
Concordia Cum Vaxen

Porting Harmony to the VAX-11/750

by

Wai Victoria Wong

A thesis
presented to the University of W aterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Computer Science

Waterloo, Ontario, 1986.

® W. Victoria Wong 1986

Author’s Declaration

I hereby declare that I am the sole author of this thesis.

I authorize the University of Waterloo to lend this thesis to other institutions or individuals
for the purpose of scholarly research.

\ / t». /—̂I
f -

I further authorize the University of Waterloo to reproduce this thesis by photocopying or by
other means, in total or in part, at the request of other institutions or individuals for the
purpose of scholarly research.

f -

(U>

Borrower's Page

The University of W aterloo requires the signatures of all persons using or photocopying this
thesis. Please sign below, and give address and date.

(iii)

Abstract

Harmony is a message-based multiprocessor multitasking operating system developed at
the National Research Council for real-time applications. It has been used for applications
in computer graphics on a Motorola 68000-based computer in an Ikonas frame buffer. This
document describes how it was prated to a DIGITAL VAX-11/750 minicomputer. Graphics
support for the Ikonas frame buffer as an output device is also discussed. As a test, the
W aterloo Paint program was modified to run cm the VAX version of Harmony. Its
performance is evaluated and the prospects for porting Harmony to future VAX
architectures are examined.

(iv)

Acknowledgements

I would like to express my gratitude to all those who helped me in completing this
project.

The research has been supervised by Dr. John Beatty and Dr. Kellogg Booth.
Financial support was provided by the University of W aterloo and an Ontario Graduate
Scholarship.

D r. Kellogg Booth, Dr. Morven Gentleman, and Dr. Douglas Dyment were the readers
for this thesis. Shawn Neely was the student reader. Shawn also worked on a H arm o n y
host-based to d for calculating stack sizes.

D r. Morven Gentleman, Peter Tanner, Dave Forsey, Ian! Allen, Darlene Stewart,
M arc Riese, and Peter Baker supplied information about Harmony, Alan Paeth helped
explain the configuration of the Ikonas, and Dave M artindale presented some glim psps of the
world of UNIX wizardry. Ken Lalonde, Kim M artin, and the MFCF crew helped me
continuously with the hardware and UNIX guts. The Shoshin group supplied references cm
the VAX architecture.

In preparing this document, Ian! Allen’s Erb Street typesetting macros, Steve Hayman’s
music preprocessor, and Vic Klassen’s help with the previewer are appreciated.

It has been a pleasure to work in the Computer Graphics Lab; the new ideas,
friendship, and encouragement I received from the group will be remembered.

Finally, I must thank my family for their constant support from the opposite side of the
Earth.

W. Victoria Wong
University of W aterloo
December 1986

(v)

Concordia Cum Vaxen ... I
Author's Declaration ... ii

Borrower's Page ... jjj

Abstract .. jv

Acknowledgements .. v

List c f Illustrations ... viii

1 Introduction .. I
1.1 Harmony ... 3

1.1.1 Tasks .. 3
1.1.2 Communication and Synchronization .. 5
1.1.3 Memory .. 5
1.1.4 Stream I/O ... 6
1.1.5 Interrupts .. 7
1.1.6 Servers ..9
1.1.7 Programs .. 9

1 2 VAX-111750 .. 11

1.2.1 Architecture Summary ... 11
1.2.2 Memory Management .. 13
1.2.3 UNIBUS Subsystem .. 17

1 3 Paint .. 18

1.3.1 Ikonas .. 18
1.3.2 Plaint .. 19

2 Porting Harmony ..22
2.1 The Kernel .. 23

2.1.1 Booting ... 23
2.1.2 Interrupt Vectors ... 25
2.1.3 Interprocessor Interrupt .. 25
2.1.4 Interrupt Stack ... 27
2.1.5 Stack Frames .. 27

Table of Contents

(vi)

2.1.6 Function Entry Point ... 30
2.1.7 Memory Management .. 30

2 2 Servers .. 35

2.2.1 Tty Server ... 35
2.2.2 Screen S erver.. 36
2.2.3 Tablet Server .. 36
2.2.4 Locator Server ... 37
2.2.5 d o ck S erver... 37

2 3 Software Development Tools ... 38

2.3.1 Listing .. 38
2.3.2 Bound ... 38
2.3.3 Examine- .. 3g
2.3.4 Debug .. 39

3 A Prototype Graphics Application .. 40
3.1 Ikonas .. 41

3 2 Paint .. 46

4 C onclu sio n s 49

4.1 Evaluation ... 52

4.2 Limitations ... 54

4.3 Extensions ... 55

References ...57

Table a f Contents

1.1 Sample Harmony Program .. 10
1.2 System Control B lock... 14
1.3 Physical Address Space ... 15
1.4 Virtual Address Space.. 16
1.5 Page Table Entry ... 17
1.6 Ikonas System A rchitecture.. 18
1.7 Ikonas Memory Map ... 20
2.1 Directory TYee for VAX-Harmony ... 24
2.2 Interrupt Stack Frame .. 28
2.3 Function Call Stack Frame and Argument List 29
2.4 Virtual to Physical Address Translation in System Space 32
2.5 Virtual to Physical Address Translation in FO Space 33
2.6 VAX-Harmony Memory Map ... 34
2.7 DMZ32 Control and Status Registers ... 36
3.1 UNIBUS Control and Status Registers for the Ikonas 41
3.2 UNIBUS Adapter Registers ... 43
3.3 UNIBUS Map Entry .. 43
3.4 UNIBUS to Physical Address T ranslation....................................... 44
3.5 Organization of Tasks in Plaint ... 46
3.6 Paint Source Directory Tree ... 47

List of Illustrations

(viii)

1 Introduction

i

1 Introduction 2

Harmony f is a message-based multiprocessor multitasking operating system developed
at the National Research Council for real-time applications. It was originally implemented
on the Chorus multiprocessor, a Motorola 68000-based system.

A t the University of Waterloo, Harmony was ported by Dave Forsey to a Motorola
68000-based MFC computer in an Ikonas frame buffer. It has been used for ftrint programs
and robotics simulations. It will also be used for supporting cognitive psychology
experiments on user interface design.

The University of Waterloo Computer Graphics Laboratory will have a number of
D IG ITA L MicroVAX workstations and later more advanced workstations hav in g multiple
processors based on the VAX architecture. These will be an ideal test bed for a
multiprocessor implementation of Harmony. Harmony has been ported to other 68000
family processors, but there was no implementation for the DIGITAL VAX architecture
prior to this project. As a first step in this research, Harmony has been ported to a VAX-
11/750 minicomputer to be evaluated. The version of Harmony that n in e cm the VAX-
11/750 will be referred to as VAX-Harmony in this document. It is ported with reference to
the version of Harmony running cm the MFC, which will be referred to as MPC-Harmony
for clarity. The source development of VAX-Harmony is done on a VAX 8600 under a
UNIX f environment. The version of source code used is Harmony Release 1.0.

The W aterloo Paint program, the first application program to run under MPC-
Harmony, has been modified to run under VAX-Harmony as a test. It also serves as a
comparison with the MFC version in terms of speed and performance.

This first chapter describes the Harmony operating system, the VAX-11/750 computer,
the Ikonas fram e buffer, and the Paint program. Chapter 2 concentrates cm how Harmony
was ported to the VAX-11/750. Chapter 3 describes graphics support for the Ikonas and
modifications to the Paint program. The final chapter summarizes Harmony’s performance
on the VAX, limitations on the current implementation, and the prospects for porting
Harmony to MicroVAX-based workstations.

t Mark reserved for the exclusive use of Her Majesty the Queen in right o f Canada by Canadian
Patents and Development Ltd./Sodété canadienne des brevets et d'exploitation Liée,

t UNIX is a Trademark of AT&T.

1.1 Harmony

Harmony is a multiprocessor, multitasking operating system for real-time control. It
was developed at the National Research Council by a team led by Dr. Morven Gentleman.
A detailed description of Harmony can be found in the NRC technical report “Using the
Harmony Operating System” [Gentleman85].

Harmony is an open and portable system, designed to be used cm many different
hardware configurations and to allow the integration of new peripherals. It is written in the
C programming language and a small amount of assembler code. Application program«; can
be written in either C or FORTRAN, but Harmony does not preclude the use of other
languages such as Pascal if the host system supports linking across language

Harmony is a system of tightly-coupled multiprocessors. It devotes all of the resources
of the machine to running a single multitask application and is bound in with the program at
link tim e. Harmony does not directly support program development or multiuser Him
sharing. A host computer is used for source development and downloading of executable
images into target processors.

1.1.1 Tasks

A Harmony program is organized into many tasks. A task, or a process, is an instance
of a program or subroutine; it executes sequentially and in parallel with other tasks. Each
task is independent of other tasks, but tasks can communicate and synchronize with each
other through message passing.

Tasks are created and destroyed dynamically. Harmony is a multiprocessor system,
and the processor cm which a task runs is specified in the task template describing it. A task
competes for scheduling only with other tasks running on the same processor. A s a real
tim e system, Harmony uses “natural break” priority scheduling to control task execution cm
each processor: a task is assigned a priority level; each level has a separate FIFO queue for
ready tasks. Execution of a task will be preempted when a task of higher priority becomes
ready, otherwise a task will execute sequentially until it blocks waiting for external events or
messages from other tasks. Urgent tasks can be assigned a high priority to ensure a short
response time.

3

1.1 Harm ony 4

A task template defines parameters for tasks created from it:

• G LO BA LJN D EX A positive integer (maximum 231 in VAX-Harmony)
identifying the template, which must be unique over all
templates on all processors.

• ROOT The function that the task will execute. The function has no
parameters or return value. If the function returns, die tacir is
destroyed.

• STACKSIZE Size of the run-time stack for the task, which may be calculated
by the bound tod .

• PRIORITY The priority level of the task. Smaller numbers imply higher
priority.

• LOCAl<_TASK3IANAGER
Supplied by the system, this identifies the local task manager
that creates and destroys the task, and hence effectively
determines on which processor the task runs.

Tasks are managed by create and destroy primitives:

id = _Create(global_index);

JDestroyC id);

_Suicide();

.C reate returns a unique id for identifying the task. Destroying a task includes returning all
its resources to the system, dosing all its connections to servers, and destroying all its
descendants.

A task can obtain its own id and the id of the task that created it by using die
following primitives:

_M yJd();

.F a th e rJd ();

The global indices of 1 to 3 are reserved. Index 1 is for die first user task, which
normally has the root function m ain(). Index 2 is for the directory task, which hanrfW the
translation of symbolic names into task ids. Index 3 is for the gossip task, which provides a
general logging and error reporting mechanism for other tasks. Harmony will create cme
instance of each of these tasks on processor 0 when startin g up.

1.1 H armony 5

1.1.2 Communication and Synchronization

Communication and synchronization between tasks are accomplished by mwecag*»'
passing primitives. The choice of message passing versus other concurrency control
techniques is discussed in another paper [Gentleman81]. All message passing is
implemented with an interprocessor interrupt.

A message is a variable length contiguous Hock of storage, the first two bytes of which
are a short unsigned integer specifying die length. Messages are queued in FIFO order.

The message passing primitives are as follows:

id = _Send(request, reply, id);

id = _Receive(request, id);

id = _Try_receive(request, id);

id = _Reply(reply, id);

A task wanting to send a message will set up the message in memory space pointed to
by the request argument, allocate space pointed to by the reply argument for receiving a
message in reply, and call the „Send primitive specifying the id of the correspondent task.
A task wanting to receive a message must set up space pointed to by the request argument
into which the contents of the sender’s message will be coped. It can either specify the id of
a particular task or it may receive from any task by using an id of zero. The „Receive
primitive will Hock the task until a message is received, but the _Try_receive primitive
always returns immediately. Once a message is received, a task can set up a message
pointed to by the reply argument and call „Reply with the id of the sender task whenever it
chooses.

Since tasks may be destroyed, these message passing primitives may fail. If a call is
successful, the id of the correspondent task is returned. Otherwise, the return value will be
zero. If a task calls _Try_receive but no messages are pending, the call returns a zero.

The JSend and „Receive primitives are Hocking, while the other two are not. JSend
and „Reply both transfer data to another task — by reversing the usual roles of these
primitives, a non-Hocking communication is possiHe in any single directi cm between two
tasks. This feature is used in the courier abstraction to obtain bidirectional non-Hocking
communication [Gentleman81].

1.1.3 Memory

Current Harmony implementations use a single, contiguous, shared address space. Due
to the real-tim e constraint, no algorithms with unbounded execution time can be used, and
resources such as stacks are preallocated.

1.1 H armony 6

Memory resources are bandied with storage pod management primitives:

pointer = _Getvec(size);

_Freevec(pointer);

_Trimvec(pointer, s ize);

size = _Sizeof(pointer);

and with a special function to check for stack overflow:

boolean = _Stackoverflow();

Memory is allocated using a first fit algorithm; the pool is searched sequentially from
the start, and interrupt windows are provided within the search. A function is provided for
optimizing the memory pod search time:

_Tune_Getvec(size);

When called, this function modifies the searching algorithm to skip the Modes at the
beginning of die pod , which are allocated for task creation or which are known to be too
small due to die statistical effect of grading that occurs with first fit techniques.

1.1.4 Stream I/O

Far I/O devices, a stream I/O library and await-interrupt primitive are provided. A
stream is an infinite sequence of bytes in which a current position can be defined, much as
for a file in UNIX. A stream, like all Harmony connections, is identified by a user
connection block (ucb). The stream I/O primitives indude:

ueb = _Open(pathname, mode);

_Q ose(u cb);

previous_ucb = _Selectinput(u cb);

previous_ucb = _Selectoutput(ucb);

byte = _GetQ;

byte = J»ut(b y te);

JFlush();

_Unget();

JSeek(ucb, positive, relative);

D ata in a stream are buffered so that the .G e t and _J*ut primitives usually reference
the respective local buffers. The output buffer is sent to the server to be output when it is
full; if desired, the .F lush primitive can be used to force output without waiting for a full

1.1 H arm ony 7

buffer. The _Unget primitive returns the last byte read from the input stream , so it will be
read again by the next _Get. However, this only works for the most recently read byte of
the stream.

On top of the stream I/O model, some high level I/O functions are provided. They are
similar to the standard I/O functions in C:

number = _Getnum();

_Putdec(number);

_Puthex(number);

_Putstr(string);

which can be combined by using

_I*intf(format, item l, item2, ...);

H iere are busywait counterparts to each of the above functions (e.g ., _BWGetnum()). The
busywait functions use polling instead of interrupt-driven I/O. They are useful when
Harmony stream I/O cannot be relied upon, such as when debugging die 1»*tH of the
system. Busywait I/O is seldom employed by user programs.

1.1.5 Interrupts

A Harmony program can disable or enable interrupts with:

_Disable();

_Enable();

It can also wait for an external interrupt event to happen by using

_Await_interrupt(interrupt_id, reply_message);

A t most tme task can be waiting for any specific interrupt. A task can only be waiting for
one interrupt. It must run on die processor physically connected to the interrupt and at the
priority level corresponding to the hardware level of the interrupt. Volatile data received
during the interrupt are passed to the task in the reply message. With these primitives and
second level interrupt handlers, die user can implement I/O devices that do not fit the stream
I/O model.

A hardware interrupt will invoke a first level interrupt handler, which saves the
registers on the stack of the interrupted task and transfers to the corresponding second level
interrupt handler. The second level handler is written in assembler and no stack is readily
available for its use. The second level handler must save the stack pointer of the interrupted
task, demultiplex the hardware interrupt if necessary, and dear the interrupt while saving
any volatile data. The second level interrupt handler will then either activate the task

1.1 H arm ony 8

waiting for the interrupt or, if the interrupt is spurious, reactivate the interrupted ««sir Any
interrupts caused by noise or configuration error and any interrupts that occur without a
waiting task are considered to be spurious. Spurious interrupts and mast exceptions are
handled by logging a message with the gossip task and invoking the debugger

The distinction between a first level interrupt handler and a second level interrupt
handler is one of convention. A first level handler is generic, whereas a second level
handler usually contains instructions specific to the interrupt or device heing handled. A
second level handler is written like user code, but it is executed during the interrupt servicing
to perm it processing that cannot wait for normal task dispatching.

A fter its time-critical processing, the second level interrupt handler adds the task that
has an _A w aiU nterrupt pending for the device to the ready queue. It then exits by
dispatching the highest priority task. Under the preemptive priority scheduling scheme, the
interrupt, and hence the task waiting for it, must have higher priority than the interrupted
task; all lower priority interrupts would have been held off. Therefore the newly readied
task, if any, will be the one to be dispatched.

The VAX hardware, like that of many other machines, implements preemptive priority
dispatching. Levels of processor priority are defined, and at any tim e the processor is
running at a certain priority. The only interrupts that are allowed to affect the processor are
those at a higher priority than the current processor level — all others are held off by the
hardware until the processor priority drops to a level where they will be accepted. If the
hardware has allowed an interrupt to occur, then the processor must have been executing at
a lower priority level, therefore the handler for the incoming interrupt can preempt whatever
was running. Disabling interrupts on such a processor is often done by temporarily raising
the priority level of the processor above the level that incoming interrupts could produce.

Harmony software has exactly the same abstraction. When a task is running at a
certain priority, another task at the same or lower level of priority becoming ready is
im m aterial - the original task keeps running. However, if a task of higher priority becomes
ready, it preempts the original task, and runs instead. The fact that the original task was of
a certain priority guarantees that there were no ready tasks of higher priority, so a task
becoming ready need only have its priority compared with that of the active task - the
whole ready queue does not need to be searched.

A proper port of Harmony to a new machine integrates these two priority systems so
that they are, in fact, one and the same. This implies that when a task is running, the
hardware priority at which it runs is such as to hold off interrupts that would activate tasks
that run at the same or lower software priority. Consequently, the very fact that the
interrupt happened ensures that the ready queue for the waiting task must be empty and the
proper task to dispatch is the one that the interrupt readies.

1.1 H armony 9

To allow the user to perform I/O instructions directly and have user code for interrupt
handlers, Harmony and the application program always run in the most privileged mode
available on die hardware.

1.1.6 Severs

Servers are used to implement “ smart peripherals” and resource abstractions. A
Harmony server is a task that owns and manages a resource. It is analogous to a library
function. Client tasks request the use of a resource by sending messages to its server. The
message passing code requires knowledge of a task’s id; this information is maintained by a
directory task. The primitives used by a server for reporting and managing its connections
are as fallows:

_Report_for_service(name, message_type);

table = _^Alloc_connection_table(init_num_entries, scbjsize);

scb = _Get_connection(table, client, new.connection);

scb = JLookup_connection(table, client, connection);

connection = _Free_connection(table, connection);

A server task must report to the directory task and must be prepared to handle open
and close messages. The other types of messages it handles depend on the I/O model and
the resource it controls.

1.1.7 Programs

A simple Harmony program is shown in Figure 1.1. The executable image for each
processor is linked and downloaded separately. For each processor image, the user must
identify the processor by _Pnumber, supply the task templates for all tasks that can be
created cm that processor, and provide the second level interrupt handlers, each specified by
an interrupt id and the handler code to be executed. The example program in Figure 1.1
demonstrates how tasks are created and how they communicate with each other.

1.1 H arm ony 10

«define CHILD 10
extern mainO;
extern .Directory();
extern .Gossip();
extern Chi Id O;
extern _Ptm_int();
extern J5erlal_lnt();
ulnt_32 .Pnumber = 0;
struct TASK_TEMPLATE _Template_llst[] =

{ MAIN. main. 400. 7. 0 >.
{ DIRECTORY, directory. 436. 7. 0 >.
{ GOSSIP. .Gossip. 308. 5. 0 >.
{ CHILD. Child. 300. 6. 0 >.
{ 0 . 0 . 0 . 0 . 0 >

>;

struct INTJPAIR _Interrupt_llst[] =
< 4. _Ptm_lnt >.
{ 5. jBerlal.lnt >,
■C 0. 0 >

>;
mainO

ulnt_32 child;
struct STD.RQST request;
struct STDJIPLY reply;
child = .Create(CHILD);
for(;;)

request.MSG.SIZE = slzeof(request);
replyMSG.SIZE = slzeof(reply);
_Send((char *)ftrequest. (char *)4reply. child);

>;

ChlldO
<

ulnt_32 counter, requestor;
struct STD.RQST request;
struct STD.RPLY reply;
counter = 0;
f o r (; ;)

<
request.MSGJ8IZE = slzeof(request);
requestor = .Receive((char *)ftrequest. 0);
reply.MSGJSIZE = slzeof(reply);
reply.RESULT = counter**;
.Reply((char *)Areply, requestor);

>;

Figure 1.1 Sample Harmony Program

1.2 VAX-11/750

The D IGITA L VAX-11/750 is a 32-bit minicomputer. The target machine used in this
project has three million bytes of physical memory, a floating point accelerator, and two
UNIBUS adapters. A DMZ32 multiplexor and an Adage RDS-3000 frame buffer are cm
one UNIBUS.

1.2.1 Architecture Summary

The basic features of the VAX-11/750 architecture are discussed below
[Digital81, Digital82].

The VAX-11/750 supports six primary data types:

• Bits

• Integers - 8 ,1 6 , 32 or 64 bits

• Floating point reals - 32, 64 (two precisions), or 128 bits

• Packed decimal strings — 0 to 16 bytes, two digits per byte

• Character Strings - 0 to 65535 bytes

• Numeric Strings - 0 to 31 bytes

and it also supports a queue data type which is a circular doubly-linked list; each queue
entry is accompanied by two longword pointers.

There are instructions for manipulating all the data types. A floating point accelerator
(an independent coprocessor) can be added to execute the floating point instructions for
improvement in speed.

In data representation, the lower order byte precedes higher order bytes.

There are sixteen 32-bit general registers (R0 to R15), of which the last four have
special significance:

11

1 2 VAX-111750 12

• R15 or PC — Program Counter, contains the address of the next instruction to be
executed.

• R14 or SP — Stack Pointer, contains the address of the top of a stack.

• R13 or FP — Frame Pointer, contains the address of the base of the function call frame
data structure cm the stack.

• R12 or A P — Argument Pointer, contains the address of the base of the argument list
data structure on the stack.

The registers R12 to R14 may be used for general purposes if they are not required for stark
management.

The registers RO to R5 are used in character string and polynomial evaluation
instructions, and registers RO and R1 are used to hold function return values; precaution
should be taken when using these registers.

The VAX family processors allow 21 addressing modes of nine basic types:

• lite ra l

• Register

• Register Deferred

• Autoincrement

• Autodecrement

• Autoincrement Deferred

• Absolute

• Displacement

• Displacement Deferred

The last seven types can be indexed by a value in a general register.

A processor register called the Processor Status Longword (PSL) determines the
execution state of the processor at any time. The lower-order 16 tats of the PSL are the
Processor Status Word (PSW). It contains unprivileged information and is available and
controllable by any program. The higher-order bits provide privileged control of the system,
including access mode, instruction set information, interrupt priority level, and the selection
of an interrupt stack.

The processor has four hierarchically ordered access modes: Kernel, Executive,
Supervisor, and User. There is a separate stack pointer for each mode. Memory is
protected by specifying read or write permissions for each mode, which will also be inherited
by the more privileged modes. Privileged registers can only be accessed in kernel mode.

1 2 VAX-111750 13

Harmony always runs in kernel mode, which has the maximum privileges, so that it can
access all the processor status for implementing preemptive priority dispatching.

Exception and interrupt handling are vectored. The vectors are stored in a structure
called the System Control Block, the dedicated pages of physical memory locations shown in
Figure 1.2. Each vector contains the virtual address of the interrupt service routine (in
Harmony, the first level interrupt handler), which must be aligned on a longword boundary.
The lowest two bits indicate whether the interrupt stack or the user control store containing
customized microcode are used.

There are 31 interrupt priority levels. The current level can be changed through the
IFL privileged register.

1.2.2 Memory Management

The VAX (Virtual Address extension) family computers have a memory management
system. Its operation is discussed below.

The physical addresses of the VAX-11/750 are.24 bits long. The physical address space
is divided into the memory space and HO space. The target machine used in this project has
three million bytes installed memory and two UNIBUS subsystems. The corresponding
physical memory organization is shown in Figure 1.3.

The region from F20000 to F40000 is divided into sixteen 8K-byte adapter register
address spaces; this arrangement resembles that for the NEXUSs of the VAX-11/780. The
first address space (number 0) is for the memory controller. It contains three Control and
Status Registers and four 256-byte read-only memories for bootstrapping from devices.
UNIBUS 0 and 1 adapters use address spnce numbers 8 and 9 respectively.

The virtual address space uses 32-bit addresses. The basic unit for relocation and
protection is a 512-byte piage. The entire virtual address space is divided into four regions as
shown in Figure 1.4. Standard conventions for using the four regions are used by operating
systems such as VMS. The FO régirai is designed for program image and data. The PI
régirai for stack and control information is maintained by the operating system for each
process. The system region is used by the operating system. The last régirai is not used.

The memory management unit translates virtual addresses to physical addresses using
inform ation in the piage table for each region. A piage table is a vector of piage table entries,
which are described in Figure 1.5. The bits 0 to 20 in the piage table entry hold the piage
fram e number. Because the VAX-11/750 has 24-bit physical addresses, only the lower 15
bits determ ine the page frame number. The unused bits are zero.

1 2 VAX-111750 14

Vectarfhex) Interrupt or Exception
00
04
08
0C
10
14
18
1C
20
24
28
2C
30
34

38-3C
40
44
48
4C
50
54

58-5C
60

64-80
84-BC

CO
C4-DC
EO-EC

FO
F4
F8
FC

100-1FC
200-3FC
400-5FC

(Reserved)
Machine Check exception
Kernel Stack Not Valid exception
Power Fail interrupt
Reserved/Privileged Instruction exception
Customer Reserved Instruction exception
Reserved Operand exception
Reserved Addressing Mode exception
Access Control Violation exception
Translation Not Valid exception
Trace Pending exception
Breakpoint Instruction exception
Compatibility exception
Arithmetic exception
(Reserved)
CHMK exception
CHME exception
CHMS exception
CHMU exception
(Reserved)
Corrected Memory Read Data interrupt
(Reserved)
Memory Write Timeout interrupt
(Reserved)
Software interrupts
Interval Timer interrupt
(Reserved)
(Unused)
Console Storage Device Receive interrupt
Console Storage Device Transmit interrupt
Console Terminal Receive interrupt
Console Terminal Transmit interrupt
(Reserved)
UNIBUS 0 device intenupt vectors______
UNIBUS 1 device interrupt vectors

IPL

IF
IF
IE

1A

ID

1-F
18

17
17
14
14

14-17
14-17

Figure 1.2 System Control Block

1 2 VAX-111750 15

Physical Address Physical Address
(24 bits) Space

OOOOOO

Installed
Memory

2FFFFF
300000

Memory Address Space
Beyond

Installed Memory
7FFFFF
800000

F1FFFF
(Unused)

F20000 Memory Controller

F21FFF Address Space

F22000

F2FFFF
(Unused)

F30000 UNIBUS 0 adapter

F31FFF Address Space

F32000 UNIBUS 1 adapter

F33FFF Address Space

F34000

F7FFFF
(Unused)

F80000 UNIBUS 1

FBFFFF I/O Space

FCOOOO UNIBUS 0

FFFFFF I/O Space

Memory
Space

I/O
Space

Figure 1.3 Physical Address Space

1 2 VAX-11/750 16

Virtual Address
(32 bits)

Virtual Address
Space

0000 0000

3FFF FFFF

FOR
(Prog

Growth

'

egion
pram)

Direction

1
4000 0000

G row th1Direction

PI Regi cm

7FFF FFFF
(Control)

à
8000 0000 \

System Regi cm

Growth Direction

BFFF FFFF J
C000 0000

Reserved

FFFF FFFF 4

Figure 1.4 Virtual Address Space

Per
Process
Space

System
Space

A page table is specified by a base register and a length register for its region; these
registers hold the base address of the table and the number of entries (or the number of
entries unused for P I) respectively. The memory management unit will check the access
privileges and m ap virtual pages to the physical pages. If the page is marked invalid, a page
fault exception will occur and the processor may retrieve the page from other storage devices
if the operating system supports this feature.

1 2 VAX-111750 17

31 30 27 26 25 24 23 22 21 20 15 14 0
V PROT M 0 OWN 0 0 Page Frame Number

--------------------- Owner bits
------------------------------- Modify Bit

-- Protection Fields
--- Valid Bit

Figure l i Page Table Entry

Each process has its own page tables for the P0 and PI regions. All page tables for the
process space must be stored in the system region. The system region is not context
switched. The system page table must reside in main memory.

The memory management unit is enabled using the MAPEN privileged register. When
it is disabled, all addresses are treated as physical, with the highest 8 tats ignored. The unit
also uses a 4K-byte cache, an 8-byte prefetch instruction buffer, and a 512-entry address
translation buffer for speed.

1.2.3 UNIBUS Subsystem

The VAX-11/750 can have one or two UNIBUS subsystems for peripheral devices.
The UNIBUS is a communication path that links I/O devices to the UNTBUS adapter, which
is part of the CPU. Conceptually, the UNIBUS is designed around memory elements with
ascending addresses starting from zero, while registers storing data or device status
inform ation have addresses in the highest 8K bytes of the addressing space. Communication
between any two devices cm the bus is in a master/slave relationship. The UNIBUS uses
18-bit addresses and 16-bit data.

The UNIBUS adapter allows the processor to access 16-bit control and status registers
on the UNIBUS. It also allows devices to perform DMA transfers to the VAX-11/750
memory and to interrupt the processor. It performs priority level arbitration among the
devices according to the four priority levels BR4 to BR7, which are equivalent to levels 14 to
17 on the processor. There are three buffered data paths and one direct data path. Because
UNIBUS data are 16 fats and the internal data path of the processor is 32 bits, buffered data
paths act as a very small cache and allow only one memory transfer for every two UNIBUS
transfers. W ith the use of buffered data paths, transfer rates can be optimized from 1M
bytes per second to 1.5M bytes per second.

1.3 Paint

1J.1 Dumas

The VAX-11/750 in the Computer Graphics Laboratory is rannpftpH to an
Adage/Ikonas RDS-3000 frame buffer through Die UNIBUS. The Hennas is a high
performance frame buffer consisting of image memory, display hardware, auxiliary
processors, and interface boards. The architecture of the Ikonas system is shown in Figure
1.6.

Video Chain

Figure 1.6 Ikonas System Architecture

18

1 3 Paint 19

Each hardware module is addressable on the Ikooas bus. Scxne parts of die hardware
are discussed briefly in this section. Fuller details can be found in the hardware manuals
[Adage82]. The arrangement of the hardware in the Ikonas address space is shown in
Figure 1.7.

The image memory consists of GM 256 type boards, providing a 1024xl024x32bit
memory. In low resolution, o ily 512x512 pixels are used for display, the rest are used as
off-screen memory. There are eight write masks to allow bit fields in a pixel to be selected
for updating. Eight shade registers are used in mask mode writing, where 32 consecutive
pixels can be written with the same value. Protection by write mask applies to pixels instead
of bits in this case.

The video chain is the collection of hardware that processes the pixel data before they
are displayed on the monitor. The frame buffer controller controls the cursor and the order
and speed at which die pixels are displayed. It also adds the video sync and hlanlring signals
to the RGB output. The crossbar switch allows the rearrangement of bits from input to
output channels. The color lookup table maps each pixel value with one of four color maps
and sends the result to the digital-to-analog converters to produce video output.

The IF/DM A host interface supports three transfer modes:

• Word mode — two host 16-tat words correspond to one Ikonas 32-bit word.

• Half-word mode - one host 16-bit word corresponds to the lower half of an Deems
word, the higher half is zero-extended.

• Byte mode - each 8-bit byte of host data corresponds to one 32-bit Ikonas word. The
byte number within the word is specified.

The EK11B board provides three classes of interrupts: I/O completion, video field, and
processor interrupt. These may be enabled separately and each has its own interrupt vector
on the UNIBUS.

The BPS (Bipolar Graphics Processor) is a microprogrammable bit-slice microprocessor
that can execute 5 million instructions per second.

The MFC (Multifunction Peripheral Controller) is a Motorola 68000-based processor.
Harmony has been ported to run on the MFC by Dave Forsey [Forsey85].

1.3.2 Paint

Typically, paint programs read from an input device such as a mouse or tablet and
trace a cursor on an output device (usually a frame buffer). When a button is depressed on
die input device, the program modifies image pixels according to a brush pattern.

1 3 Paita 20

Hex Address Device Y$X Address
FF03FFi6
f o o o o o 16

(Reserved for multiple MFCs)
37700$1777g

35000$0000g
E7FFFK,6

e o o o o o,6
MPC Data and I/O Space (Lower 16 bits only)

34777$1777g

34000$0000g
DF03FF,6

C30000i6
(Reserved)

33700$1777g

30300$0000g
C203FF16

C20000,6
Crossbar Switch 30200$1777g

30200$0000g
C103FF16

Cl0000«
Video Input Module

30100$1777g

30100$0000g
C003FF,6

COOOOOu
Frame Buffer Controller 30000$1777g

30000$0000g
BFFKKFu

870000]6
(Reserved)

27777$1777g

20700$0000g
86FFFF16

86OOOO16
Character Generator

20677$1777g

20600$0000g
85FFFFi6

850000i6
Bipolar Graphics Processor (BPS)

20577$1777g

20S00$0000g
84FFFF,6

840000,6
Matrix Multiplier (MA1024)

20477$1777g

20400$0000g
83FFFFi6

830000,6
Color Lookup Tables (LUVO)

20377$1777g

20300$0000g
82FFFF|j

820000i6
Scratchpad Memory (SR8s)

20277$1777g

20200$0000g
8IFFFF16

810000,6
(Reserved)

20177$1777g

20100$0000g
80FFFF,6

800000,6
Microcode Store (MCM4s)

20077$1777g

20000$0000g
7FFFFF,6

000000,6
Frame Buffer Memory

17777$1777g

OOOOOSOOOOg
Y$X is the notation of a 24-bit address

where the upper 14 bits are Y and the lower 10 bits are X.

Figure 1.7 Ikonas Memory Map

1 .3 Paint 21

W aterloo Paint was originally written by Eugene Flume in 1981 and was later modified
by Rick Beach and Darlene Plebon [Beach82]. It used the Thoth operating system
[Cheriton79], a predecessor of Harmony, which is also a message-based real-time
multitasking operating system.

Paint originally ran on a Honeywell Level 6 minicomputer. W hen Harmony was
ported to the MFC, Paint was also modified to run under MFC-Harmony [Forsey85]. It has
since been tested by local artists and students and improved to provide a better user interface
and real-tim e response. To test the correctness of Harmony chi the VAX-11/750, and to
develop graphics library support for future applications, Paint was ported to run under
VAX-Harmony as part of this project.

J J = (= R = f | | 1 J 1- r ~ r —
. -J J --V ---- — P r —se_____ a g j ■_■ 9 9— --------- —9 9 -—PH---V m m

2 P o i

p

• *i-— - ----------------- ---------■“

* tin g H a r m o n y

• -p- -p-

"U "

-f—> i — ?-- 1—j----- h-^ __K ■ i_ * T | ----m i----x-----r- >—■—l—r 1 c 1 K----P - ■
1 1 :

22

2.1 The Kernel

Harmony was already running cm the MFC and the software maintained cm a VAX
8600 host computer. Harmony source is organized into a directory structure, a style of
source management evolved from Thoth [Cargill79]. Because Harmony is a portable and
open system, code specific to a device, processor, assembler, or compiler is put in a
corresponding subdirectory under each directory. For compilation, an inclusion file
containing only # include statements for all of the required source files is used. The
directories used by the VAX-11/750 implementation are shown in Figure 2.1. The «ramples
and tools each contain subdirectories for source, inclusion files, and HrenmentaHrm They
are not listed in detail. Subdirectories under those servers not used by the VAX-Harmony
have been omitted. This chapter describes the implementation of the Harmony kernel on
the VAX-11/750.

2.1.1 Booting

The target machine normally runs UNIX. The first step in porting Harmony was to
get the hardware to run an alternative operating system. One way to reboot the VAX-
11/750 is by using the BOOT command in the Console Command I an g n ay for the VAX-
11/750 Console Subsystem. This command will deposit a boot control flag in a register,
which can be referenced by software. The second level booting program for UNIX «Tamings
the boot control flag and accepts an alternate file name under the root directory for the
operating system, if requested [Lalonde85]. Harmony is compiled as a C program; the
binary image (in a.out format) is copied to the root directory on UNIX and rebooted cm the
console after UNIX is shut down.

This approach is convenient for target machines running UNIX. Program development
can be done on the target machine and no other host computer is required. The
development of this version of Harmony is done on a VAX 8600 instead of the VAX-
11/750, but only to take advantage of the 8600’s relative speed and stability (the VAX-11/750
was being used concurrently to test 4.3BSD UNIX and was not always available for program
development).

The console terminal is controlled by four privileged registers. Its action is similar to a
serial port. It has separate receive and transmit interrupt vectors in the System Control
Block. For preliminary test programs, this terminal was used.

23

2.1 The Kem el 24

I-Harmony—

-doc

-example—

-alo
-clock-ebvt
-fsys-locator
-nnll-srte6t
-tabtest-teach
-timing
-doc

-boot

-sys

sro

-connect— I-contab
-debug--- 1-bUByvalt-1-vax760

I-regalar— I-vax760
-gossip-- 1-vax760
-kernel-
-11b

-servers

-vax760-asa
-alo
-arm-clock---- 1 -var7B0--1 -asa

l-nserllb-exscbed-fdev
-fsys-lkf b----- 1-vax750--1 -asa
-locator— I-vax760— I-asa -screen— |-vax7B0
-tablet--- 1 -bltpad--1 -vax7B0--

I-nserllb

-streamlo
-tty----- 1 -vax760---1 -asa
-video

-tools-

-connect— I-contab
-debug--- 1 -bnsyvalt

I-regular-gossip
-kernel

-vaxlnc— -lib

-servers—

I-streamlo
-bound
-download
-examine-flxexe
-listing— I-doc

I-src-----
II-vaxlnc-makemsr

-transfer

-clock
-lkfb
-locator
-screen-tablet
-tty

l-vax760
I-unlx

I -asa

Figure 2.1 Directory Tree for VAX-Harmony

2.1 The Kernel 25

2.1 .2 Interrupt Vectors

Interrupts and exceptions are vectored on the VAX-11/750. The vectors are stored in
the System Control Block, which is described in the previous chapter. The physical address
of the base of the System Control Block must be page-aligned. The current version of “as” ,
the VAX-11 assembler cm UNIX, does not support alignment larger than 4 bytes [Reiser83].
This alignment problem is solved by using “Id” , the UNIX linker, which is capable of
forcing the text segment origin to an arbitrary boundary. Assembling the interrupt vectors
as a separate load module, putting this as the first load module to be linked, and giving the
origin at a page boundary will ensure page alignment. If the kernel is debugged, the vectors
can also be built at run time.

2 .1 .3 Interprocessor Interrupt

In a multiprocessor Harmony implementation, processors need to interrupt each other
(and themselves) for message passing, task creation, and task destruction. This is usually
done by custom hardware. When bringing up Harmony on a uniprocessor, this interrupt can
be substituted by an interrupt local to the processor. If no appropriate interrupt can be used,
it can even be simulated in software through function calls This interrupt is only triggered
by two system routines _Block^signal_processor() and _Signal_processor, which will be
generalized as interprocessor communication code.

The interprocessor interrupt used by Harmony must be an interrupt and not an
exception, because it must be maskable so that it will be held off from the time it is raised
until the mask drops. This is to ensure that the interrupt does not occur in a critical section
within the Harmony kernel.

The interprocessor interrupt must also be of a priority higher than the device interrupts.
The software interrupts for the VAX-11/750 are of low priority; the interrupts of higher
priority than the UNIBUS and timer interrupts are used for processor, memory or bus
errors. D r. Morven Gentleman suggested that Memory Write Timeout was the reasonable
choice for substituting the interprocessor interrupt on the VAX-11/750.

The Memory W rite Timeout interrupt is easily generated by writing to the address of a
location beyond installed memory. However, since Harmony runs in kernel mode, any
piece of code can write to non-existent memory causing the same interrupt, and thus it is
hard to guarantee that an interrupt of this type is only generated by the interprocessor
communication code - it could result from an error in the program. It would be nice to
devise a method for detecting such spurious interrupts. One way to do this would be to
require that only Memory Write Timeout interrupts generated by specific instructions
associated with interprocessor communication are to be interpreted specially.

2.1 The Kernel 26

If the origin of the interrupt can be tracked by the address of the code which generated
it, the system can d ied : if it is indeed for interprocessor communication. The PC saved
during die interrupt is the next instruction to be executed after die interrupt is serviced, thus
one would expect that the saved PC would readily provide the address of the instruction that
caused the Memory Write Timeout interrupt. Unfortunately, this is not die case. The
reason is because the Memory Write Timeout is an interrupt and not an exception (which is
necessary for it to work, but also provides a problem).

W hen die interprocessor communication code generates the interprocessor interrupt, it
may not be acknowledged immediately if interrupts are masked for the critical section of
mailbox access in die general multiprocessor case (this is always die case in the current
VAX-Harmony implementation). This means that the interrupt will be delayed until the
next task is dispatched. The dispatched task could either be the current task continuing to
run or a new task. The interrupt is acknowledged when the active task has enabled
interrupts. The PC at that time will be the next instruction to be executed by the dispatched
task. Thus the PC cannot reliably specify where the interrupt was generated.

A second possibility for detecting special Memory W rite Timeout interrupts would be to
check for particular target addresses.

A t the tim e of interrupt, the page being written to can be obtained from the Control
and Status Registers of the memory controller, but the exact location within the page is not
provided by the hardware and must be decoded from the instruction being executed.
Decoding the target address would require the PC at the time of the interrupt, which we
know is not available (as explained above). Thus it is not possible to require that only
Memory W rite Timeout interrupts to particular locations be valid for interprocessor
communication, but we can demand that only certain pages be valid.

To increase protection against memory errors caused by user code, only one page in the
validated virtual address space is mapped to non-existent memory. This page is “reserved”
for generating Memory Write Timeout interrupts associated with interprocessor
communication. Any interrupt caused by an attempt to write to this page is interpreted as a
valid interprocessor communication signal. This still admits the possibility of spurious
interrupts generated by erroneous user code, but the margin for error has been significantly
decreased.

We could go one step further than this. It is possible to write protect the special page
used for generating the Memory Write Timeout interrupt at all times other than during
interprocessor communication by having the interprocessor communication code change the
protection code in the memory map before and after generating the interrupt. If this is
done, the translation buffer must be updated using the Translation Buffer Invalidate Single
Register (TBIS) whenever the protection code changes. Updating the translation buffer

2.1 The Kem el 27

slows interprocess communication and thus this extra precaution was not in
VAX-Harmony.

Using an actual interrupt is preferable to a simulation because it allows the
interprocessor communication code to be more readily extended to a multiprocessor
configuration. Although the Memory Write Timeout interrupt is not perfectly «»fe to use as
the interprocessor interrupt, in practice it has not caused any problems. No m atter what
scheme is chosen for triggering interprocessor communication, an incorrect program can
always generate a spurious interrupt, so our efforts can only reduce the ehanras of this
happening.

2.1 .4 Interrupt Stack

VAX-Harmony runs in kernel mode, so it uses the kernel stack.

The VAX-117750 has an interrupt stack. The Machine Check and Kernel Stack Not
Valid exception handlers can only run cm this stack, because if these errors occur, even the
kernel stack cannot be relied on. The PSL has a flag to indicate whether the interrupt stack
is being used. The previous stack (either the kernel stack or the interrupt stack far VAX-
Harmony) is switched back to when returning from an interrupt, depending upon the
stacked PSL. The VAX architecture does not allow a switch from one of the normal stacks
to the interrupt stack, which would be convenient for VAX-Harmony when handling the
M achine Check and Kernel Stack Not Valid exceptions.

If the handling of these faults involves message passing or other code that causes a
return from interrupt, stacks will be changed and data may be clobbered. It is preferable to
use busywait I/O and no message passing in these special handlers. Since an application
program cannot recover from these faults in most cases, this inconvenience should be
acceptable.

If the flexibility in handling these errors is important, Harmony can run exclusively on
the interrupt stack by setting the interrupt stack flag in the PSL. Dr. Morven Gentleman
suggested that this is preferable because the stack switching can be avoided. VAX-Harmony
will be modified to run on the interrupt stack in the future.

2.1.5 Stack fram es

A task is always dispatched by building an interrupt stack fram e on the stack and
invoking the return from interrupt (REI) instruction.

The PSL and the PC are pushed onto the stack when an interrupt is acknowledged and
the hardware builds the stack frame. Depending cm the type of interrupt or exception, zero
to eleven param eters and possibly a type code may be pushed onto the stack before control is
transferred to the interrupt handler. A n interrupt stack frame is shown in Figure 2.2.

2.1 The Kernel 28

■-- - ^ -------- SP
i parameters |
i and !
' type code i

PC

PSL

Figure 2.2 Interrupt Stack Frame

There is nothing in die stack frame to indicate the number of parameters pushed onto
the stack (except for the special case of Machine Check). Thus die return from interrupt
instruction always adjusts die stack under the assumption that there are no parameters or
type code in dm stack frame. Because of this die parameters must be removed explicitly
from the stack fram e by the interrupt handler prior to issuing the return from interrupt
instruction. A fake interrupt stack frame is constructed containing only die PC and PSL
which replaces the stack frame created by the hardware.

W hen a task calls a primitive such as jSend, „Receive, or _Await_intemipt where it
Hocks, it need not return from die function call normally; instead it can be removed from
die ready queue until it is redispatched; at that time it will execute the instruction following
the primitive. This optimization is straightforward on the MC68000 processor, because the
only difference between an interrupt stack frame and a function call stack fram e is the saving
of the status register. When the task calls the primitive, the status register is pushed onto its
stack to complete the interrupt stack frame. This is less true for the other processors in the
MC68000 family. On the VAX, the function call stack frame is much different from the
interrupt stack frame.

The VAX-11 instruction set provides two instructions for function calls: the C AT .70
instruction for functions whose arguments can be anywhere in memory, and the CALLS
instruction that passes the argument list cn die stack. The C compiler compiles all function
calls into the CALLS instruction. The stack after executing this instruction is shown in
Figure 2.3. The stack frame for the CALLG instruction is the same, but it has no argument
count or list.

Assuming the PSW options are standard for the primitive functions in question, it takes
about five instructions to reconstruct an interrupt stack frame in the place of the function call
stack fram e.

2.1 The Kernel 29

Stack Growth

Condition Handler

stack argument register
alignment type save PSW

size flag mask

a d AP

a d SP

Return PC

a d R0...R11

(0 to 3 bytes stade alignment)

Numarg

t
I
I
I
L .

Numarg Longwords of Argument l is t

SP
FP

AP

Figure 2.3 Function Call Stack Frame and Argument List

To let die task return normally from the primitives without optimization, an interrupt
stack fram e can be built an top of die current stack, with die return PC set to a return from
function call (R ET) instruction. This deans up die function call stack frame. This is
simpler, but it was found to be several microseconds slower than reconstructing stack frames
after both approaches were tried. The faster approach of substituting a fake interrupt stack
frame is used in die current implementation.

This complexity of the function call stack frame also comes into play when initializing
the stack of a task. Harmony allows a task to destroy itself by letting it return to a
_Suicide() function. Instead of just supplying the entry point as in MFC-Harmony, a
complete stack fram e has to be constructed for this purpose. To optimize the speed and
space, a CALLG stack frame is constructed.

2.1 The Kernel 30

2 .1 .6 Function Entry Point

A function in VAX-11 assembler has an entry mask at the beginning. The entry mask
is a 16-bit word specifying the function’s register usage and overflow enables. It determines
which of die general registers RO to R ll are saved in the stack flam e and restored when
returning from die function. The actual entry point is die word immediately after the
location defined by the function name. This is the entry address to put on the stack when
creating a task or forcing it to destroy its children when it dies, because in these cases the
function is entered through task dispatching instead of the function call instructions which
recognize the entry mask.

Second level interrupt handlers are not invoked by the function call instructions but by
jumping to the entry point from the first level handlers. For this reason, the handlers do not
have entry masks.

2 .1 .7 Memory Management

The VAX-11/750 has a memory management unit that translates virtual addresses to
physical addresses. It controls memory access by page protection. A fter the VAX-
Harmony kernel ran in physical memory, the memory management capability was added.
Although the translation of virtual to physical addresses is usually the identity
transform ation, the memory protection is useful. For example, it can be used to restrict the
region of non-existent memory in the interprocessor interrupt generation mentioned above,
or to write protect the interrupt vectors and the text (program memory) region from
accidental modification.

The virtual address space of the VAX-11/750 is arranged so that the system space
intended for the operating system is in the higher-numbered half. The lowest region is for a
user process; its memory map is reloaded for each process when the context switching
instructions are used. This design is intended for a multitasking environment where each
task can use a large virtual address space that may be mapped onto external storage devices
and retrieved by demand paging.

In a real-tim e operating system such as Harmony, only physical memory is used to
ensure response tim e. If the system ran with memory management disabled, all addresses
would be directly interpreted as physical memory addresses. However, the memory mapping
facility is still useful to provide memory protection. This requires that memory management
be enabled and thus that a decision be made as to which of the virtual memory regions
would be used in VAX-Harmony.

W ith appropriate settings of the memory management unit, any of the three regions
(system, FO and P I) could be used to map directly to physical memory by translating virtual
addresses directly to the corresponding physical addresses.

2.1 The Kernel 31

To allow a greater flexibility in terms of selective memory protection, the FO region in
process space is used instead of the system region, whose memory mapping is not updated
during a context switch. Since Harmony uses a contiguous address space, the P I region is
ignored because it runs “backwards” from die FO region.

For reasons of speed, rally one page table is used for all the tasks running on VAX-
Harmony. Potentially, each task could have its own page table with different write
protection patterns. This would prevent a task from accessing memory sections reserved for
other tasks and would make stack overflow easier to detect within a task.

Even though VAX-Harmony does not use the system space directly, the process space
page tables m ust be located in system space, therefore the system space must also be
defined. A simple solution is to double-map the process space onto the system space, so that
both refer to the same physical region. One page table is built, and both the Systran Paw
Register (SBR) and the FO Base Register (FOBR) point to it. The P I Base Register (P1BR)
is initialized to an arbitrary address in the system space and the PI Length Register (P1LR)
is set to 2 million (because it holds the number of non-existent pages), so all accesses to PI
region are invalid.

The translation of virtual addresses for the process space involves two memory
references. W ith the cache and the translation buffer, the cost should be acceptable. The
details of address translation are given in Figures 2.4 and 2.5.

For the Paint application, 256K bytes of memory is sufficient. The UNIBUS adapter
registers rally occupy the lower 4K bytes of the UNIBUS adapter address space; for the
UNIBUS I/O space, the upper 8K bytes are mapped to device control and status registers
while the rest are mapped to physical memory for DMA use. One page is mapped for the
three memory controller registers for error checking. Finally, a single page beyond installed
memory is mapped for generating the interprocessor interrupt. The mapping of virtual
addresses is illustrated in Figure 2.6.

Due to the double mapping, the contents of memory in the system region are the same
as in the FO space.

Current implementations of Harmony assume that each processor uses a different
region of a large contiguous address space in multiprocessor implementations, but that all
processors can access each other’s memory. Harmony currently allows a maximum of 16
processors. Because the MC68000 can only address 16 million bytes, each processor is
defined with memory starting on a megabyte boundary. This is integrated into the current
kernel software for Harmony.

The standard Harmony task id is 32 bits long, the lower order 24 bits of which are a
pointer to the data structure describing the task. Bits 20 to 23 naturally identify which
processor the task is running on. The higher order 8 bits are used to hold an integer

2.1 The Kem el 32

System Virtual Address:
31 30 29 9 8 0

2 1 | byte
1
•

-------------------1
111

31 23! 22 l 2 ! 1 0
o 1

1 0
Check Length

SBR: + Phys Base A dr of SPT 0

Phys A dr of PTE

31 30

Fetch

21 20 15 14
PTE: PFN

Check Access

31 24! 23
Physical Address:

9 ! 8 <0

Figure 2.4 Virtual to Physical Address Translation in System Space

identifying the task. With this convention, no task can use more than l million bytes of
local memory. These limits are parameterized and localized in several functions. They can
be changed if necessary. For this application, the limits cause no problems, though it may
be desirable to use the full 32-bit address space and more processors for larger applications.

2.1 The Kem el 33

31 30 29
Process Virtual Address:

FOBR:

31 23 '22

9 8
byte

0 1 0

Check Length

Sys Virt Base A dr of FOPT 0

Sys Virt A dr of PTE 0

Translate - Refers to
Figure 2.4

Phys A dr of PTE 0

Fetch

31 30 21 20 15 14 0
PTE: 1 0 PFN

Check Access

31
1

24123 r 9 8 0
Physical Address: o 1 1

Figure 2 ^ Virtual to Physical Address Translati cm in F0 Space

2.1 The Kernel 34

Virtual Address Physical Address

OOOO 0000k
Program and Data

OOOOOO16

0003 FFFF16 03FFFFi6

0004 0000i6
UNIBUS 0 Adapter Registers

F30000i6

0004 OFFF16 F30FFFW

0004 1000X6
UNIBUS 0 VO Space

FFEOOO16

0004 2FFFl6 FFFFFF16

0004 3000i6
UNIBUS 1 Adapter Registers

F32000|6

0004 3FFFi6 F32FFFi6

0004 4000i6
UNIBUS 1 VO Space

FBEOOOie

0004 5FFFi6 FBFFFF16

0004 600016
Memory Controller Registers

F20000i6

0004 BIFF» F201FF16

0004 6200x6
For Interprocessor Interrupt

30000016

0004 63FFi6 3001FF16

Figure 2.6 VAX-Harmony Memory Map

2.2 Servers

The Harmony source contains many servers. Only some are applicable to die VAX-
11/750. The aio server is for analog-digital conversions cm an Analog Devices RT1-732-V
board. The video server is used to control a Datacube Video Graphics Module. The arm
server controls a robot arm. None of this hardware is available cm the VAX-11/750.

The file device server under fdev and die file system server under fsys together
implement a file system far Harmony. The VAX-11/750 has only erne disk, which cannot be
shared by UNIX and Harmony. These two servers were not ported, but they are useful for
target machines that are dedicated to running Harmony.

The exsched server is an explicit scheduler. It uses a repeated event such as the video
field interrupt for the Ikonas frame buffer to fake other interrupts for an alternative
scheduling scheme. The code for the exsched server in the standard version of Harmony
does not depend cm the hardware generating the repeated event since it measures timps in
units of the repeated event interrupts. No changes were needed for the VAX-117750.

2.2.1 Tty server

Due to die temperature and noise level of the machine room where initial debugging
took ¡dace, die first server to be ported was the terminal or tty server.

The VAX-11/750 has a DMZ32 24-line asynchronous multiplexor for some of the I/O
devices. The lines are divided into three octets. Each octet has its own receive and transmit
interrupts and a receive silo for buffering character input. The DMZ32 can also perform
DMA transfers from main memory. The DMZ32 control and status registers are shown in
Figure 2.7.

Each line has four Indirect Registers: Indirect Register 0 is both for writing to the
transm it silo and reading silo status, Indirect Register 1 is a command/status register for the
line, Indirect Register 2 is for the DMA buffer address, and Indirect Register 3 contains the
DMA character count. Each of these indirect registers can be accessed by writing the
register number and line number to the corresponding fields in the Octet Control and Status
Register.

The terminals are connected to the DMZ32 on the UNIBUS instead of normal serial
ports. Though the multiplexing overhead is handled by the DMZ32, it causes other
problems. Each of the eight lines in an octet has its own transm it silo, but there is only one
window (Indirect Register 0) to access all eight silos. More than one device in the same
octet will cause competition for the window. The selection and access of the indirect register

35

2 2 Servers 36

Configuration Control and Status

Diagnostic Control and Status

Octet Control and Status

Line Parameter

Receive Buffer/Receive Silo Parameter

Indirect Registers[0>3]

octet 1

octet 2

\

■ octet 0

/

Figure 2.7 DM232 Control and Status Registers

must be done with interrupts disabled to avoid misdirected data. Alternatively, all output in
one octet could be handled by a octet driver task, instead of using one output taslr for each
device.

2.2.2 Screen server

The screen server is an output control server; it controls the cursor for the terminal so
that different tasks can use the same terminal for output. The screen server uses Harmony
stream I/O . A new terminal type used on the VAX-11/750 was added to this server.

2.2.3 Tablet server

A Summagraphics Bitpad One tablet is connected to the DMZ32. The tablet has two
different modes of operation: in the ASCII mode, the tablet coordinates are readable as
Arabic numerals and each coordinate is composed of 12 bytes; in the binary mode, each
coordinate is encoded in 5 bytes.

2 2 Servers 37

The tablet server is similar to the terminal server in organization. It receives input from
a DM Z line and occasionally writes commands to the same line. A n overseer task forces
input if the tablet has not beat moved in a specified period of time. The tablet server allows
the user to define windows which are regions on the tablet. Different taries can use different
régirais on die tablet. The rate of sampling can be varied. To reduce overhead and jitter,
the coordinates are filtered by the tablet server.

The standard tablet server handles coordinates in ASCII mode, which is not efficient
enough for most real-time applications. The server was modified to use binary mode on die
VAX-11/750.

2 .2 .4 Locator server

The locator package is a general input package written by Dave Farsey. It provides a
reasonably consistent interface to all die graphics input devices available in the Computer
Graphics Laboratory, including tablets, mice, and joysticks. It is implemented both as a
UNIX library and as a server cm MFC-Harmony. The locator server allows die user to
provide a viewport, which defines the region of the physical device to be used, and a window,
which defines a range of values desired from die device. The current position of the locator
is mapped to a virtual cursor location in the window. Unfortunately this convention conflict*
with that used by die tablet server. The locator server was prated to run cm VAX-
Harmony.

2.2 .5 Clock server

The clock server allows a task to get and set the time and to delay the execution of the
task itself for a specified period of time.

The MFC uses a M6840 timer module. The M6840 has a 16-bit count register, into
which the user writes an unsigned integer. The tim er decrements the m nnt every
microsecond until it underflows and generates an interrupt. The interval between interrupts
is called the alarm resolution and must be less than 64 ms because of die limitation impmsed
by the size of the count register.

A programmable timer is part of the VAX-11/750 hardware. Access is only through
privileged registers. The dock rate is 1MHz, the same as the M6840 module, but die count
register is 32 bits instead of 16, allowing a larger alarm resolution and thus less overhead.
There are differences in the way die timer is operated in die VAX-11/750. In particular, the
count register must be loaded with the negative alarm resolution since the counter goes up
instead of down.

2.3 Software Development Tools

Harmony supplies three basic host-based tods: listing, bound, and examine. The debug
to d is embedded in a Harmony program and can be considered as part of Harmony. The
other available tods — download, fixexe, makemsr, and transfer — are specific to other
hardware and not applicable to the VAX-11/750.

2.3.1 Listing

Harmony source is organized in a directory structure with many small filws C
compilation is done with include files that reference the appropriate source files. The listing
to d generates a readable program listing that has a cover, a table of contents, and numbered
pages with headings. It can operate cm die indude files or it can print a list of files directly
as text files. This to d was modified at the beginning of the project to run on 4.2BSD
UNIX.

2 3 .2 Bound

Bound helps determine the stack size required by each task. It constructs the call graph
of the root function and all the functions called by that function, then calculates its stack si ye
including the maximum stack requirement of all its subgraphs. Bound cannot be fully
automatic because of san e exceptions. If there are indirect function calls through pointer
variables, the possible functions must be supplied interactively. If the call graph involves a
cycle (implying possible recursion), the maximum number of levels of recursion must be
supplied by the user. If the stack pointer is loaded with an unknown value, bound will also
ask the user for a stack size.

This to d operates cm an a.out format executable image for the VAX-11/750. For each
root function the user specifies, bound will produce a m in im um stack requirement and a
larger one that provides for Harmony exception h an d lin g . The latter should be chosen
during program development to allow for errors. Shawn Neely ported bound for the VAX
architecture.

2.3.3 Examine

Examine is a to d used on an executable image; it can be used to print external symbols
and initialized data, disassemble instructions, and patch values in the image. T h is to d is not
yet implemented for the VAX-11/750.

38

2 3 Software Development Tools 39

2.3 .4 Debug

Debug is actually a library of functions rather than a debugger task or server. The user
must compile calls to the „Breakpoint function into the source code. Once invoked, debug
runs as the active process without affecting other tasks, allowing the user to inspect and
change memory locations, display status information and system data structures, grami™», the
structure of the memory pool, and display the call stack of a task.

Debug uses either regular I/O or busywait I/O, so the debugging of the kernel can be
done without the stream I/O facility. There are two subdirectories — busywait and regular —
under the debug directory; the user can link in either one of the two libraries with the
program.

Debug has been modified to run on VAX-Harmony. As mentioned earlier, the stack
frames for various interrupts and exceptions are different. Fach must be considered
separately in the _Put_traceback() function for displaying the call stack.

3 A Prototype Graphics Application

livori ijyiHj ijyrfri

40

3.1 Dumas

MFC-Harmony has a well-defined Ikonas library. The same interface is retained for
VAX-Harmony, but access to fire Ikonas is a bit different

The MFC is on the Ikonas bus, providing it easy and fast access to die other hardware
on the Ikonas. The MFC address space has 312 8192-byte windows, each mapped onto a
contiguous Mock of 2048 Ikonas words chi a 2048-word boundary in die Hennas address
space. Each window has a translation control block that supplies m apping and access
information. W ith this mapping, the MFC can access the Ikonas address space as memory.

In die VAX-11/750, the Ikonas is connected to the UNIBUS through die Hennas
EF/DMA host interface. Its control and status registers in the UNIBUS I/O space are shown
in Figure 3.1.

UNIBUS Word Count Register

UNIBUS Address Register

UNIBUS Status/Command Register

Data I/O Register

Lower Ikonas Address Register

Upper Ikonas Address Register

Ikonas Status/Command Register

Figure 3.1 UNIBUS Control and Status Registers for the Ikonas

Programming data transfers between the Ikonas and its host, in this case the VAX-
11/750, is discussed in detail in Ikonas documentation [Adage82a], a summary of which is
given below.

The VAX-11/750 can perform direct programmed I/O chi the Ikonas. The procedure is
as follows:

41

3.1 Ikonas 42

• Set Ikonas Command Register (dear DMA bit)

• Set Lower Ikonas Address Register

• Set Upper Ikonas Address Register

• Set UNIBUS Command Register

• For write operations, write Data I/O Register; for read operations, either wait for
interrupt (enabled in UNIBUS Command Register) or busywait on the READY bit in
the UNIBUS Status/Command Register, then read Data I/O Register.

The VAX-1I/750 can also initiate DMA transfers to and from the Ikonas. This is
handled by the IK11B board and does not take up the VAX processor’s time. The
procedure is as follows:

• M ap UNIBUS I/O space to VAX main memory

• Set Ikonas Command Register (indude DMA bit)

• Set UNIBUS Word Count Register

• Set UNIBUS Address Register

• Set Lower Ikonas Address Register

• Set Upper Ikonas Address Register

• Set UNIBUS Command Register

• W ait for interrupt or busywait on the READY bit in the UNIBUS Status/Command
Register

The address given in the UNIBUS Address Register is an 18-bit address in the
UNIBUS I/O space. The first 248K bytes of this space are mapped to an area in physical
memory. The m ap information is in the UNIBUS adapter registers, which are shown in
Figure 3.2. The UNIBUS map entries are described in Figure 3.3. They are very similar to
the page table entries for the memory management unit. The address translation is
summarized in Figure 3.4. The page number in the UNIBUS address is extracted and the
corresponding m ap entry is looked up. If the valid bit is set, the page frame number will be
extracted and concatenated with the byte number to form the physical address.

The data path number in a UNIBUS map entry specifies which data path is used. Data
path 0 is the direct data path, while paths 1 to 3 are buffered data paths, where data are
grouped into 32-bit longwords to minimize transfers. If a buffered data path is used and the
number of bytes transferred is not a multiple of 4, the data path must be flushed using the
corresponding D ata Path Register in the UNIBUS adapter registers.

3.1 Humas 43

Ofiset(hex)

000

004

008

00C

010

014

018

040

OSO

800

ECO

Offset relative to base of UNIBUS Adapter Address Space
Registers umised in the VAX-11/750 are not shown

Figure 3.2 UNIBUS Adapter Registers

Configuration Register

Control Register

Status Register

Diagnostic Control Register

Failed Map Entry Register

Failed UNIBUS Address Register

Reserved

Data Path Registers[0-4]

Reserved

Map Registers[0-495]

Reserved

31 30 26 25 24 23 22 21 20 15 14 0
V 0 0 0 Page Frame Number

--------------------- Data Path Number
----------------------------------- Offset Bit

--- Valid Bit

Figure 3.3 UNIBUS Map Entry

Since the UNIBUS space is mapped onto physical memory and bypasses the memory
managem ent unit, no memory access protection is provided. When developing a driver for a
UNIBUS device, die following safety measure is useful: map one more page than necessary
and explicitly m ark die last page invalid. If an error causes the driver to transfer too large a
Nock of data, it will result in a fault instead of writing over the memory [Martindale86].

3.1 Ikonas 44

Figure 3.4 UNIBUS to Physical Address Translation

Four functions are implemented for access to the Ikonas: JkD ioR ead, JkD ioW rite,
JkD m aR ead, and JkD m aW rite. Their usage is sim ilar to the functions of those n a m « in
the Computer Graphics Laboratory Ikonas library on UNIX. All other functions in the
VAX-Harmony Ikonas library use these four as the lowest level interface to the Ikonas.
Because function calls are expensive cm the VAX-11/750, many apparent functions are
converted directly to these primitive function calls using the #deflne feature of the C
preprocessor.

The MFC maps Ikonas memory to windows in its address space using Translation
Control Blocks. The Paint program accesses Ikonas memory mostly through direct I/O or
DMA of a short length. Both are slow compared to the MFC’s access times. Even though
DMA of a longer length is more efficient, it will take a longer time overall and require a lot
of space. Therefore access to a large area in Ikonas memory is usually done by the bat-slice
microprocessor.

There is as yet no formal server to exclusively handle all access to the Ikonas. Any
process can call the functions provided in the library. The current im p lem en ta tion assum es

that no two processes in the application program will use the Ik o n as at the sam e tim e or the
results will be unpredictable. In more complicated applications, where this assum ption will
not hold, a simple high priority proprietor task can be added to gu a ra n te e sequen tia l access

3.1 Ikonas 45

and mutual exclusion [Gentleman81]. The proprietor tasle waits for die Hennas to be ready,
then receives from any clients asking far permission to use die Ikonas, replies to grant the
permission, and waits for the next I/O completion.

3.2 Paint

The Paint program was designed using the methodology of anthropomorphic
programming [Booth84]. The program consists of a number of tasks that communicate with
each other in a fashion analogous to humans in an organization. The organization erf the
tasks in Paint is summarized in Figure 3.5.

Graphics
Tablet

Fram e Buffer
Cursor

TTY
Screen

Try
Keyboard

Fram e Buffer
Display Memory

Figure 3.5 Organization of Tasks in Paint

In the diagram , ellipses represent tasks and arrows indicate die direction of sending in
message passing. More details on the design of the Paint program are found in «nnthpr
paper [Beach82]. The tablet secretary actually talks to the Harmony tablet server instead of
directly using the tablet hardware. The TTY administrator and the keyboard ligftw r access
die alphanumeric terminal through die use of Harmony stream I/O.

46

3 2 P aint 47

The Paint program had already been translated to C by Dave Forsey, so die changes
required to run under VAX-Harmony were mainly the device dependent code, including the
Ikonas interface and the tablet and term inal servers.

The source directory tree for Paint is shown in Figure 3.6.

I-PAINT

-BRUSHES

-CURSOR----------1 -CURSOR_DEFNS
I-OUTLINES

-FB--------------1-MICRO

-LEVEL 1----------1-TEXT

-TABLET

-TEXT

I-CONSTRAINTS
I-FILE

-USER_INTERFACE— I -FILL
I-PAINTING
I-TEXT

Figure 3.6 f tin t Source Directory Tree

The Paint program has its own set of functions for the Ikonas (maintained under die
FB directory), the lowest level of which comprises four functions: Ikprd l, Dqpwrl, Ikprd, and
Ikpwr. These handle the reading and writing of a single pixel and the re a d ing and w riting o f

multiple pixels, respectively. The four functions parallel the low level Ikonas library
functions in VAX-Harmony. The Paint program was modified to call the co rresponding
VAX-Harmony Ikonas functions with appropriate changes to their parameters.

Some other functions were slightly modified to conform to the VAX-Harmony Ikonas
library. D ata structures that assumed the MFC byte ordering (higher order in the first byte)
were reorganized for the VAX.

The tablet secretary uses die locator server package. The current locator package has
enough capability so that the functions of the tablet administrator can be substituted by
locator interface and utility functions, but die saving of message passing time is only
significant in the uniprocessor case when the processes are not sam pling tablet coordinates
more frequendy than they are received, so the original organization of the tasks is
u n ch an g ed

3 2 P aint 48

The TTY_Administrator is similar to the screen server used by Harmony. It was only
modified to handle a different type of terminal.

The VAX-11/750 has rally one disk, which cannot be shared by UNIX and Harmony.
The file system servers were not ported, so die saving of image data in rfislr files is not
implemented. The microcode for the bit-slice processor and the encoded menu area data
must be downloaded by UNIX before booting Harmony. This would be easily accomplished
with a Harmony file system.

MFC-Harmony uses the VAX connected to the Ikonas as a file server because the
Ikonas had no file system. The VAX runs UNIX, so all of its file facilities are available to
MPC-Harmony with appropriate server code to tra n s fer data to a n d from the Tlmnas «sing
the standard UNIX library for the Ikonas.

The Ikonas connected to the VAX-11/750 cannot use this same srheme tw-ance UNIX
is not running on the VAX-11/750 when VAX-Harmony is running. If a second VAX
(such as the VAX 8600) were simultaneously connected to the Ikonas, die existing file
server code from the MFC-Harmony version of Paint could be used without modification.
This was in fact the intend cm when the Ikonas was originally configured with two IF/DMA
host interface boards. Unfortunately, an upgrade from the Ikonas RDS-2000 to the RDS-
3000 incorporated larger boards.

On the RDS-3000, the IF/DMA host interface board is part of the f ram e buffer
controller board. Therefore having two host interfaces means having two f ram e buffer
controllers for the same frame buffer. Normally this would cause problems. However, the
Computer Graphics Laboratory succeeded in disabling the frame buffer controller on one
board, thus successfully connecting two hosts to the same Ikonas fra m e b uffer This
configuration ran successfully using a Honeywell Level 6 (the original vehicle for F ain t) as
the first host and a PDP-11/45 and then a VAX-11/780 as the second host.

The hardware boards were subsequently modified by Adage when die RDS-3000 was
“ upgraded” to m eet Adage’s standards for maintenance contracts. Adage now in fo rm s the
Computer Graphics Laboratory that it is impossible to configure two hosts on the Ikonas
bus. If this were done, however, it would possible to take advantage of a second UNIX
system as a file server for Paint cm VAX-Harmony.

i—#i— :—U--
t i t Va—; - t E -̂1 ^--- 1---J <B ------- 4̂5------- 1BE— i 2__ __■ < -- \9----- —iS — -----

4 Conclusions

__ Æ t ________ aA!__■- _̂_ --- » - - ̂ 1- ------------Z- Z. 1 1—1—12____ K__ * r s r--- 1----- í--------n---P--- B_|__ ----P------ Ÿ --- i--------1----- m B . 151-- 1----- rr̂ ■■

49

4 Conclusions 50

The porting of Harmony to the VAX-11/750 has been completed. One advantage that
facilitated this porting was that the VAX architecture is designed for a multiuser time
sharing environment and various types of applications. This is reflected by the range of data
types and the hierarchical control schemes available. Harmony requires only a subset of the
many capabilities that VAX computers offer. Porting Harmony to the VAX thus did not
involve any hardware incompatibilities. The only drawbacks were more tim e spent on
studying the system and the cost of initializing some of the unused hardware features offered
by the VAX architecture (such as initializing unused registers in case of error).

Many of these features were not used because it was feared that their use might
degrade the real-tim e performance of VAX-Harmony. If a faster VAX-based computer is
used in the future, these features may be added to Harmony to extend its power while
maintaining its real-time performance.

A n example of a hardware feature that is used in VAX-Harmony is the memory
management unit. The Harmony kernel was first brought up with the memory m anagem ent
unit disabled. Harmony does not use demand paging, so a Harmony application can use
physical memory directly. The reason for adding memory management is that Harmony
runs in the kernel mode and the C language offers little error checking, so the memory
management unit is set up to provide memory protection. The cost of this checking is the
overhead of address translation, which is not very significant.

VAX-Harmony uses one page table for all its processes because of efficiency
considerations — context switching that required new page tables might have a significant
effect cm timing. If this turns out not to be significant, it would be possible to further utilize
the memory management by having a different set of page tables with selective protection
for each process.

Harmony itself is a well-designed and portable system. It compares favorably to other
real-tim e operating systems [Parr86]. There were no problems porting the device
independent code for the Harmony kernel. The integration of I/O devices was flexible
enough for all the devices used in VAX-Harmony.

The source code organization of Harmony facilitates the transition from one hardware
environment to another. It isolates the parts requiring change and makes managing the
source code for an increasing number of architectures easier. If the device dependent code
for the different architectures were kept in the same file for conditional compilation, it would
have been incomprehensible.

Harmony is a relatively new system, so little documentation is available. The technical
report cm using Harmony covers the user’s view of Harmony, but the internals of Harmony
are not discussed in detail. The best way to understand Harmony is still by studying the
source code, which is the reason Harmony was described as a “hacker’s system” [Forsey85].

4 Conclusions 51

This was probably the most difficult and time consuming part of pm-Hng Harmony. For
example, a working knowledge of the MC68000 is needed when translating the low level
assembler code, in addition to the knowledge of Harmony and the VAX. The new
documentation in Release 2.0 is helpful for understanding Harmony. For the internals,
M arc Riese’s Master’s Essay contains a description of Harmony code that supplements the
in-line documentation [Riese86].

The debugging to d is still primitive. Since it is part of Harmony, it needs to be
debugged itself. However, further development of the debugger is under way. In addition
to the improvements from the new release, local enhancements are «lm bring pdded
[Brossard86].

This chapter contains discussions about the results of the VAX-Harmony port. The
first section provides some timing data and performance evaluation. The second section
discusses some limitations and drawbacks. The last section describes some recent extensions
to Harmony and directions for future research.

4.1 Evaluation

The following data were obtained using die timing example in Harmony. Farh
instruction was executed in a loop of 10000 iterations and the time taken after the loop.

Time in microseconds:

VAX VAX MPC
Operation Raw Corrected Corrected

null loop 5.1 0.0 0.0
32bit shift(< < 16) 9.9 4.8 6.48
16bit shift(>>16) 12.84 7.74 7.4
16bit add(reg) 12.68 7.58 4.32
16bit add(RAM) 12.83 7.73 6.95
16bit mult 17.24 12.14 5.48
16bit div 20.3 15.2 82.47
32bit add 8.28 3.18 2.4
32bit mult 11.4 6.3 58.35
32bit div 15.78 10.68 79.98
floating add by 0 13.08 7.98 304.82
floating mult by 0 13.36 8.26 382.73
floating mult by 1 13.9 8.8 418.95
floating div by 1 17.96 12.86 1005.74
null function call 25.85 20.75 16.7
single arg function 27.59 22.49 20.83
Send/Rcv/Rply 2212.3 2207.2 1668.54
Destroy(Create) 18678.0 18672.9 13220.5

single pixel read 96.99 91.89 11.55
single pixel write 107.44 102.34 4.77
DMA read(l pixel) 485.95 480.85
DMA w rite(l pixel) 483.24 478.14
DMA read(512 pixels) 3818.04 7.45
DMA write(512 pixels) 3267.95 6.37

The corrected timings column have the looping overhead subtracted. For 512 pixel
DMA operations, the corrected timings are per pixel.

52

4.1 Evaluation 53

The minimum instruction time for the VAX-11/750 is given as 0.32 microseconds. The
MPC is an MC68000 board, with an 8MHz clock rate and a m in im u m instruction tim e of
0.05 microseconds. The 32-bit multiplication and division are slow on the MFC because it
does not have these instructions in its instruction set [King83]. The 16-bit divide is slow
because the compiler used (M il ’s m e) always does a 32-bit division to m ain ta in precision
[Forsey85]. The floating arithmetic figures are better cm the VAX-11/750 because of its
floating point accelerator.

„Create and „Destroy are slow because of the many f unctio n calls an d extra
initialization. „Create takes about 12 ms and „Destroy about 6 ms. If the _Tune_Getvec
function is called first to optimize the memory pool search algorith m , task- creation tim e can
be cut down to about 5 ms.

Access to the Ikonas is much slower on the VAX. The Paint prog ram was th u s also
expected to be slower than the original MFC implementation. However, when the Pain t

program is executed, the response is comparable to the MPC version - the tablet input is
handled in real tim e with no perceivable delay. This proved the strength of Harmony as a
real-tim e system, making up for the loss of processor power.

4.2 Limitations

The VAX-11/750 is designed for a uniprocessor environment. It cannot be used in a
multiprocessor Harmony implementation without external hardware support.

Q a a uniprocessor system, there is always a processing limit above which real-time
response will fail. Currently the message passing cycle «1 VAX-Harmony takes about 2.2
ms, therefore the limit of message passing cycles per second is about 450 on the VAX-
11/750. In the Paint program, die tablet is sampled at 1200 baud, or about 30
per second, allowing the equivalent of 15 message passing cycles for processing each new
tablet position. A tablet coordinate is passed through a chain o f tasks and translated to
some action on the frame buffer. This involves about 10 message passes in the current
implementation, so the limit is not readied. If the tablet is sampled at 2400 baud, real-time
response will not be possible.

If the uniprocessor implementation cannot meet the demand, a natural solution would
be adding more processors. Multiprocessors based cm the VAX architecture have been
developed; they will be considered for a future multiprocessor Harmony implementation.

Many features of the VAX-11/750 are useful for supporting multiuser time-sharing but
not real-tim e systems. Some examples include the detailed function call stack frame, the
memory management unit with four access modes, hardware-supplied data for demand
paging and per-process memory maps, and the fifteen software interrupt levels for priority
interrupt scheduling.

The VAX instruction set provides two instructions for loading and saving the process
context, which includes the stack pointer for each access mode, all the general registers, the
PSL, and the mapping registers for the process space. These instructions are to support the
operating system in context switching. However, the save context instruction also invalidates
the translation buffer, and switches to the interrupt stack. Using these instructions requires
manipulating unused registers and increases memory access tim e, therefore they are too
expensive to use in VAX-Harmony. Instead, the stack manipulation instructions are used to
load and save the general registers, as in MFC-Harmony.

Although useful for large time-sharing systems such as VMS or UNIX, these features
may actually hinder the performance of a simpler real-time system like Harmony when the
processor power is limited.

The UNIX-based arrangement of UNIBUS devices places all I/O devices at level 15.
This may cause more urgent interrupts (like those of the tablet) to be missed. This is not
using the priority scheduling system in Harmony to best advantage and should be changed.

54

4.3 Extensions

Harmony is a relatively new system. It still has room for improvement.

W ith the new Release 2.0, Harmony adopted a standard for software maintpnaiw»
Directories are set up for recording bugs, new features, and details about changes made.
W hen mainta ining Harmony for several different architectures simultaneously, changes OT
bug fixes to device independent code must be observed by all versions. During die VAX-
Harmony port, one such change caused an unexpected and hard to find error. Therefore
this new maintenance scheme will be a useful addition to Harmony. On-line documentation
has also increased, both as feature documentation and Harmony application notes. These
are useful for understanding the system.

The debugger in Harmony was very limited. Every change of breakpoints requires a
recompilation. Embedding the debugger in the code changes the timing and the behavior of
a program. The debugger in Release 2.0 allows breakpoints to be planted dynamically, but
only on a per-process basis. It also provides more detailed processor status information and
use bits far the user to keep trade of events on a processor. The new debugger is planned to
provide new features in three areas: traditional debugging tods far non-real-time programs,
tods designed specifically for real-time multitasking multiprocessor program«;, and a better
user interface.

Rob Parr implemented an Ethernet server for Harmony, allowing it to communicate
with and use the resources of other machines, potentially expanding its power [Parr86a],

The message passing time in Harmony is still slow. The possibility of implementing
message passing in hardware has been examined in the Sylvan project [Riese86] and cm the
Dy4 hardware, but no research in this direction has been done cm the VAX architecture.

Harmony has been demonstrated to run successfully cm the VAX architecture. It
should be ported to MicroVAX II-based workstations as the next step toward a
multiprocessor VAX implementation.

The M icroVAX EI/GPX workstations are prospective target machines for Harmony
[Digital86]. The architecture is compatible with the VAX minicomputers, except for the
following differences:

• The M icroVAX architecture uses a subset of the data types, instructions, and privileged
registers in the VAX architecture. The m issing instructions are supported by
emulation. Harmony itself does not use any of the missing types or registers, so their
unavailability is not a problem.

55

4 3 Extensions 56

• The MicroVAX has 30-bit physical addresses, though the physical address is still
split into memory space and I/O space like the VAX-11/750.

• The interrupt vectors are slightly different. The MicroVAX has an interprocessor
doorbell interrupt at level 14, but because it is lower than the I/O interrupts, it cannot
be used for the message passing interprocessor interrupt. External hardware support is
thus still required for running a multiprocessor configuration of Harmony.

• The tim er priority is lowered to level 16. Hopefully I/O devices of higher priority will
not cause the timer to lose any dock tides.

• The MicroVAX uses a Q22 bus instead of the UNIBUS. The operation is very similar
to die UNIBUS.

The GFX workstation has a VCB02 video subsystem with a high resolution monitor. A
screen management system would be a desirable feature for the graphics monitor, It will be
useful for handling multiple input devices, as in the Adagio switchboard [Tanner86]. The
video subsystem provides scrolling and clipping support for rectangular viewports
[Digital86a]. It will be useful for screen management in a workstation environment.

The MicroVAX II processor is over 50% faster than the VAX-11/750. In addition, it
has a VLSI coprocessor for graphics operations. This could replace much of the
functionality now supplied by the Ikonas. It is an attractive target machine for real-time
graphics applications. VAX-Harmony will be ported to the MicroVAX II processor. A
four month effort is expected to be sufficient for porting the kernel and the basic servers.

Adage82.

Adage82a.

Beach82.

Booth84.

Bno6said86.

CaigU179.

Cheriton79.

Digital81.

Digital82.

DigitaI86.

Digital86a.

Adage Inc., RDS 3000 User's Guide. April 1982.

Adage Inc., RDS 3000 Programming Reference Manual. June 1982.

R. J. Beach, J. C Beatty, K. S. Booth, D. A . Plebon, and E. L. Hume,
The Message is die Medium: Multiprocess Structuring of and Interactive
Plaint Program, Computer Graphics 16(3) pp. 277-287 (July 1982).

K. S. Booth, W. M. Gentleman, and J. Schaeffer, Anthropomorphic
Programming, (Tech. Rep. CS-82-47), Department of Computer Science,
University of Watedoo, Waterloo, Ontario (February 1984).

A . Btassard, personal communication. 1986.

T. A. Cargill, A View of Source Text for Diversely Configurable Software,
PhD Thesis, University of Watedoo, Waterloo, Ontario (1979).

D. R. Cheritan, M. A. Malcolm, L. S. Melen, and G. R. Sager, Thoth, a
Portable Real-time Operating System, CACM 22(2) pp. 105-115 (1979).

Digital Equipment Corporation, VAX Architecture Handbook. 1981.

Digital Equipment Corporation, VAX Hardware Handbook. 1982.

Digital Equipment Corporation, VAXstation IHGPX Technical Manual, BA123
Enclosure. January 1986.

Digital Equipment Corporation, VCB02 Video Subsystem Technical Manual.
February 1986.

57

References 58

Foraey85.

Gentlemans 1.

Gentleman85.

King83.

Lalcnde85.

Martindale86.

P&ri86.

Pan86a.

Reiser83.

Riese86.

Tanner86.

D. R. Fbrsey, Harmony in Transposition: A Toccata for Vax and Motorola
68000, Master’s Thesis, University of Waterloo, Waterloo, Ontario (March
1985).

W. M. Gentleman, Message Passing Between Sequential Proceses: the Reply
ftim itive and the Adnrinistratar Oonoept, Software - Practice and Experience
11 pp. 435-466 (1981).

W. M. Gentleman, Using die Harmony Operating System, (Tech. Rep.
NROERB-966), Division of Electrical Engineering, National Research
Council of Canada, Ottawa, Ontario (December 1983, revised May 1985).

T. King and B. Knight, Programming the M68000, Addisan-Wesley (1983).

K. W. Lalande, personal communication. June 1985.

D. M. Martindale, personal communication. July 1986.

R . K. Parr, Realtime Multitasking Multiprocessing Operating Systems - A
Detailed Comparison of VRTX, MTOS, pSOS, and Harmony, National
Research Council of Canada, Ottawa, Ontario (1986).

R* K* TCP/IP Ethernet Support for the Harmony Operating System,
Master’s Thesis, University of Waterloo, Waterloo, Ontario (1986).

J. F. Reiser and R. R Henry, Berkeley VAX1UNIX Assembler Reference
Manual, Bell Laboratories, Holmdel, New Jersey (November 79, revised
February 1983).

R M. Riese, Towards Harmony on Sylvan, Master’s Essay, University of
Waterloo, Waterloo, Ontario (1986).

P. P. Turner, S. A. MacKay, D. A. Stewart, and M Wein, A Multitasking
Switchboard Approach to User Interface Management, Computer Graphics
20(4) pp. 241-248 (August 1986).

