'B) , hence 

QI~Q2 • 

Only-if part. Suppose QI~Q2 . It is 

trivial that IXQ I = IXQ I (since the 
I 2 matrix of a conjunctive query cannot be 

equivalent to "false"), and easy to see 

that AQ =AQ , and for all relations R, if 
I 2 

R appears in QI' it also appears in Q2" 

Consider the data base B which is the same 

as MQI (without the special relations Si, 

Sa). B is compatible with QI' Q2' and 

(x I .... ,Xk)~Res(Qi,B), where QI is of the 

form (Xl,...,Xk).¢1. Let Q2 be of the 

form (x1',...,Xk).¢ 2. Since QI~Q2 , 

(Xl,...,Xk) eRes(Q2,B), i.e. there is a 

mapping h2:D Q ÷DQ (DQ is also the 

domain of B) ~hatlis an identity over 

AQ , maps x' i into x i for all i, and such 

that if R(Zl,...,z r) is an atomic formula 

in Q2' (h2(Zl)) .... ,h2(Zr))eR in the model 

B. But h 2 is a homomorphism from MQI to MQ2. 

Similarly, h I exists. 0 

Definition. For any finite model M, 

if h is a homomorphism h:M+M such that for 

every homomorpism h':h(M)+h(M), 

l h'h(M) I = lh(M) I, we say h(M) is a minimal 

submodel of M. Clearly, minimal submodels 

exist for all finite models, any homomor- 

phism h':h(M)÷h(M) as above is an automor- 

phism, and h(M) is isomorphic to the sub- 

model induced from M on the domain of h(M). 

It follows readily that the submodel induced 

from M on the domain of h(M) is itself a 

minimal model. We will refer to this as a 

standard submodel. 

Proof of Theorem 12. Given queries 
! Q,Q', let Q0,Q0 be queries such that 

MQ ,MQ, are standard submodels of MQ,MQ, 

respectively. From the definitions, Q0,Q6 

are foldings of Q,Q' If Q~Q' then 

= ' by Theorem 10, and by lemma 13, there 
Q0-Q0 
exist homomorphisms hI:MQD~MQ~, h2:MQ,+M Q , 

0 
but since hlOh 2, h2oh I mu~t b~ automorphi~ms 

hl,h 2 must be isomorphisms. Then by the 

comment after the definition of isomorphism 

of queries, Q0,Q~ are isomorphic. 

6. Model and optimization 

Several optimization concepts have been 

considered for data bases. "Low-level" 

concepts such as choosing access paths 

[eg. CHS76] and deciding when to create a 

new index [eg. C75] are the most common. 

Several authors have also considered 

speeding up the computation of joins [T74, 

R75, G75]. Considering the statement of 

Theorem 6, however, it seems that "high- 

level" optimizations and heuristics could 

result in very large speedups for some 

queries. [SC75] and [NS76] consider 

changing the order of evaluation of a query 

represented as an expression using relations 

and operators (the latter spe~ifically con- 

siders conjunctive queries). These optimi- 

rations, however, are usually local, and 

the overall "structure" of the query 

remains unchanged. In our optimization 

we first change the query into a minimal 
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equivalent query, and then choose 

(globally) an order of computation. The 

result is an implementation within a con- 

stant of optimal in our model, but which 

we believe would also be good for practical 

implementations. Computing such an optimal 

implementation takes time exponential in 

the size of the query, but is independent 

of the data base. One also has the option 

of ameliorating a query (along the 

suggested lines) for some given period of 

time rather than optimizing it completely. 

6.1 The Model 

Our model of computation is a straight- 

line program with variables taking relations 

as values. Statements allowed are (X,Y,Z 

are variables): 

(a) X÷R (R is a given relation) 

(b) X÷D (D is the domain) 

(c) X÷Permf(Y) (a permutation) 

(d) X÷Restrict (Y) (a restriction) 
r,s 

(e) X÷Selectr,a(Y) ("a" is a constant, 

ral) 

(f) X÷Jr,f,g(Y,Z) (a generalized join). 

The output is the value of a designated 

variable, say X0, at the end of the computa- 

tion. Further we require that there be no 

"type-checking" errors in the program - 

thus a variable cannot be used before it is 

defined, X 0 must be defined in the program, 

and r,s,f,g, in (c)-(f) above must satisfy 

the restrictions in the definitions of the 

corresponding operations. We say a program 

P is equivalent to a conjunctive query Q 

(P~Q) if its output (result) equals the 

result of the query for every data base. 

The running time for the program is 

the sum of the running times for the 

individual statements. For a data base 

with domain D, [Dl=n, the running times are 

considered as follows. For statements (a)- 

(e) the running time is zero. For the 

generalized join operation (f), let 

p,q,r,s,t,u,v be as in Lemma 4. Then the 

running time is 

n p + n q + n r + n s+t+u+v 

The total running time of a program P on 

a data base B is denoted Time (P,B). 

Definition. Given a conjunctive query Q, 

a program P is said to be near-optimal 

for Q if P~Q and there exists a constant 

c such that for every program P'~Q and every 

compatible data base B, Time (P,B)~ 

c.Time(P',B). 

Discussion of the Model 

Statements (a)-(e) are considered to take 

zero time. These can, however, be imple- 

mented in time independent of n (the~size 

of the domain), by using an array repre- 

sentation for arrays, and changing the 

access functions when an operator is applied. 

One could change the model by specifying 

instead, that these operations take con- 

stant time, or time n for (b), and n p for 

(a), (c), (d), (e), where R,Y have rank 

p. Either way, the results below apply 

essentially without change. The running 

time for the generalized join operation is 

simply the sums of the lengths of the 

inputs and output, in addition to the time 

required for the trivial algorithm for 

boolean matrix multiplication. One could 

modify the model in the special case when 

s=t=u=v=0 (see comment following lemma 4), 

but again the results below apply with 

little modification. 

The model of computation also does not 

specifically allow the operations of 

cartesian product, intersection or projec- 

tion, as these are obtainable from the 

generalized join operation. 

6.2 Optimization 

The running time of any program is a 

polynomial in n (the size of the domain) 

with natural numbers as coefficients. The 

problem of finding a near optimal program 

for a given query is of finding one whose 

polynomial has minimal degree (the degree 

of the polynomial "zero" is -I by definition). 

It suffices, therefore, to consider only 

expressions using operations (a)-(f) 
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(expressions correspond to programs in which 

every program variable is used exactly once 

each on the left and on the right hand side 

of an assignment, except the output varia- 

ble X 0 which is used only once on the left 

hand side). Expressions suffice because 

for every program there is an equivalent 

expression whose running time is a poly- 

nomial of no higher degree. 

Definition. For a program (or expres- 

sion) P, if T(n) is its running time, then 

T(n) is a polynomial, and we denote its 

degree by Deg(P). 

Definition. An expression using 

operators (a)-(f) of Sec. 6.1 is said to 

have property • if it is of the form 

Perm(ExD k) 

(where we are using × instead of join for 

clarity) in which E is an expression con- 

taining no Perm or D, and in which no sub- 

expression of a selection or restriction 

contains a join. 

Lemma I~. For each program P there is an 

expression E having property • such that 

E~P and Deg(E)~Deg(P). 

Outline of proof. Represent the program P 

as a directed acyclic graph, expand it out 

into an expression (i.e. a tree), delete 

those occurrences of the domain D which are 

"joined" with any other "column" of a rela- 

tion, separate out those occurrences of D 

that are preserved to the output, and pro- 

pagate restrictions, selections through 

joins. D 

expression E=Perm(E1×Dk) having For each 

property ~ we associate a conjunctive query 

Q (we write Q~E) such that Q is equivalent 

to E, and is constructed from E as in the 

proof of theorem 2 part I (there is a one- 

one correspondence between the occurrences 

of atomic formulas in Q and relations in 

El). We extend the relation ~ such that 

if Q1,Q2 are isomorphic and QI~E then also 

Q2~E. 

Lemma 15. Given conjunctive queries 

QI,Q2, and expression E I such that Q2 is 

a folding of QI' and QI~EI , then there is 

an expression E 2 such that Q2~E2 and for 

every compatible data base B, 

Time (Q2,B)~Time (QI'B) . 

Proof is by constructing E 2 from E I 

by deleting those occurrences of relations 

in E I that correspond to atomic formulas 

in Q1 which do not occur in Q2" 

We now outline the algorithm for con- 

structing a near optimal program for a given 

conjunctive query. 

Al~orith ~. Given a conjunctive query Q, 

find the minimal query QI~Q; then for all 

expressions E, QI~E, choose the one whose 

running time is a polynomial of minimal 

degree. The output is a program that 

implements this expression. 

This algorithm runs in time exponential 

in the length of the input query (but 

independent of the data base). 

Theorem 16. The above algorithm computes 

a near-optimal program for the given query. 

The proof follows from Theorem 12 and 

Lemmas 14, 15. 

The algorithm can be further speeded up 

by observing that the expression E can be 

further restricted such that columns of 

relations are projected out at the earliest 

possible moment, i.e. a column is projected 

out in a join unless it subsequently has to 

be joined with some other column. This 

reduces the second part of the algorithm 

to finding the best order of parenthesizing 

the matrix of the conjunctive query. 

Example. Given query 

(x).~ u,v,w,y,z. R(x,v,w) AR(X,Z,W)^S(u,w) 

AS(u,v) AS(y,w)AS(y,v)AS(y,z) . 

The minimal equivalent query is 

(x) .Z u,v,w. R(x,v,W A(s(u,w) AS(u,v)) 

which can be answered in time 3n3+4n2+n by 

computing 

x÷{ (v,w) i~u.S (u,w) AS (U,V) } 

in time 3n2+n 3, and then the output 

X0÷{xI~v,w. R(X,V,W) AT(V,W) } 

in time n+n 2+2n3. 
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7. Conclusions 

In this paper we introduce the notion 

of conjunctive queries and define the 

operation of "folding" such a query. It 

is shown that every conjunctive query has 

a unique (upto isomorphism) minimal 

equivalent query which can be determined 

by folding. Since foldings are Church- 

Rosser, it does not matter in what order 

one finds foldings. This allows the 

possibility of finding smaller queries 

equivalent to a given one without having 

to obtain the minimal. The minimal query 

can, however, be used to determine a pro- 

gram whose running time is within a con- 

stant of optimal for every data base (in 

the model of computation which allows 

algebraic operations on relations). 
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Appendix 

Proof of Lemma I. To show that 

equivalence of queries is transitive, 

let QI~Q2 and Q2~Q3 . Let B be any data 

base with domain D, compatible with QI' 

Q3" Let {a I .... ,a k} and {RI,...,R S} be the 

sets of constants and relations in Q2 

but not in B. Add these to the data base 

B to obtain data base B' as follows. The 

domain D' of B' is D u {al,...,ak}. Let 

a be any fixed element of D. Extend the 

relations in B to B' as follows. If R is 

an r-ary relation in B, the corresponding 

relation R' in B' is defined as follows: 

for any set SeD s, let 

E(S) = { (x I .... 'Xs) I ~ (Yl ..... Ys )ES" 

Viss. if Yi=a then xiE{a,al,...,a k} 

else xi=Yi}. 

Then R'=E(R). Also let RI,...,R s be empty 

in B'. For any first order formula 

~(x I ..... Xm) with free variables 

(Xl, ... ,Xm) , let 

B(%) = { (Yl .... 'Ym )EDmIB~ (Yl .... 'Ym ) }' 

and B'(~) = {(Yl .... 'Ym )cD'mlB'~ ~(Yl .... ' 

Ym ) }- 
We show by induction on formulas, that 

B' (~)=E(B(~)) for formulas compatible 

with B. It is clearly true for atomic 

formulas R(Yl,...,Y r) where each Yi is a 

constant or a variable (note: our formulas 

have no equality or functions). Likewise, 

it is not difficult to check that if this 

property holds for ~I' ~2' it also holds 

for #i^~2 , ~IV~2 , ~ ~I' Vx ~I' and for 

~x #I (note: quantifiers for B range 

over D, those for B' range over D'). Hence, 

Res(QI,B') = E(Res(QI,B)) , and likewise 

for Q3" But B' is compatible with each of 

Q1,Q2,Q3 , and hence by hypothesis, 

E(Res(QI,B)) = Res(QI,B') = Res(Q2,B') = 

Res(Q3,B, ) = E(Res(Q3,B)). But the 

function E is one-one. Hence Res(QI,B) = 

Res(Q3,B ) . This completes the proof. D 

It may be noted that if equality were 

allowed in first order formulas, then 
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would no longer be transitive in our 

formalism (where constants in formulas 

stand for themselves in the interpretation). 

For consider the boolean queries 

QI=().v x.x=a. Q2=(). v x.x=a ^ b=b, Q3=(). 

false. Then QI~Q2~Q3 , but QI/Q3 for they 

differ on the data base with the single 

element domain D={a}. 

This merely points to the pitfalls 

• that may be encountered when formalizing 

data bases in terms of logic. The alter- 

native would be to allow constants to be 

mapped into arbitrary elements of the 

domain by the data base (as in conventional 

logic). However, as it is usual practice 

in data base work that constants stand for 

themselves, one may preface queries by a 

conjunct asserting that all constants 

appearing in the query are unequal. 

Proof of Lemma 2. Part I. We show 

by induction on expressions that for each 

relational expression there is an equiva- 

lent first order query. For expressions 

D, R r, the queries are (x). True, 

(Xl,...,Xr).R(Xl,...,Xr) respectively. 

For the sequel, let (xl,...,Xp).~p(xl,...,Xp) 

and (yl,...,yq).~Q(yl, .... yq) be queries 

equivalent to expressions P,Q. we will 

implicitly allow renaming variables where 

appropriate. 

(i) The query equivalent to P×Q is 

(Xl,''',Xp,Yl,''',Yq)" ~pA~Q 

(ii), (viii), (ix). For PnQ, PuQ, P-Q, 

the queries are, respectively 

(Xl,...,Xp). ~p(Xl,...,Xp)A~Q(Xl,...,Xp), 

(Xl,...,Xp). ~p(xl,...,Xp)V~Q(Xl,...,Xp), 

and 

(X I ..... Xp). ~p(X I .... ,Xp)A~Q(X I ..... Xp). 

(iii), (iv) For Permf(P), Proj (P), the 

queries are 

(X I ..... Xp). ~p(Xf(1) ..... Xf(p)), 

and 

(x I ..... Xp_1). 3Xp.~p(X I .... ,Xp) 

(v), (vi), (vii), (X). These follow 

likewise from their definitions. 

Part 2. We show by induction on formulas 

that for every first order query, there is 

an equivalent relational expression. Let 

the query Q be (Xl,...,Xq). ~ and let 

{Xl,...,Xq,...,x s} be the set of free and 

bound variables used in ~ (after renaming 

all bound variables such that they are all 

distinct, and distinct from Xl,...,Xq) • 

For a subformula ~' of ~, we construct an 

expression equivalent to (x~ ,x~ ,...).~', 
~I ±~ 

where x i ,x i ,... are the variabIes not 

bound in1~'. 2 The construction is sketched 

below. 

(i) Let R(y I .... ,yr ) be an atomic formula 

(where each Yi is a variable xj or a con- 

stant) with t (not necessarily distinct) 

constants and u distinct variables. One 

can construct an expression by the applica- 

tion of t selections, r-t-u restrictions, 

and one permutation to RxD s-u, that is 

equivalent to (Xl,...,Xs).R(Y I .... ,Yr ). 

(ii) Let EI,E 2 be the expressions for 

~1,~2, one can construct the expressions 

for ~1^~2 , ~iv~2 , ~ ~I by permutations 

and projections on EI,E 2 followed by inter- 

section, union, and difference (from D k) 

respectively. Likewise the expressions 

for ~x ~I' Vx~1 are obtained from E I by 

permutation, and projection, division 

respectively. D 
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