Community Search and Cocktail Party Planning

Mauro Sozio and Aris Gionis. The community-search problem and how to plan a successful cocktail party.
KDD 2010.
Planning a cocktail party
Planning a cocktail party
Recipe for a successful party:

- Participants should be “close” to the organizers (e.g., a friend of a friend).
- Everybody should know sufficiently many in the party (on an average?).
- The graph should be connected.
- The number of participants should not be too small but...
- …not too large either!!!
- …
- social distance not too large.

Not an easy task…
The problem: find the community that a given set of users belongs to.

Authors’ formalization: Given a graph and a set of nodes, find a densely connected subgraph containing the set of users given in input.
The problem: find the community that a given set of users belongs to.

Authors’ formalization: Given a graph and a set of nodes, find a densely connected subgraph containing the set of users given in input.

Other applications: Tag suggestions, biological data.
Tag suggestion in Flickr

Tags
- Dolomites
- Lake

Sugg.
- Mountains
- Nature
- Landscape
Tag suggestions

- Graph of tags: tags t_i and t_j connected if they co-occur in many photos.
- Given a new photo (or any resource) and initial set of tags, recommend new tags to add.
- Tags well connected with one another and the initial set of tags — good candidates.
Protein interactions
Protein interactions
Given: Protein-protein interaction network.
A set of proteins that regulate a gene that a biologist wishes to study.
what other proteins should she study?
 those contained in a compact dense subgraph containing the original proteins.
Related Work
Large body of work on finding communities in social networks:

- Agarwal and Kempe (European Physics Journal, 2008)
- S. White and P. Smyth. (SDM, 2005)
- Y. Dourisboure et al. (WWW, 2007)
- D. Gibson, R. Kumar, and A. Tomkins (VLDB, 2005)

This paper: Query-dependent variant of the problem.

Other related work:

- Lappas et al. (KDD, 2009): team formation.
- FOCS, ICALP, APPROX
Problem Definition
Abstract problem definition

- Input: Undirected graph $G = (V,E)$; a query set of nodes $Q \subseteq V$ and a “goodness” function f that says how good an answer is.
- Find a connected subgraph $H = (V_H, E_H)$ s.t.:
 - $Q \subseteq V_H$ and
 - $f(H)$ is the maximum possible among all connected subgraphs H containing Q.

What are some good choices for f?
Want f to capture density.
Some choices of density measure

\[n \equiv \# \text{nodes}; \quad m \equiv \# \text{edges}. \text{Only undirected graphs in this paper.} \]

Good properties: small distance, large density, good connectedness.

Two definitions of density of a graph

- \(d(G) = \# \text{of edges in } G / \text{max } \# \text{possible} \)

 Formally,
 \[m / \left[n(n - 1)/2 \right] \]

- \(D(G) = \# \text{of edges in } G / \# \text{of vertices in } G \)

 Formally
 \[m \quad \text{_<— average degree}/2. \]
Claim 1: Computing a subgraph H with maximum density $d(H)$ is NP-hard.

Proof Sketch: By reduction from Max Clique.
Fact 2: Computing a subgraph H with maximum density \(D(H) \) can be done in polynomial time but avg. degree based f can lead to counterintuitive results.

\[
D_Q(H) := \max_{v \in V_H} \left(\sum_{q \in Q} d^2(v, q) \right) \leq \Delta
\]

Free riders problem.

=> choose \textit{minimum} degree instead.

Do any problems persist?

Additionally impose a bound on max. distance of nodes in H to query nodes.
Final problem definition

- Input: An undirected graph $G = (V, E)$; query nodes $Q \subseteq V$; distance bound Δ.
- Find a connected subgraph $H = (V_H, E_H)$ s.t.:
 - $Q \subseteq V_H$;
 - $D_Q(H) \leq \Delta$;
 - and $f(H) := \text{min. degree of } H, \text{ is maximized.}$

Good news: The optimal solution can be found in poly time!
The algorithms
A greedy algorithm

1. Let $G_0 = G$.
2. At each step t if there is a node v in G_{t-1} violating the distance constraint, then remove v and all its edges;
3. otherwise remove the node with minimum degree in G_{t-1}.
4. Let G_t the graph so obtained, upon saturation.
5. Among all the graphs G_0, G_1, \ldots, G_T constructed during the execution of the algorithm return the graph G_i
 - containing the query nodes;
 - satisfying the distance constraint;
 - with maximum minimum degree.

- No need to iterate once Q is no longer contained or connected.
A greedy algorithm

1. Let \(G_0 = G \).
2. At each step \(t \) if there is a node \(v \) in \(G_{t-1} \) violating the distance constraint, then remove \(v \) and all its edges;
3. otherwise remove the node with minimum degree in \(G_{t-1} \).
4. Let \(G_t \) the graph so obtained, upon saturation.
5. Among all the graphs \(G_0, G_1, \ldots, G_T \) constructed during the execution of the algorithm return the graph \(G_i \)
 - containing the query nodes;
 - satisfying the distance constraint;
 - with maximum minimum degree.

Theorem: The greedy algorithm computes an optimum solution for the community-search problem.
Optimality of Greedy (w/o distance constraint)

- Let $G = G_0, G_1, \ldots, G_T$ be the series of graphs obtained from G by removing the min. deg. node and its incident edges, until that min. deg. node is in Q or its removal disconnects Q.

- Let G^* be an optimal solution.

- Let t be the smallest number for which the min. deg. node v in G_t, is in G^*.

- \[G^* \subseteq G_t' \subseteq G_t, \text{ where } G_t' \text{ is a connected component of } G_t. \]

- $\deg_{G^*}(v) \leq \deg_{G_t'}(v)$.

- v is the min. deg. node in G_t and hence of G_t', so G_t' is an optimal solution! QED

- w/o distance constraint, can be implemented in $O(n+m)$ time (see paper).
Optimality — general case

- Paper claims same logic holds for any monotone constraints.
- However, there are some issues to be resolved there.
- Here is the essence of monotonicity: $G=(V,E)$ and $H=(V',E')$, an induced subgraph. f maps graphs to reals is monotone if for every graph G and induced subgraph H,
 $$f(H) \leq f(G).$$
- Or f could be monotone non-decreasing instead:
 $$f(H) \geq f(G).$$
- When f is boolean, you get a property (or constraint) instead.

Examples:
- $D_Q(.) \leq \Delta$, i.e, the max. aggregate distance of any node to the query nodes is bounded, is a monotone constraint.
- If G satisfies it, so will any induced subgraph containing Q.
- The distance bound constraint remains monotone if distances to query nodes aggregated using max instead.
Optimality in the general case

- \(f(G) = 1 \) iff \(G \) contains \(Q \) and is connected, is monotone. If \(G \) fails, so will any induced subgraph.

- Unfort., bound on min. degree (Ex. 2 in paper) is **not** monotone.

- Requiring nodes of a graph to cover a given set of skills (a la Team Formation paper) is monotone.

- See paper for similar def. of node-monotone, a finer grained notion of monotonicity.

- **General Cocktail Party Problem:** Given query nodes \(Q \) and graph \(G \), you want to find a connected subgraph \(H \) containing \(Q \) that maximizes \(f(\cdot) \), among all such subgraphs which satisfy given monotone properties: say \(\Pi_1, \ldots, \Pi_k \).
 - paper claims an obvious generalization of greedy for this setting is optimal.
The size of the community shouldn’t be too large:

- If we are to organize a party we might not have place for 1M people.
- Humans should be able to analyze the result.

Bad news: Adding an upper bound on the number of nodes makes the problem NP-hard even w/o a distance constraint (reduction from Steiner Tree) but...

Theorem: Let H and H' be two graphs obtained by executing the greedy algorithm with distance constraint Δ and Δ', respectively (the other input parameters are the same).

Then, $\Delta' \leq \Delta$ implies $|V(H')| \leq |V(H)|$.
Intuition: Bound the size of the graph by making the distance constraint tighter.

GreedyDist:
- solve the problem w/o the cardinality constraint on #nodes.
- if size <= bound, report;
- else successively try with tighter distance constraints (can use binary search!).
 - report any small (i.e., size <= bound) connected subgraph containing Q, if found.
 - else report smallest connected subgraph found that contains Q.
Intuition: Nodes that are far away from the query nodes are most probably not related to them.

GreedyFast:

- Let k be an upperbound on the number of vertices and let Δ be a distance constraint (i.e., bound).
- Preprocessing: consider only the k' closest nodes to the query nodes, where k' is the smallest number that ensures the resulting graph is connected and contains k nodes.
- Run Greedy with the subgraph induced by these query nodes, as input
Evaluation
Evaluation

Algorithms evaluated on three different datasets:
- DBLP (226k nodes and 1.4M edges);
- Flickr tag graph (38k nodes and 1.3M edges);
- Bio data (16K nodes and 491k nodes).

Queries are generated randomly.

We vary
- Number of query nodes;
- Distance between query nodes;
- Upper bound on the number of nodes.

We measure
- Minimum degree and average degree;
- Size of the output graph;
- Running time.
We consider an approach where at each step we add one node (in contrast with all previous approaches).

A pseudocode:

1. Connect the query nodes: by means of a Steiner Tree algo. (we use a 2-approximation algorithm for this problem);
2. Let G_t be the graph at step t;
3. Add the node v with maximum degree in $G_t \cup v$;
 1. Break ties using distance to Q and further ties arbitrarily.
4. Among all the graph G_0, \ldots, G_T constructed, return the one with maximum minimum degree.
Minimum degree vs Size (Flickr)
Average deg. vs. Size (Flickr)
Running time vs Size (Flickr)
Generalization to monotone functions
Generalized Community-Search Problem

Input:
- An undirected graph $G=(V,E)$;
- A set Q of query nodes;
- Integer parameters k,t;
- A set of skills T_v associated to every node v;
- A required set of skills \overline{T}.

Goal: Find an induced subgraph H of G s.t.
- G is connected and contains Q;
- The number of vertices of H is $\geq t$;
- The set of skills of H contains \overline{T} $\left(\bigcup_{v \in H} T_v \supseteq \overline{T} \right)$;
- Any node is at distance at most k from the query nodes;
- The minimum degree is maximized.
Generalized Community-Search Problem

Input:
- An undirected graph $G=(V,E)$;
- A set Q of query nodes;
- Integer parameters k,t;
- A set of skills T_v associated to every node v;
- A required set of skills \overline{T}.

Goal: Find an induced subgraph H of G s.t.
- G is connected and contains Q;
- The number of vertices of H is $\geq t$;
- The set of skills of H contains $\overline{T} \left(\cup_{v \in H} T_v \supseteq \overline{T} \right)$;
- Any node is at distance at most k from the query nodes;
- The minimum degree is maximized.

The last one is not monotone but poses no problem. Skill containment — how do you incorporate that in a node elimination paradigm?
Monotone function: \(f(H) \leq f(G) \), if \(H \) is a subgraph of \(G \).

Theorem: There is an **optimum greedy** algorithm for the problem when all constraints are monotone functions.

Running time: Depends on the time to evaluate the function \(f_1, \ldots, f_k \), formally \(O(m + \sum n \cdot T_i) \) where \(T_i \) is the time to evaluate the monotone function \(f_i \).
Conclusions
Conclusions and Future Work

Contributions:

- Proposed a novel combinatorial approach for finding the community of a given set of users in input.
- Distance constraints proved to be effective in limiting the size of the output graph.
- Defined a class of functions that can be optimized efficiently.

Questions:

- Are there other useful monotone functions?
- Can we find all communities of a given set of users?
- Community search via Map-Reduce?
- What about other dense subgraphs such as k-core, quasi-clique, k-plex, containing given query nodes?