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Real-time numerical solution of Webster’s equation
on a non-uniform grid

K. van den Doel and U.M. Ascher

Abstract— We present a numerical scheme for the real-time
solution of the discretized one dimensional linearized acoustics
equation (Webster’s equation) augmented with dissipative terms,
in a tube with a spatially and temporally varying cross section.
The resulting algorithm produces similar results as the Kelly-
Lochbaum model but has several advantages over it: the tube
length can change continuously, the area function can change in
time and can be governed by a dynamical model itself, the scheme
is of second order accuracy (which can be interpreted as using
conical elements) and the spatial and temporal discretization
does not need to be uniform. We show how the model can be
used to build a realistic real-time audio synthesis method for
articulatory speech synthesis by coupling it to a lip radiation
model, a dynamical wall model, and a glottal excitation model.

I. INTRODUCTION

A widely used physical model for sound propagation in
ducts such as occurring in the vocal tract and in wind instru-
ments is a one-dimensional tube described by an area function.
Excitations are placed in the tube and their propagation is
approximated by a digital ladder (or waveguide) filter. The
celebrated Kelly-Lochbaum (KL) model [1] approximates the
tube by a set of cylindrical elements with length Le = c/Fs,
where c is the velocity of sound and Fs is the audio sampling
rate. The KL model leads to a very efficient implementation
but has some limitations, most of which have been addressed
in some form in the literature.

First, the length of the tube is quantized and cannot be
changed smoothly. This prohibits the synthesis of vocal sounds
which involve lip protrusion or lowering the larynx, or instru-
ments such as a slide trumpet. Several solutions have been
proposed to alleviate this difficulty. One approach [2] is to
change the length by changing the audio sampling rate. This
approach requires the use of sample rate converting filters
as described in detail in [3]. Another solution [4], [5] is to
replace at least one of the segments by an all-pass fractional
length delay filter. As the tube changes in length, sections
have to be added and removed. This approach has been refined
and generalized in [6], [7]. A related approach [8] specific to
speech is to attach variable length models of the larynx and
lip sections to the KL model.

Second, a piecewise linear approximation for the mostly
smoothly varying area function using conical elements seems
more logical than the piecewise constant approximation with
cylindrical elements. Higher order conical elements have been
proposed in [6], [9].
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Finally, the KL model does not allow a non-uniform spatial
discretization. If the area function changes rapidly in some
regions and slowly in others then a non-uniform grid is natural
for cheap accurate simulation.

In this paper we present a new method for the real-time nu-
merical simulation of wave propagation in a 1D acoustical tube
that solves all these problems simultaneously. We perform a
real-time numerical integration of the 1D acoustics equation in
the tube (the linearized Navier-Stokes equation, closely related
to Webster’s equation), which is a partial differential equation
(PDE) in time and space. A finite volume discretization of
the PDE is employed, and the resulting system is numerically
integrated in time using a generalization of the leap-frog
method. Large damping can occur at constrictions [10], and
this introduces stiffness into the system; however, an implicit
treatment of the damping terms avoids potential stability
problems. The resulting algorithm is functionally equivalent to
a KL filter, yet does not suffer from the limitations mentioned
above. In addition, we believe the approach to be closer to the
physics of the tube and as such more easily extendable.

The computational cost is typically about 2 times higher
than the KL method for comparable applications, but still quite
small for applications such as speech synthesis or musical
instrument modeling, yielding an efficient real-time audio
synthesis algorithm.

Our approach is similar in spirit to the method proposed
in [11], [12], though our numerical integration method is quite
different.

The remainder of this paper is organized as follows. In
Section II we discuss the 1D acoustics equations in a tube
of varying cross section. In Section III we present a scheme
for the discretization of the classical 1D wave equation in
first order form and show that it is equivalent to the leap-
frog scheme. In Section IV we generalize this discretization
to the acoustics equation in a tube of varying cross-section. In
Section V we use the model to construct a relatively complete
model of the vocal tract for articulatory speech synthesis.
In Section VI we present numerical results for applying the
scheme to the modeling of vowels generated by specific vocal
tract shapes. Conclusions are presented in Section VII.

II. THE ACOUSTICS EQUATION

Let us consider a tube of length L and area function A(x, t)
with 0 ≤ x ≤ L along the axis of the tube. We assume that
the physical quantities of pressure p̂, air density ρ̂, and air
velocity û depend only on x and t. We introduce the scaled
variables p(x, t) (dimensionless) and u(x, t) (dimension of
area) for pressure or density deviation and volume-velocity,
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by p = ρ̂/ρ0 − 1, u = Aû/c, where ρ0 is the mass density of
air and c is the speed of sound. The linear lossless acoustics
of the tube is governed by the equation of continuity and the
linearized Navier-Stokes equation, see for example [13], [12],
[14]

(u/A)t + cpx = 0, (1a)
(Ap)t + cux = −At, (1b)

where the subscripts t and x denote partial derivatives. We
shall assume that At is small and hence products of At with
u or p can be dropped (as the variables u and p are also
considered small).

While Eq. 1 is on solid theoretical footing, realistic models
must also account for losses. The latter are much harder to
model within a one dimensional model as essentially higher
dimensional phenomena such as boundary layer effects play
an important role here. Since the losses in many applications
are frequency dependent [14], we add a damping term at the
right hand side of (1a) of the form

−d(A)u + D(A)uxx.

For monochromatic waves of the form eiω(t−x/c) this results
in a more flexible frequency dependent damping term of the
form

−[d(A) + D(A)ω2/c2]u. (2)

We are therefore led to consider the PDE

(u/A)t + cpx = −d(A)u + D(A)uxx, (3a)
(Ap)t + cux = −At. (3b)

Note that near constrictions in the tract the damping coeffi-
cients can become large, whereas in other areas they may be
small. This may give the model different properties in different
spatial regions. For ease of presentation we shall consider the
boundary conditions (BC)

u(0, t) = ug(t), p(L, t) = 0, (3c)

where ug is a prescribed volume velocity source. Coupling to
a dynamical excitation model such as the two mass Flanagan-
Ishizaka model [10] and a radiation model can be easily
achieved by modifying these boundary conditions, as we show
explicitly in Section V. Note that A(x, t) could itself be
described by a dynamical model, resulting in a dynamical wall
model; see Section V.

The system (3) can be written as a second order PDE for a
potential φ by writing

p =
φx

A
− 1, u = −1

c
φt, (4)

which leads to(
φt

A

)
t

− c2

(
φx

A

)
x

= −d(A)φt + D(A)φtxx. (5)

This reduces to Webster’s equation if A is independent of time
and if there is no damping. Note that the variable φ is not the
usual acoustic potential; we introduce it here only to show the
connection to Webster’s equation.

III. THE CLASSICAL WAVE EQUATION

Let us first consider the classical wave equation, i.e. A = 1
in (1). We now want to discretize (1) using a finite volume
approach and short differences so that the well-known leap-
frog scheme [15], [16] is obtained for (5) upon suitable
elimination.

Consider a grid in space, x0 < x1 < . . . < xJ < xJ+1,
with ∆xj+1/2 = xj+1 − xj , and likewise a grid in time 0 =
t0 < t1 < . . ., with ∆tn+1/2 = tn+1 − tn. Let also xj+1/2 =
(xj + xj+1)/2, ∆xj = xj+1/2 − xj−1/2 and likewise for
tn+1/2 and ∆tn; see Fig. 1. We can integrate (1a) on a grid
volume

0 =
1

∆tn∆xj

∫ tn+1/2

tn−1/2

∫ xj+1/2

xj−1/2

(ut + cpx)dtdx

=
u

n+1/2
j − u

n−1/2
j

∆tn
+ c

pn
j+1/2 − pn

j−1/2

∆xj
. (6a)

This formula is exact by the Gauss divergence theorem if we
interpret u

n+1/2
j etc. as line integrals, e.g.

u
n+1/2
j =

1
∆xj

∫ xj+1/2

xj−1/2

u(x, tn+1/2)dx,

which is a second order approximation for the value at edge
midpoint (xj , tn+1/2).

Likewise, we integrate (1b) on another nearby grid volume

0 =
1

∆tn+1/2∆xj+1/2

∫ tn+1

tn

∫ xj+1

xj

(pt + cux)dtdx

=
pn+1

j+1/2 − pn
j+1/2

∆tn+1/2
+ c

u
n+1/2
j+1 − u

n+1/2
j

∆xj+1/2
. (6b)

Again, 2nd order accurate point-wise values can be obtained
upon interpretation of these quantities as midpoint values at
the edges of the control volume. From (6) it is clear that this
is a staggered scheme, as the volume velocity variables u live
on the grid nodes in space and in-between the grid nodes
in time, whereas the pressure variables p live in-between the
spatial grid nodes and on the temporal grid nodes.

Now, using the centered approximations of (4)

u
n+1/2
j = −

φn+1
j − φn

j

c∆tn+1/2
, pn

j+1/2 =
φn

j+1 − φn
j

∆xj+1/2
− 1, (7)

we can substitute (7) into the equations (6) and obtain the leap-
frog scheme approximating (5) without the damping term for
φ alone. On a uniform grid this leap-frog scheme is the usual

φn+1
j − 2φn

j + φn−1
j

∆t2
= c2

φn
j+1 − 2φn

j + φn
j−1

∆x2
.

The scheme (6) inherits various conservation properties from
the differential system, including symplecticity and multisym-
plecticity on a uniform grid; see for example [17], [18].

IV. DISCRETIZATION OF THE ACOUSTIC EQUATION

A. The basic discretization

We now develop a discretization for (3) using the same
notation. The variables u and p continue to live on separate
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Fig. 1. The space-time domain is discretized with a non-uniform staggered
grid. The area function A(x, t) (drawn for time tn−1) is known at all
grid points and our finite volume scheme approximates it by a piecewise
linear function between grid points. The pressure variables (open circles) and
velocity variables (closed circles) live on separate space-time grid locations.
The acoustics equations (3a) and (3b) are integrated on the indicated cells
labeled (a) and (b), resp.

space-time grid nodes as indicated in Fig. 1 and are considered
constant in the grid cells around the nodes. The area function
A on the other hand is considered given externally and is
assumed to be defined everywhere.

Integrating (3a) as before over the cell indicated by (a) in
Fig. 1 yields the expression

u
n+1/2
j /Ã

n+1/2
j − u

n−1/2
j /Ã

n−1/2
j

∆tn
+ c

pn
j+1/2 − pn

j−1/2

∆xj

=
1

∆tn∆xj

∫ tn+1/2

tn−1/2

∫ xj+1/2

xj−1/2

[−d(A)u(x, t)

+D(A)uxx(x, t) ]dxdt (8)

with

1

Ã
n+1/2
j

=
1

∆xj

∫ xj+1/2

xj−1/2

dx

A(x, tn+1/2)
. (9)

To discretize (9) we approximate A as piecewise linear in
space to obtain

1

Ã
n+1/2
j

≈

 1

A
n+1/2
j−1/2

+
2

A
n+1/2
j

+
1

A
n+1/2
j+1/2

 /4. (10)

We can interpret this as using conical segments in our model.
However, since we are using a more abstract discretization, this
is not to be equated with the conical segments used in [6], [9].

Higher accuracy could be obtained if so desired, for example
if A has discontinuities.

In order to discretize the volume integral of −d(A)u in
(8) we consider u at tn+1/2 rather than tn, thus obtaining an
implicit scheme that remains stable even for very large values
of d without requiring very small time steps. Large values of
d can occur for example near constrictions. We then integrate

over x, giving −d̂
n+1/2
j u

n+1/2
j , where

d̂
n+1/2
j :=

(
d(An+1/2

j−1/2 ) + 2d(An+1/2
j ) + d(An+1/2

j+1/2 )
)

/4. (11)

For the term D(A)uxx in (8) we first discretize uxx ≈
u′′

n+1/2
j with

u′′
n+1/2
j :=

u
n+1/2
j+1 − u

n+1/2
j

∆xj∆xj+1/2
−

u
n+1/2
j − u

n+1/2
j−1

∆xj∆xj−1/2
,

for j = 1, . . . , J − 1. (For j = J we define for convenience
u′′J = 0.) Then we proceed as for the term d(A)u, leading to
D̂

n+1/2
j u′′

n+1/2
j , where we have used a similar notation for

D̂ as in (11). We finally obtain

u
n+1/2
j /Ã

n+1/2
j − u

n−1/2
j /Ã

n−1/2
j

∆tn
+ c

pn
j+1/2 − pn

j−1/2

∆xj
+

d̂
n+1/2
j u

n+1/2
j − D̂

n+1/2
j u′′

n+1/2
j = 0. (12a)

Likewise, integrating (3b) over the cell labeled (b) in Fig. 1
yields

Ân+1
j+1/2p

n+1
j+1/2 − Ân

j+1/2p
n
j+1/2

∆tn+1/2
+ c

u
n+1/2
j+1 − u

n+1/2
j

∆xj+1/2
=

−
Ân+1

j+1/2 − Ân
j+1/2

∆tn+1/2
, (12b)

with
Ân

j+1/2 :=
(
An

j + 2An
j+1/2 + An

j+1

)
/4,

where we have again approximated A as piecewise linear, as
in (10) To correspond to the BC (3c) we set x0 = 0, xJ+1/2 =
L. At a given time tn, n ≥ 0, assume we already know
{pn

j+1/2}
J
j=0 and {un−1/2

j }J
j=0. For n = 0 we obtain this

from the initial data. One time step involves the following:
1) Use (12a) to obtain {un+1/2

j }J
j=1. This involves the

inversion of just a tridiagonal matrix which can be
done efficiently using the Thomas algorithm at about
three times the cost of solving a diagonal system. If
D = 0 no matrix inversion is needed at all. Note that
the tridiagonal system involves only the u nodes.

2) Set u
n+1/2
0 = ug(tn+1/2) by the left BC.

3) Use (12b) to obtain {pn+1
j+1/2}

J−1
j=0 . This can be done

without any matrix algebra.
4) Set pn+1

J+1/2 = 0 by the right BC.
For stability, the Courant-Friedrich-Levy (CFL) condi-

tion [19], [15] requires that ∆tn be small enough so that
information cannot propagate beyond a finite interval of size
∆xj around a grid line xj . Defining the CFL number

η = max
i,n

c∆tn
∆xi

,

a heuristic condition for stability is η < 1. In practice we will
often take ∆tn to be constant, and the CFL condition then
becomes a constraint on the smallest grid element ∆xj in the
system. In more general situations (see Section VI) we find
that stability depends also on the area function A(x, t), and
instability may occur sometimes already for η close to but still
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below 1. The damping term does not make matters worse here
because it is discretized implicitly.

Though (12) is strictly correct only for stationary grids,
we can dynamically change the length L(t) of the tract by
changing ∆xJ in time, as long as we do it slowly.

To compare the computational cost of this algorithm with
that of the KL model in situations where the KL model can
also be used, i.e. on a uniform grid, with a time independent
area function A and without any damping, we write our
scheme for this special case:

u
n+1/2
j = u

n−1/2
j − ηÃj(pn

j+1/2 − pn
j−1/2), (13a)

pn+1
j+1/2 = pn

j+1/2 − η(un+1/2
j+1 − u

n+1/2
j )/Âj+1/2. (13b)

After precomputing ηÃj and η/Âj+1/2 this amounts to 2
multiplications and 4 addition/subtractions per grid point, to
be compared to 1 multiplication and 3 addition/subtractions
for the Kelly-Lochbaum model.

V. APPLICATIONS TO SPEECH SYNTHESIS

We have applied the methods described thus far to acous-
tics simulation for articulatory speech synthesis. We use the
ArtiSynth [20], [21] simulation environment, which allows
real-time interaction, visualization and audio synthesis. In this
application the area function A(x, t) is extracted dynamically
from the simulation of the motions of 3D tissues, including a
finite element model of the tongue, so that A(x, t) (and the
total length L of the tract) is updated at every time step of
the tissue simulation. The details are described in [22]. For
the time domain simulation of the acoustics (which runs in a
separate thread from the simulation of the deformable tissues)
we use a uniform spatial grid and a temporal sampling rate
of 44100Hz corresponding to a step size of ∆t = 1/44100s.
Two configurations are employed, one with N = 38 finite
half-volumes and one with N = 18, corresponding to J = 19
and J = 9 resp. The spatial grid size (which spans two
finite volumes) is ∆x = 2L/N with L the length of the
tube, assumed to vary slowly. We use c = 350m/s and
consider several vocal tract shapes with L ≥ 16.5cm. At the
smallest tract length we have η38 = 0.91 and η18 = 0.44.
For realistic modeling of the production of vowel sounds we
have coupled the wave equation described above to a realistic
lip radiation model, a dynamical wall vibration model, and a
glottal excitation which we modeled using either a dynamical
coupling to the Ishizaka-Flanagan two-mass model [10] or the
simpler Rosenberg model [23].

A. Radiation Model

Following Flanagan [24], we model the radiation at the lip
by a radiation impedance. This can be done by introducing
a new time-dependent variable w(t) and modifying the right
boundary condition (3c) to

u(L, t) =
ρc

RR
p(L, t) + w(t), (14a)

where w satisfies
dw

dt
=

ρc

LR
p(L, t), (14b)

with

LR =
8ρ

3π
√

πA(L, t)
, RR =

128ρ

9π2A(L, t)
.

With some straightforward algebra this can be seen to be
equivalent to the continuum limit of the time-domain radiation
impedance described in [11]. When discretizing we terminate
the grid at uJ and update by

wn+1/2 = wn−1/2 + ∆t
ρc

LR
pn

J−1/2, (15a)

u
n+1/2
J =

ρc

RR
pn

J−1/2 + wn+1/2. (15b)

Note that the order is important, imposing the BC at the
new time level. If we update uJ first instead using w at
a previous time (corresponding to an explicit method) then
we find computationally that the system becomes frequently
unstable.

Finally, we render the time derivative of uJ (corresponding
to the radiated pressure) in real-time using the JASS [25] audio
synthesis system.

B. Wall Vibration Model

A dynamical wall model is obtained by substituting in (3)

A(x, t) → A(x, t) + C(x, t)y(x, t),

where A(x, t) on the right hand side is considered to be
slowly varying, C(x, t) is the associated (slowly varying)
circumference, and y(x, t) is a small outward displacement
of the wall. We then linearize (i.e., drop products of y with
u or p) and obtain (3b) with the right hand side replaced by
−∂(Cy)/∂t. The right hand side of (12b) is then modified by
replacing A → Cy. The wall displacement y is modeled as a
damped mass-spring system (independently at every location
x, so we are neglecting wall bending resistance), with the
driving force determined by the pressure. This results in the
ODE’s in time

Mÿ(x, t) + Bẏ(x, t) + Ky(x, t) = p(x, t), (16)

with

M = M0/ρc2, B = B0/ρc2, K = K0/ρc2,

and we have used the same values as in [11]

M0 = 21kg/m2, B0 = 8000kg/m2, K0 = 845000kg/m2s2.

To discretize (16), note that (12b) requires the values of
y on the temporal grid nodes, both on and in-between the
spatial grid nodes. However, since the driving force (16) on
y depends on the pressure variables, and the latter live only
on the in-between spatial nodes, those variables yj that live
on the spatial nodes are not independent and can be set to
yj = (yj−1/2 + yj+1/2)/2. Inspecting (3b) we see that the
right hand side becomes simply

−
(Cy)n+1

j+1/2 − (Cy)n
j+1/2

∆t
. (17)
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The discrete time stepping for (16) is performed after updating
the pressures, using the auxiliary variable z = ẏ:

yn+1
j+1/2 = yn

j+1/2 + zn
j+1/2,

zn+1
j+1/2 = [Mzn

j+1/2 + ∆t(pn+1
j+1/2 −Kyn+1

j+1/2)]/(M + ∆tB)
(18)

C. Modeling Losses

Assuming a hard walled, circular tube, the losses at the
wall can be modeled by a frequency dependent damping
coefficient [10]

d(ω) =
√

2πµω

ρ
/A3/2, (19)

where the coefficient of viscosity is µ = 1.86−5kg/ms and
the air density is ρ = 1.14kg/m3. In [26] an empirically
constructed linear function of f was used instead, with the
same dependence on A. We shall also assume this area
dependence and write for the two damping coefficients

d = d̃A−3/2, D = D̃A−3/2. (20)

This leads to a frequency dependent damping given by (2). We
determine the coefficients d̃ and D̃ by first matching (20) to
(2) at two reference frequencies of 250Hz and 2000Hz, with
the intention of matching them approximately over a speech-
relevant frequency range, resulting in

d̃ = 1.6m/s and D̃ = 0.002m3/s.

In Fig. 2 we show the two damping models. In practice

Fig. 2. Frequency dependent damping using the
√

ω proportional hard wall
model, and the quadratic damping function resulting from our model.

we have found a need to increase the damping to reproduce
realistic formant bandwidths, as discussed in Section VI.

D. Glottal Model

The glottal excitation ug was generated parametrically
according to the Rosenberg model [23], or by a dynamic
coupling to the Ishizaka-Flanagan two-mass model [10]. This
model computes pressure oscillations as well as glottal flow
and is dynamically driven by lung pressure and tension param-
eters in the vocal chords. The vocal chord model is coupled to
the discretized acoustics equation in the vocal tract. We follow
the implementation described in [27] using the same ∆t as for
the propagation modeling. At every time step we provide the
glottal model with the pressure derived from p1/2, compute
the volume velocity ug , and then update the tube variables uj

and pj+1/2.

VI. RESULTS

A. Formant Accuracy

To test the accuracy of the method, we have computed the
formants (resonance frequencies) for six area functions A and
compared this with an almost exact solution in the frequency
domain on a very fine spatial mesh. For these calculations
we set the damping coefficients d and D to zero, as their
effect on the formant frequencies is negligible (less than 0.1%)
for the values resulting from the damping model described
in Section V-C. All other parameters are set to the values
described in Sections V-A and V-B.

In the time domain simulation we calculate the formant
frequencies by calculating u(J) for 215 time samples or 0.743s
for an impulse ug at time t = 0, taking the Fourier transform,
and finding the maxima in the power spectrum using quadratic
interpolation.

To obtain a solution in the frequency domain, we consider
(12) with the right hand side replaced by (17). We set d =
D = 0, use the boundary condition (14) for w, and use (18)
for y. We then take the limit ∆t → 0 and write the resulting
ODE system in terms of the Fourier transforms of the spatial
grid variables. These are denoted by capitalization, e.g. the
Fourier transform of u is U(ω), with ω the radial frequency.
Equation (14b) allows us to elimininate W = Pρc/iωLR

from (14a) and Y can be written in terms of P as Yj+1/2 =
Pj+1/2/(K + iBω−Mω2). With these substitutions (12) and
the BC can be written as

ıωUj = − c

∆x
Ãj(Pj+1/2 − Pj−1/2), j = 1, . . . , J − 1

ıωPj−1/2 = − c

∆x
Qj−1/2Â

−1
j−1/2(Uj − Uj−1), j = 1, . . . , J

uJ = (
1

RR
+

1
iωLR

)PJ−1/2,

where

Qj−1/2 = (1 +
Cj−1/2Â

−1
j−1/2

K + iωB −Mω2
)−1.

Using the vector notation Xj = (Pj−1/2, Uj)T , and using the
boundary conditions, we can rewrite this as

Xj+1 = KjXj for j = 1, . . . , J − 1, (21a)
UJ = aJPJ−1/2, P1/2 = −b1/2(U1 − Ug), (21b)
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with aj = cÃj/i∆xω, aJ = ( 1
RR

+ 1
iωLR

),
bj+1/2 = cQj+1/2Â

−1
j+1/2/i∆xω, and

Kj =
(

aj 0
1 bj+1/2

)−1 (
aj −1
0 bj+1/2

)
.

We can solve (21a) in the form XJ = KX1, with K =
KJ−1 · · ·K1, and this together with the conditions (21b) allow
us to solve for UJ in terms of Ug , i.e. UJ = H(ω)Ug . We
then extract the formant frequencies from the maxima of the
transfer function ||H(ω)||.

This scheme was implemented using a very fine spatial grid
with J = 499, and J = 999. The difference in formant
frequencies between the two J values was less than 0.1%,
which is why we refer to this as the “exact solution”. Six vowel
tract shapes for Russian vowels taken from [26] were used
as area functions, depicted in Fig. 3. The time-domain and
frequency domain results for the first three formant frequencies
are listed in Table I. The relative error is largest for the third
formant and smallest for the first, and it depends on the area
function. For the first formant there is little difference between
the two grids, but for the second formant the N = 38 results
are twice as accurate as the N = 18 results and the difference
is a factor four for the third formant.

Fig. 4 displays these data graphically. For comparison we
have also indicated the measured values of these formants and
the simulated values reported by Fant [26]. Our results for
N = 38 are very close to the measured values, except for the
third formant of [e] which is somewhat too high. For N = 18
the third formant is too low in all cases except for the [e].
However, informal listening tests indicate that this is not an
audible discrepancy.

F1 (1.7%) F2 (2.3%) F3 (2.4%)
FD N=38 % FD N=38 % FD N=38 %

u 294 296 0.7 630 627 0.5 2392 2350 1.8
o 568 554 2.4 944 913 3.2 2426 2398 1.1
a 716 690 3.6 1184 1122 5.2 2558 2499 2.3
e 458 446 2.6 2038 1991 2.3 2998 2906 3.1
i 272 271 0.4 2324 2291 1.4 3298 3144 4.7
i 328 326 0.6 1762 1736 1.5 2390 2356 1.4

F1 (2%) F2 (4%) F3 (8%)
FD N=18 % FD N=18 % FD N=18 %

u 294 296 0.7 630 630 0 2392 2151 10
o 568 558 1.8 944 952 0.8 2426 2286 5.8
a 716 692 3.3 1184 1160 2.0 2558 2398 6.3
e 458 450 1.8 2038 1924 5.6 2998 2748 8.3
i 272 278 2.2 2324 2156 7.2 3298 2935 11
i 328 318 3.1 1762 1614 8.4 2390 2185 8.6

TABLE I
The formant frequencies computed from the tract shapes for the six Russian
vowels reported by Fant. The highly accurate frequency domain results (FD)
are compared to the time domain results for N = 28 finite volumes and for
N = 18. We also indicated the percentage errors for the individual shapes

and the average error.

B. Formant Bandwidth

As described in Section V-C, we have first tuned the two
damping parameters d̃ and D̃ to approximately reproduce the

Fig. 3. The area functions for the six Fant vowels.

hard-wall loss formula (19) over a relevant frequency range.
We have then manually scaled both these parameters to bring
them close to the formant bandwidths reported in [26] which,
though obtained by simulation, were claimed to be within
50% of actual values. We found a reasonable scaling factor
to be 4 for N = 38 and 8 for N = 18. The spectra of the
vowels are displayed in Fig. 5. They were computed using
the time domain simulation on the N = 38 grid as described
in Section VI-A. The 3dB bandwidth was then computed. In
Table II we list the bandwidths for the first four formants for
these values of the damping parameters. As can be seen, they
are mostly in reasonable agreement with the values reported
by [26], with the exception of the first formant for [u] and the
fourth formant for [e], which are too wide for N = 38.

C. Tract Motion

To test the synthesis method we have created a stand-
alone simulator, which produces audio in real-time and allows
the user to dynamically change the parameters of the model.
These include the area function and the tract length, and are
changed through sliders while the sound is being produced.
The simulator is made available online at [28], in the config-
urations N = 18 and N = 38. Three control windows are
displayed, for the tract model, the Rosenberg glottal model
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Fig. 4. The formants of the Russian vowels [u] [o] [a] [e] [i] [i] as computed
by our time-domain (using grids with N = 18 and N = 38) and frequency
domain methods. For comparison we show the measured values and the
simulation results from Fant [26].

F1 F2

Fant Default Scaled Fant Default Scaled
u 69 63/22 196/61 50 28/12 92/74
o 54 21/15 50/48 65 31/32 74/88
a 57 21/17 46/53 72 40/45 79/110
e 39 15/14 32/49 95 44/34 62/74
i 60 25/26 46/89 75 11/10 22/43
i 43 18/16 37/42 125 183/89 958/143

F3 F4

Fant Default Scaled Fant Default Scaled
u 110 13/12 45/86 115 15/15 52/109
o 100 33/37 63/101 135 36/33 15/136
a 101 70/70 111/158 175 182/168 248/600
e 170 190/86 139/162 325 1231/168 1291/306
i 240 221/89 330/301 230 107/89 169/287
i 77 44/31 70/82 134 84/39 132/147

TABLE II
The 3dB bandwidths of the first four formants are displayed. We show the

values reported by Fant, the values obtained with our default parameter
setting obtained by matching the hard wall form (19), and the values after
scaling damping parameters with a factor 4/8. Results (separated by “/”)

are for the N = 38 grid and the N = 18 grid.

and the two-mass glottal model. The sliders marked u xx mult
and u mult are used to further scale the damping parameters d̃
and D̃, which are set to the values determined in Section VI-
B. The slider labeled wall coeff allows control over the wall
coupling by scaling the right hand side of (16). By moving the
length slider smooth sound changes can be observed, which
is achieved by changing ∆x in the simulation. Note that for
the N = 38 version the [u] and [e] vowels become unstable
if the length is decreased to below 16cm, even though the
CFL number 0.94 is still below 1. For the N = 18 simulator,
the maximum CFL number attainable (at the current audio
sampling rate) is 0.46 and as expected no instabilities due

Fig. 5. Spectra (norm of the velocity-velocity transfer function) for the six
Russian vowels. The default values for the damping parameters were used.
Grid size was N = 38.

to a length decrease are observed. It is of course possible to
stabilize the N = 38 model by increasing the audio sampling
rate.

The remaining sliders represent 40 equidistant control points
(not related to the spatial grid employed for the simulation)
for the area function, with A(39) representing the mouth. The
area functions for the six Russian vowels can be loaded by
pressing the buttons, and the spectrum can be displayed by
pressing the Formants button.

The two-mass glottal model is turned on by default and
can be controlled through the three sliders which set the q-
factor, the lung pressure, and the glottal rest area, see [10] for
the meaning of these parameters. If the (nonlinear) two-mass
model goes unstable, NaN is displayed. 1 Pressing the Reset
button on the main control window resets the model (and also
the automatic gain control). To turn off the two-mass model
set the lung pressure to 0. To activate the Rosenberg model
increase the gain with the corresponding slider.

We observe little difference in quality between the two grids

1This happens because the non-linear part of the spring model is treated
by an explicit method.



8

if the two-mass model is used, but when using the Rosenberg
model the N = 18 simulation clearly sounds better. We believe
the reason lies in the excess high frequency energy present in
the Rosenberg excitation. In Fig. 6 we display the spectral
response of the [a] vowel over the entire frequency domain.
It can be seen that the N = 18 grid eliminates frequencies
above about 6000Hz whereas the cutoff for N = 38 lies
at about 12000Hz. As the one-dimensional tube model (and
therefore the PDE model considered here) is not valid for
frequencies above roughly 6000Hz, their inclusion on the finer
grid therefore results in an unnatural sound. If more accurate
higher formants are required it is also possible to increase the
audio sampling rate

Fig. 6. The spectrum of the vowel [a] for N = 18 finite volumes and for
N = 38. Though the N = 18 formants are less accurate, the falloff around
6000Hz results in a more natural sound if the glottal excitation contains
energy above this frequency.

VII. CONCLUSIONS

We have described a computational scheme for the numer-
ical integration of the linear acoustics equation in a tube with
varying cross section. The resulting algorithm is an alternative
to the classical Kelly-Lochbaum method and offers several
advantages over it: 1) the tract length is not quantized and real-
time continuous length changes are allowed, 2) non-uniform
spatial grids are allowed, 3) the scheme is of second order
accuracy, which can be visualized as using conical sections
rather than cylindrical sections, 4) the area function is not
required to be quasi-stationary and can move dynamically.
The computational cost of the proposed algorithm is somewhat
higher (by about a factor 2) than that of the KL model but is
still very small in absolute terms on present-day computers.
We proposed a two-term damping mechanism, capable of
producing frequency dependent damping.

The scheme has been embedded into a relatively complete
vocal tract simulation, suitable for synthesizing speech by
coupling the model to a dynamical wall model, a radiation
model, and an excitation model, and by a specific choice for
the damping parameters. Simulations on a coarse (N = 18
finite volumes) and a fine (N = 38) spatial grid yields

formants that are very close to their exact value as computed
on a very fine grid using a frequency collocation method.

Area functions of six Russian vowels were used and the
results for the formants and damping resulting from our
simulation are close to the experimental and simulated values
reported in [26]. A real-time simulator was implemented,
allowing real-time articulatory control through sliders. In par-
ticular, the length of the tract can be changed continuously
with smooth changes in the sound.

It was found that the coarse grid, though less accurate in
predicting second and third formants, may occasionally be
preferred over the dense grid. Using coupling to the two-mass
Flanagan-Ishizaka glottal model there is no audible difference
between the two grids, whereas using a Rosenberg parametric
excitation the coarse grid eliminates high frequencies better,
resulting in a more natural sound. In addition the coarse grid
has a lower CFL number and hence is more robustly stable
(for example if the length is reduced) and it is twice as fast.
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