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Abstract

All computer-generated images are displayed by intensifying pixels on a display. 
Each pixel, which extends spatially and temporally, has two relevant properties: its 
position and its intensity profile. The interaction between position and image quality, 
which can produce the aliasing of high frequencies onto low ones, has been extensively 
explored and very successful treatments for the resulting artifacts are well known. 
There is little practical understanding of the interaction between intensity profile and 
image quality.

This thesis examines the interaction between pixel intensity profiles and image 
quality, taking into account the spatiotemporal characteristics of the human visual 
system. The interaction is examined by considering the general problem: given a 
device with given pixel locations and intensity profiles, what is the set of intensity 
values that best represents a given spatiotemporal image. Within the restricted but 
practical case in which pixel locations are periodic in space and time and pixel 
intensity profiles are identical, two solution techniques are explored. One directly 
minimizes discrepancies between the desired image and an image generated by a 
display device. The other chooses pixel intensities to minimize differences in the 
Fourier domain, with the differences weighted by the corresponding sensitivities of the 
human visual system.

These two techniques are explored in detail for pixels with an exponential 
temporal intensity profile and a Gaussian spatial profile. Each method is examined in 
several different norms with pixel intensities constrained and unconstrained. 
(Constraints are relevant because the contrast possible using unconstrained fitting is 
very restricted for some devices.) These results are calculated assuming temporal 
degrees of freedom independent of the spatial ones. Under the same assumption, the 
spatial intensity profiles were examined. Throughout these calculations, algorithms 
that manipulate circulant matrices provide a computationally effective means for 
determining pixel intensities. When spatial and temporal degrees of freedom are 
taken together these algorithms can no longer be used because the spatial and 
temporal responses of the human visual system are not separable. Since solutions 
require use of less efficient numerical methods, the emphasis in that part of the thesis 
is on differences between the unseparated solutions and those that are produced using 
separable approximations.
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Introduction

major goal of computer graphics in general, and of this thesis in particular, is the
improvement of the quality of the images produced. There are two main 

components in today’s computer image generation systems: modelling and rendering. 
The modelling system typically produces a data structure which describes the scene to 
be portrayed, in terms of objects and their properties such as position, velocity, 
orientation, texture, reflectance, shape and size. The rendering subsystem uses the 
results of modelling to produce images. The nature of the modelling subsystem 
usually determines how difficult it is for the user to specify the scene, while the nature 
of the rendering subsystem controls the quality of the resulting image.

The specification of a scene produced by a modeller is usually sufficient for 
finding the intensity everywhere in a continuous region of space and time. Because of 
the discrete nature of display devices, the images produced as a result of rendering 
only approximate the continuous specification. Display devices consist of pixels, 
which are specified by locations and intensities. The intensity distribution associated 
with the pixel determines how the intensity specified affects points other than the 
centre of the pixel. For example, on a CRT, the intensity distribution of a pixel can 
be approximated by a Gaussian distribution in space, and an exponential decay over 
time. The value specified at one pixel affects not only the intensity at the point of 
greatest influence of the pixel (in space), but also the intensity of a region surrounding 
the pixel, extending past the centres of several neighbouring pixels. The value 
specified continues to have an effect on the intensity within the region of influence of 
a pixel for a period of time which varies from a few microseconds to several seconds. 
It is typical in computer graphics to specify the value of the image at the point 
corresponding to the centre of a pixel, ignoring the fact that the values specified for 
neighbouring pixels affect the intensity there.

An important part of rendering is scan conversion, in which a discrete 
representation of the continuous image is found. Ideally, scan conversion produces a 
representation that is visually as close as possible to the continuous original. Two 
kinds of artifacts make this difficult. One is aliasing of high frequencies to low, and
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1. Introduction 2

is affected by the locations of the pixels. This is discussed in Chapter 2. The other is 
pixel structure, which is affected by the intensity distributions of the pixels. This 
thesis explores methods of improving the quality of the results of the scan conversion 
process, primarily in reducing or eliminating pixel structure artifacts. Depending on 
the specification of the original image, these methods sometimes reduce aliasing 
artifacts at the same time. Improved quality implies increased similarity between the 
image desired and the image displayed. This can be measured in various ways. In 
this thesis visual quality is emphasised; a simplified model of the human visual system 
is used to approximate the visual system’s response to errors in the image, which is 
then minimized. This model uses the frequency response of the visual system, and is 
used to assign different degrees of importance to errors in the image according to their 
frequency.

The process of minimizing the error is described in terms of solving a matrix 
vector problem in which the matrix is circulant, or nearly so. Efficient techniques 
which take advantage of the circulancy are used to find the solution.

In order to compensate for pixel intensity distributions, it is typically necessary to 
use intensities which are outside the range of intensities in the continuous input 
image. Taking as an example the exponential decay of a CRT, the intensity 
remaining from previous frames is subtracted from the intensity required. In all but 
the first frame, the pixel value needed at a frame is less than the image intensity. If 
the intensity required in a particular frame is less than that remaining from previous 
frames, then the pixel value needed is negative. Since negative intensities of light 
don t exist, the pixel value needed is outside the range of intensities which the device 
can produce. To keep the device intensities within the range of intensities which the 
device can produce it is necessary either to constrain the device intensities in the 
minimization or to place restrictions on the local variations in intensity in the input 
image. (The intensity can never drop in one frame to less than what remains from 
the previous frame.) A method of deriving these restrictions is given in general, and 
the derivation is carried out completely for the case of a device with intensities falling 
off exponentially with time.

Two recurring themes in work on rendering algorithms have been efficiency and 
quality. Running time seldom drops as a result of increased efficiency, or faster 
hardware; the extra time available is usually consumed improving the quality. Such 
improvements are generally quantitative, such as increased resolution or higher scene 
complexity. Qualitative improvements resulting from new techniques tend to increase 
the computation time for a given resolution of scene complexity, but they sometimes 
reduce the resolution or scene complexity required to give the same level of quality in 
appearance. Qualitative improvements are often followed by a search for more 
efficient means of achieving the same end, so that the total computation time required
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for a given scene complexity and resolution can be brought back to what it was before 
the improvement was made in quality. The techniques presented in this thesis, while 
not as efficient as possible, examine the limits to quality. Their purpose is to discover 
what is important for the very best quality. Efficiency will come later. Thus, they are 
intended to complement, not replace, the better rendering techniques already in use.

The reader should by this point have an idea of what to expect in this thesis. The 
remaining part of this chapter contains a more complete outline.

In computer graphics, rendering is concerned with making images from scene 
descriptions. In this thesis the term image is extended to mean any function mapping 
positions in time and/or space to intensities. Thus animated images are included. 
The image may have any of a number of representations, but it must eventually be 
displayed on a real device. The class of device with which we are concerned is termed 
raster devices. On such a device, the values associated with individual pixels are 
specified, and the intensity throughout the device is given by linear combinations of 
pixel intensity profiles. ( Pixel ’ is also extended to include the temporal dimension). 
Different devices have a variety of different intensity profiles. The pixel may have a 
uniform influence over a localized region, with a sharply defined edge. The liquid 
crystal display is a good example. Or the pixel may have a strong influence at the 
centre of a region, with the effect diminishing in all directions, or in one direction 
preferentially. For animated images, the functional dependence must be specified in 
three dimensions, one temporal and two spatial. For example, on a good quality 
black and white CRT, the intensity distribution is well approximated by a Gaussian 
distribution vertically and an exponential decay over time. Horizontally, the intensity 
profile is less well approximated by a Gaussian, particularly on poorer quality CRTs. 
On a colour CRT, the horizontal and vertical intensity profiles are complicated by the 
shadow mask, while the decay times of the different coloured phosphors in general 
differ.

Two features of raster devices affect the quality of the resulting image: the 
locations of the pixels, and the intensity profiles of the pixels. The positioning of the 
pixel centres can lead to aliasing of high frequency information to lower frequencies: 
this effect is well known, and effective solutions have been found for it. The effects 
of the intensity profiles of the pixels have received very little attention.

This thesis considers the effects of pixel shape, ways of compensating for 
undesirable effects, and ways of simulating desired pixel shapes. Two pixel shapes are 
considered as examples: the Gaussian pixel typical of the spatial profile of a pixel on a 
CRT, and the exponential decay function typical of the temporal profile of a CRT 
pixel. Both of these involve a compromise between blurring the image (leaving trails 
in the case of the temporal profile) and introducing unwanted high frequency
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information. Over-focussed monitors fail to produce a flat field when a constant value 
is set in all of the pixels, since the gaps between scanlines are visible; images displayed 
on underfocussed monitors fail to appear as sharp as they could. Monitors with a 
short persistence phosphor have an annoying flicker, while monitors with long 
persistence phosphors can have pronounced after-images. A correctly focussed 
monitor with a moderate persistence phosphor does not have the problems of over- 
focus or flicker, but it does still show some after-images, and the image is less sharp 
than it might be, unless steps are taken to compensate for these effects. Simulated 
pixels are both a tool for studying the effects of pixel shapes and the quality of a 
method of compensating for them, as well as a paradigm for image enlargement.

Controlling the effects of pixel shape goes beyond choosing beam parameters for 
CRTs. First, there are devices, such as liquid crystal displays and thermal transfer 
printers, that have pixels with significantly different pixel shapes. Secondly, as device 
pixels become more and more densely packed spatially (and perhaps temporally), it 
may become possible to simulate logical pixels of arbitrary shape at reasonable 
resolution using multiple physical pixels. Thirdly, because the cost of computing 
images to full device resolution grows as the square of the device resolution, it will 
sometimes be more cost effective to compute the image to reduced resolution and 
then enlarge it using simulated pixels. Finally, an image computed for a device with 
one pixel profile does not look its best when displayed on another, unless appropriate 
compensation is made.

Image enlargement has usually been viewed as a variant of interpolation. This 
can introduce overshoot and undershoot when the interpolation attempts to follow 
apparent discontinuities in the image. More importantly, it leaves entirely implicit 
assumptions about the intensity profiles of the pixels in the original image. If the low 
resolution raster is a discretization of a piece-wise cubic function then cubic spline 
interpolation may be the appropriate choice. More typically the image is derived from 
a discontinuous function which has been filtered to remove aliasing artifacts. If the 
image has been tailored to look its best on one particular device, then the pixel shape 
of this device should be taken into account in the enlargement. Commonly, images 
are enlarged by pixel replication, producing large, square composite pixels. 
Enlargement by using simulated large pixels rather than some model of interpolation 
gives a more faithful imitation of the effect of moving closer to the original image.

Brute force methods of compensating for pixel shape are simply described and 
require no advanced mathematics. The most naive approach is as follows: as the 
intensity value of any pixel is computed, the residual effect on its neighbours is 
calculated, and an appropriate amount is subtracted from the values of those pixels. 
The amount of compensation can be calculated to match the values of the ideal and 
device images at the pixel centres, to match the average intensities between pixel
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centres, or to match some interpolation of the ideal and device images between pixel 
centres. Because a pixel value is changed after it is used to compute corrections for 
the neighbours of that pixel, second order corrections must be computed to correct for 
the effect of the first order corrections. This iterates until the error is smaller than 
some tolerance, or it ceases to diminish from iteration to iteration. Convergence 
depends on the pixel profile.

The approach described above is known as Jacobi iteration, a method used in the 
solution of large matrix-vector problems. To improve on it requires more 
mathematical sophistication. With the problem cast as a matrix-vector problem, more 
direct methods may be used, especially since the problem size need not be great 
enough to justify iterative techniques. In such a system, the matrix depends on the 
device, the right-hand side vector depends on the desired image, and the solution 
vector gives the intensity values at the pixels. If we assume that the image is periodic 
(with a sufficiently large period that this imposes no constraints on the actual image), 
the matrix is circulant, in which case fast inversion techniques, involving the use of 
the Fast Fourier Transform or FFT, are known. If the matrix is not square, then the 
problem is one of minimizing the error, and the choice of norm for measuring the 
error is important both computationally and in the results obtained.

The human visual system perceives different spatial and temporal frequencies 
with different proficiency. It makes sense to take this into account when minimizing 
errors in an approximate solution. In doing so, the Fourier coefficients of the solution 
are compared with those of the ideal image, and the differences are weighted by the 
sensitivities of the human visual system at corresponding frequencies. Various 
approximations to the sensitivity function may be used. Those approximations which 
involve the product of independent functions for spatial sensitivity and temporal 
sensitivity lead once again to circulant systems. Those which do not are considerably 
more expensive to compute, and produce surprisingly similar results.

Regardless of whether the minimization is performed in the Fourier domain or 
directly, constraints on the solution may be required to avoid values (such as negative 
intensities) which cannot be reproduced on the device. For Jacobi iteration this 
involves using either the correction term predicted or the one which causes the values 
to reach their limits, whichever is smaller at a given iteration. (Other, more complex, 
methods for constraining iterative solutions also exist). The alternative to constraints 
is a reduction of contrast in the input. Depending on the circumstances, one or the 
other may be preferred.

The main purpose of this thesis is to discuss methods of finding the set of 
intensity values that are visually best for a given image and a raster device with given 
pixel intensity profile. The presentation begins with non-mathematical background
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material. This consists of Chapters 2 and 3, describing elimination of aliasing 
artifacts and properties of the human visual system, respectively.

There are a number of assumptions, particularly about the nature of the display 
device, that are required to make the problem tractable. These are outlined in the 
Chapter 4, which defines the problem, its scope and limits.

To solve the problem as defined, a number of mathematical tools are useful. 
One of these is Fourier analysis, which is well known. Because it is used throughout 
the thesis, a number of standard results appear in the appendix for reference. The 
other major tool is matrix algebra, particularly with circulant matrices. To establish 
notation, a number of definitions from matrix algebra are given. These are followed 
by definitions and results regarding the less familiar circulant matrices and a new form 
of matrix, termed “pseudo-circulant” . Several minimization algorithms leading to 
circulant matrices complete the mathematical toolkit in Chapter 5.

Even with restrictive assumptions about the device, there remain a number of 
alternative interpretations, which are explored in Chapter 6. The solution specifies 
the intensity only at a finite number of places, so that a perfect match between the 
image desired and the one produced can only be guaranteed at this many positions 
(not necessarily the same positions as those at which the intensity is specified). What 
then do we want to match? Should the image match perfectly at the positions at 
which we specify the intensity? Perhaps the total intensity over the region between 
such positions should agree. Alternatively, there are various interpolations possible, 
which can be well matched throughout. Of these, trigonometric interpolation should 
be closest to the original image, if the image is not prone to aliasing. For any of these 
possibilities, the solution may involve unattainable intensity values. But with some 
care, it is possible to place restrictions on the contrast of the input so that this does not 
happen. At this point, the problem remains abstract, with no pixel profiles specified; 
examples of specific profiles follow later.

In order to know whether the methods work, and to make a visual check on the 
algorithms, it is important to be able to display the results. Usually they are displayed 
at a relatively low resolution and viewed from a distance. Pixels of intensity profiles 
other than those provided by the device .can then be accurately simulated for 
comparison purposes. It is also possible to adjust the Gaussian spread of the phosphor 
dot without changing the monitor. (The spread can be changed by adjustment of the 
focus control -  but due to the idiosyncratic behaviour of hardware the software 
approach is preferred). In the temporal domain, the phosphor decay is not adjustable 
after the monitor is manufactured. With a sufficiently short persistence phosphor, 
and a monitor capable of very high refresh rates, it is possible to simulate any decay 
rate (and in fact any other shape of temporal profile) well enough that any errors in
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the simulation are invisible. Few frame buffers are capable of driving a monitor at 
sufficiently high rates for such simulations, but one which is capable is the Ikonas 
RDS/3000. Its use in these simulations is described in the seventh chapter.

One dimensional examples are sufficient to allow us to explore the differences of 
different minimization techniques, and the results of changes in the pixel spread. 
Two examples are used in Chapter 8 to illustrate the techniques developed earlier: 
they are the Gaussian, and the exponential decay.

Chapter 9 extends the techniques from one dimension to two. All of the one 
dimensional techniques can be extended to two spatial dimensions using two passes, 
one for each dimension. Most of them can be extended in this way to include a 
temporal dimension as well. The exception is the method which uses the sensitivity of 
the human visual system to weight terms in the Fourier series according to their 
relative visibility. This exception occurs because the visibility of information at a 
given temporal frequency depends on the spatial frequency and conversely. As a 
result of the inter-dependence, a two pass method is not available, and what is more, 
the efficiency which results from circulancy in the one dimensional case, and carries 
through to the two-pass method, is not available because the circulancy is lost. It is a 
fortunate result that the weighting makes sufficiently little difference to the final 
answer that this method is not, in the end, the method of choice.

In summary, the thesis consists of three parts. First, there is the background 
material in Chapters 2 and 3. consisting of prior work in computer graphics and vision 
research. Second, a theoretical formalism for finding the best raster representation of 
an image is presented. This consists of a formal definition of the problem, 
mathematical tools and algorithms, and a set of approaches available for solving the 
problem (Chapters 4 through 6). Finally, Chapters 7 through 9 contain practice with 
and experience gained from working with the formalism, beginning with methods of 
simulating unavailable devices, followed by concrete examples of finding solutions in 
one and two dimensions for devices with Gaussian and exponential pixels.



Aliasing Artifacts

Causes, Effects, Prevention

The descriptions of scenes which are provided to rendering systems are normally 
sufficient to describe an image everywhere within a continuous region. Devices used 
to display these images consist of pixels, typically arrayed on a regular grid. When 
the resolution of the grid is insufficiently high to represent the highest frequencies in 
the image, there is the potential for aliasing of the high frequencies to low frequencies 
in the image as it is displayed.

Artifacts caused by aliasing of high frequencies as lower ones are well known in 
computer graphics. Very effective means of preventing them are also known. If an 
image contains aliasing artifacts, then any problems related to the pixel intensity 
profile are masked. Because we are interested in high quality images, it only makes 
sense that the images be free of serious aliasing artifacts, although it is sometimes 
worthwhile to trade aliasing for improvements elsewhere. In this chapter, the sources 
of aliasing, types of artifacts produced, and methods of reducing and preventing 
aliasing are discussed.

Rendering for raster displays involves a process known as scan conversion. Scan 
conversion is the process by which an image defined on a continuous domain is 
converted to a discrete representation and stored as an array of intensity values. Scan 
conversion often consists of specialized algorithms designed to determine quickly 
which pixels (array elements) are influenced by each of the primitives (elementary 
geometric objects) that make up the image. To save storage, the only record many 
such algorithms keep of a primitive that has already been processed is the intensity 
values of pixels that were affected. When more than one primitive affects a pixel, it 
is not possible using such algorithms to determine what contribution the first primitive 
should give when the second is being processed. Consider, for example, the depth- 
buffer algorithm, which stores at a pixel the colour of the nearest primitive covering 
the centre of the pixel, and the depth of that primitive. This algorithm fails to find

8



2. Aliasing Artifacts 9

the full information at certain pixels, particularly along the edges of primitives which 
occlude other primitives. This is illustrated by two scenes: the first consists of a single 
rectangle covering the entire visible region, behind a stack of triangles which are lined 
up in such a way that each one exactly hides the one beneath it, the second scene is 
like the first, except that the triangles are oriented randomly. For the first scene, 
pixels along the edges of the frontmost triangle should have their colours determined 
from the colours of the rectangle and the frontmost triangle, while for the second, 
their colours should be determined from the colours of the frontmost and whichever 
triangle is visible beyond the edge of the frontmost. Because the triangles are 
processed in an arbitrary order, the second nearest triangle at a pixel is not known 
when that pixel is drawn.

Better algorithms generally determine which primitives influence each of the 
pixels that make up the array, or raster, without wasting too much time considering 
primitives far from the pixels in question. In this way, full information about a given 
pixel may be known when the value for that pixel is computed.

If one part of scan conversion is determining which primitives affect a pixel, the 
other is finding an intensity value for the pixel. The simplest way of choosing which 
primitives affect a pixel is sampling. For each point in the array, the primitive at the 
corresponding position is computed, and its colour at that position is used as the raster 
pixel value. Such algorithms as the depth buffer algorithm are forced to use sampling. 
Since a pixel is associated with a point rather than a region, only the nearest primitive 
to the eyepoint is relevant, and only primitives which cover the centre of a pixel need 
be considered. It was early recognized that straightforward sampling can lead to 
artifacts. Sampling artifacts appear in a variety of guises. As a test case, Crow used 
a mathematically defined pattern (nested parabolae, gradually shallower and closer 
together), w-hich produces very obvious Moiré patterns in parts of the image where the 
parabolae are closer together than two pixels. Other artifacts include staircasing of 
lines, edges and highlights, broken lines, and disappearing objects and highlights. In 
moving pictures, the staircases crawl along the lines, and objects which are missed in 
one frame may reappear in another, apparently blinking on and off [Crowl976]. 
Small objects can also change their size and apparent shape as they move.

Catmull has been credited with making the first attempt at preventing such 
artifacts [Catmulll974]. Catmull mapped a texture onto a surface and found that 
where the line of sight came near to tangential to the surface, the texture varied 
rapidly within the area corresponding to one pixel. This led to patterns appearing on 
the surface which did not appear in the texture. Catmull noted that the cause of the 
problem was high frequency noise in the texture, higher than the frequencies 
representable by the device. He found that averaging the intensity of the texture over 
the region in texture space corresponding to a pixel’s region of greatest influence
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attenuated the high frequency information sufficiently to make the images acceptable. 
In this way, what is known as box filtering or area averaging was introduced to 
computer graphics. In certain cases, box filtering can be implemented exactly (that is, 
to within machine precision), but in other cases, it has been implemented using either 
geometric approximations or approximations based on supersampling. Box filtering is 
easily understood, and can be implemented quite efficiently with a minimum of clever 
tricks. It also works very much better than not filtering at all.

Crow pointed out that sampling artifacts are the result of aliasing, in which 
frequencies at or above half the sampling frequency appear aliased as lower 
frequencies [Crowl976]. To demonstrate the weakness of box filtering, he used 
images with very thin, bright highlights, slightly tilted from vertical. These images 
were typical of the better quality images being produced at the time, and exhibited 
aliasing in the form of dotted highlights, even when box filtered. The solution he 
proposed was to remove enough of the high frequency information from the image to 
make the aliasing artifacts invisible. Filters predicted to be ideal from the body of 
knowledge about signal processing may be better than what is needed visually, and 
computationally too expensive, or may cause an image originally containing only 
positive intensities to have negative ones. Crow compared several simple filters and 
evaluated the results visually [Crowl981]. By doing this experiment he was able to 
find a filter which produced an acceptable image on his CRT. It is not clear how 
much the use of a CRT affected the choice of visually best filter. The methods in this 
thesis could be used to find device dependent compensation to filters found using 
Crow’s methods.

A simple illustration can make the problems of undersampling clear. Consider 
an image whose intended intensity is constant in y and a sinusoidal function of x . If 
this is sampled at a frequency of greater than two samples per wavelength, the 
resulting image appears to have the same frequency as the original. The intensity 
profile between pixels depends on the intensity profile of the pixels but the dominant 
frequency of the waveform is the same. When the sampling frequency is less than 
two samples per wavelength, the image appears to contain lower frequency 
information. Figure 1 shows the one dimensional intensity profile of such an image, 
with the sampling rate smoothly dropping from left to right. At the left the image is 
sampled at a sufficiently high frequency, while at the right the sampling frequency is 
too low to represent the image. A theorem due to Whittaker, and later attributed to 
Shannon and Nyquist, states that for any function sampled with inter-sample spacing 
c, there is a unique interpolating function which has no singularities, and has in its 
Fourier series representation no terms with period less than 2a [Whittakerl915], 
From this we may conclude that there is always a function with no frequencies higher 
than 1/2a which fits any set of evenly spaced points, spaced apart a distance a.



2. Aliasing Artifacts 11

Figure 1: A single sinusoid (dotted curve) sampled at a rate which decreases 
linearly from left to right. Tick marks indicate the locations of sample points.
Solid lines connect the sample points. At the left any interpolation of the 
sample points may contain no lower frequencies than the sinusoid being 
sampled, and the sampling clearly appears to be primarily of the same 
frequency as the sinusoid. When the sampling rate drops below the twice the 
frequency of the sinusoid, an alias appears, in the form of a variation at half 
the frequency of the sinusoid.

Aliasing results when the original function contains frequencies greater than 1/2<t: the 
interpolation of the sampling need not contain frequencies greater than 1/2a, and the 
visual system does not choose to use an interpolation which introduces them. For 
functions specified over a finite domain of length A, with N samples over the domain, 
the highest frequency which may be represented without aliasing is N /2A. For 
historical reasons this is known as the Nyquist rate.

If high frequency information is the problem, then the solution, known for some 
time in the field of signal processing, is to remove the high frequency information by 
filtering. The most common approach in computer graphics is linear filtering, defined 
as the convolution of the image with a filter function, yielding a new function with 
frequency characteristics that depend on the filter, and those of the original image.

l ' ( x ,y , t )  = f l ( x ' ,y ' , r ' ) f ( x  - x ' , y  - y ' , t  -t')dx'dy'dt'

In theory, the integral is over all space and time. In practice, the image is only non
zero over a finite region, and the filter is usually non-zero over a smaller region. 
Area averaging (such as was done by Catmull) is equivalent to filtering with a filter 
function which is a pixel-sized square in two dimensions, or cube in three (hence the 
name box-filtering). The attenuation of high frequencies by the box filter is 
proportional to the frequency and to the filter width. Better filters have less 
attenuation at low frequencies and more at higher frequencies. The best filter from 
the point of view of frequency response is the sine function s\n(ax)/ax. which 
completely attenuates all frequencies below its cutoff frequency, a . Unfortunately it 
is impractical, since it has negative lobes (which may result in negative intensity
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values near discontinuities), and does not die off very quickly. Other popular filters 
include conical and pyramidal filters, and various approximations to Gaussians or sine 
functions which are non-zero over a relatively small region.

Antialiasing algorithms designed to use filtering as a means of reducing high 
frequency information generally consist of two parts. The first part decides which 
primitives affect a pixel, or which pixels are affected by a single primitive. The 
second part decides how to assign intensity values given the information found in the 
first part and the type of filter being used.

Deciding which primitives affect a pixel involves solving the hidden surface 
problem to find all of the primitives visible anywhere in the neighbourhood of a pixel, 
and in the better algorithms, finding the parts of the neighbourhood in which each 
such primitive is visible. Often the information found by the first part is only 
approximate. The set of primitives might be incomplete, and the areas in which each 
is visible are often only known approximately.

Assigning intensity values given a solution to the hidden surface problem involves 
finding the intensities associated with the visible primitives, and combining them in 
some way to provide the intensity of the filtered image. One way of combining them 
is to weight their average by the area they cover: this is box filtering. Other methods 
generally weight the intensities of regions in the image close to the points 
corresponding to the pixel centres more heavily. A large number of algorithms use 
one form or another of supersampling, in which the region affected by a pixel is 
sampled at a high resolution, and then the weighted or unweighted average of the 
samples is used as the value for the pixel. This is a simple form of numerical 
integration of the convolution integral. Any rendering algorithm can be used to do 
supersampling: the algorithm can compute as if for a higher resolution device, and 
then the pixel values in the final raster can be computed from weighted or unweighted 
averages of the pixels values in the corresponding neighbourhood in the high 
resolution raster. A problem with supersampling on a regular grid is that high 
frequencies contained in the image may be aliased in the supersampled version, and 
averaging does not attenuate the aliases any more than it does the legitimate low 
frequencies.

Most of the algorithms which do not use supersampling are limited to a restricted 
set of primitives for which the geometric properties of the primitives make it possible 
to compute the convolution integral directly. In many of these algorithms the filter is 
a box filter, which reduces the convolution integral calculation to finding the 
intersection area of the primitive with a square region corresponding to one pixel on 
the screen. Two examples of such algorithms are the line algorithm of Barros and 
Fuchs [Barrosl979] which uses box filtering, and the polygon algorithm of Feibush,
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Levoy and Cook [Feibushl980], which permits arbitrary filters.
Until 1984, the implicit assumption in antialiasing was that the way to deal with 

the problem was to remove high frequency information from the signal. At that point 
Cook, Porter and Carpenter introduced the idea of distributed ray tracing, and with it 
stochastic sampling [Cookl984]. Yellott had observed that the eye does not have a 
significant amount of aliasing in the image after its sampling, in spite of the low 
sampling density in regions away from the fovea (the region of high cone density 
corresponding to the centre of view) [Yellottl982]. He found that the Poisson disk 
distribution of the cone positions caused a loss of coherence in aliases. The example 
he used was a regular grating of bars, i.e., a square wave in one dimension. When 
this is sampled on a regular grid at a frequency less than twice the fundamental 
frequency of the grating, an alias appears: information at a well defined frequency 
below the cutoff gives the appearance of bars at a different frequency. When the 
same image is sampled with a Poisson disk distribution, the alias is converted into 
broad-band noise. As a result, the aliasing is lost amid other broad-band noise.

Stark had earlier found that the much more quickly computed jittered distribution 
contains a similar frequency distribution, and therefore produces similar results 
[Starkl977j. Cook reasoned that if incoherent sampling could eliminate aliasing in 
the eye, then it should work for displays as well. Using Stark’s jittered distribution, 
Cook, Porter and Carpenter performed what they call distributed ray tracing 
[Cookl984] to provide a remarkable improvement in antialiasing, along with such 
effects as motion blur and depth of field, randomly generating rays with slightly 
different origin, time and intersection point with the screen and then using a weighted 
average to find the value for a pixel. The jittered distribution was later described 
more fully by Cook [Cookl986]. Others have since worked to provide improvements 
in efficiency in generating the sample locations and quality of the distributions, 
attempting to approach the spectral characteristics of the Poisson disk distribution with 
algorithms which run nearly as fast as the jittering algorithm [Mitchelll987], 
[Purgathoferl987], [Leel985], [Dippil985].

The problem had been thought to be the presence of high frequency information 
prior to sampling; it turned out that the problem was the coherence of the aliases 
produced. Figure 2 shows the demonstration of Yellott. Stochastic sampling as it has 
been developed since the work of Cook has proven very effective in eliminating 
aliasing artifacts. This gives us the means to compute images containing no 
objectionable high frequency information.

Most of the work on antialiasing has assumed that if a good filtered sampling of 
the image has been found the problem has been solved. The ideal filter, it is 
assumed, is one which is as narrow as possible (to save computation), and preferably
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Input image

Sample locations

Sampled image

Figure 2. The samples at the right and left have nearly the same average density. On 
the right, aliasing has been avoided by using a distribution very much like the Poisson 
disk distribution, as described by Mitchell [Mitchelll987].

non-negative (to avoid having to deal with potentially negative intensity values in the 
filtered image) while still giving a visually satisfactory result. For example, empirical 
studies have been done in filter design. Warnock used various choices of filter on 
high resolution text characters and compared the resulting low' resolution versions 
[Warnockl980]. Crow compared filters on both a mathematically defined pattern and 
a scene containing long, thin highlights [Crowl981]. He was careful to point out the 
parameters of his CRT which gave best results, which indicates that he was aware of 
the device dependence of his results. Mitchell and Netravali undersampled an image 
and then compared the results of interpolating with various reconstruction filters 
[Mitchelll988]. All of the comparisons were done visually. The results of these 
studies depend on the particular display devices being used in the comparison.

Kajiya and Ullner began to address the issue of constructing an image which is 
tuned for a particular device [Kajiyal981]. The model of display device was a CRT 
with a regular array of Gaussian pixels. The model of the image was a set of 
infinitely thin lines, <5 functions in one dimension. This was proposed as one model of
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an ideal stroke of a character. The Fourier series representation of the image and its 
construction from Gaussian pixels were derived, and their difference was minimized 
in a least squares sense. This gave rise to a circulant system of equations which is 
readily solved for the ideal set of pixel values. Several problems arose, most notably 
the negative values generated for some pixels. The solution proposed was to use 
constrained minimization, which produces better results, but at a much greater 
expense. This is one of the approaches considered in this thesis, although in greater 
generality. While Kajiya and Ullner considered only Gaussian pixels, and only images 
consisting of infinitely thin lines, arbitrary shaped pixels and arbitrary images are 
considered here.

Aliasing, a result of coherent high frequency information, can cause artifacts 
which are irritating at best, and make the image unrecognizable at worst. Any work 
in high quality computer imagery must address this problem. Stochastic sampling, by 
removing the coherence of high frequency information, has been found to be the most 
effective method to date. Once an image is free from coherent high frequency 
information, any of the methods of this thesis can be used to produce the best possible 
realization on an actual raster device. As long as complete information about the 
image is known (not just intensities at sample points), the methods may be combined 
with filtering techniques to prevent aliasing artifacts while also preventing artifacts 
resulting from the structure of the pixels.



Properties of Human Vision

The human visual system detects information only in a specific range of spatial and 
temporal frequencies. Were this not so, motion pictures would not have the illusion of 
smooth motion, and computer generated images would have no hope of looking like 
anything but a collection of coloured dots. In order to use the properties of the visual 
system to improve the appearance of the images we produce, we need to know 
something about the way the visual system behaves. This chapter gives a selective 
overview of those properties which are useful elsewhere in this thesis.

One important concept is that of contrast. Contrast is most commonly used to 
describe an edge. The greater the change in intensity over a short distance, the larger 
the contrast. Mathematically, contrast is the relative change in intensity at the edge:

contrast ^high how  

1high ~^~how

The dynamic range of an image is the relative variation in intensity over the entire 
image; the contrast in the image can be no greater than the dynamic range, but it 
might be much less.

As discussed in the Appendix, many functions may be represented over a finite 
interval 0..A using the Fourier series

/ ( 0 =  XIe" cos(£n£ + <2„)
n-0

where = 2n tt/A  is the n th angular frequency (f„ =n /A  is the /i th frequency), <f>„ is
a phase shift applied to the wave at this frequency, and C„ is the amplitude at this 
frequency. The series is one form of Fourier series or expansion of / .  The lowest 
frequency, 1/A, is referred to as the fundamental frequency, and the next frequency 
2/A, is the first harmonic. A pure sinusoidal grating is like a series of equally spaced 
edges. The contrast at a given frequency is the relative deviation from the mean 
caused by fluctuations in image intensity at that frequency:

16
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(C0 + C„) — (Co — cn) cn
contrast — — ----— — —---- ——  = ——.

(C0 +  Cn)+(C o — C„) C 0

Since negative intensities are not possible, C0 must be greater than 0, unless all of the 
amplitudes are 0. The contrast threshold at a given frequency is the minimum 
contrast for which (spatial or temporal) sinusoidal variations in intensity are 
detectable.

Linearity in the human visual system, to the extent that it may be assumed, 
simplifies the process of modelling the system. When the input to a linear system is a 
sinusoid, the output is changed only in amplitude and phase (no new frequencies are 
introduced). The response of a linear system to the sum of two inputs is the sum of 
its responses to the two inputs. To a considerable extent, the human visual system can 
be considered linear; there is psychophysical evidence to support this [Kaufmanl974]. 
On the other hand, there is physiological evidence for non-linearity. If the human 
visual system were truly linear, then no stimulus could ever be totally invisible, or else 
the same stimulus at a higher amplitude would still be invisible. Any continuous 
function behaves in a linear fashion for small deviations (e.g. from a mean value of 
the argument). By Taylor’s theorem, if F (/) gives the response to an intensity / ,  
then for small contrast at frequency C„ ,

/ ( C 0)
/  (Co + C„) = /  (C0) +C„ d——  I- •

This means for small amounts of contrast (near the threshold of visibility), the 
response is nearly linear with respect to single frequencies. In high quality computer 
generated images the emphasis is on removing small deviations from the ideal. The 
contrast of the deviations must be small or else the image is not even close to ideal. 
This means that the assumption of linearity is reasonable, for single frequencies. 
Where multiple frequencies are involved, cross terms must be introduced into the 
series, so that the linear term is not so simple. Thus the coefficient of C„ is not a 
constant, or even a function of C„ alone, but depends on the contrasts at other 
frequencies as well. Unfortunately the interrelationships are not yet available in the 
vision literature, so we have assumed a simpler model (which ignores such cross 
terms).

There is good experimental evidence that the system is linear for small 
increments, even for multiple frequencies. For example, a complex waveform made 
up of the sum of several sinusoidal components may be invisible unless one of the 
components would be visible on its ow’n. Where two components have sufficiently 
different frequencies they are detected independently, but frequencies which are close 
together are detected as one. Campbell and Robson [Campbelll968] measured the 
visibility of gratings with intensity profiles which were sinusoidal, square-wave.
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rectangular-wave, and saw-tooth. Figure 3 shows a representative graph from their 
work. In this case, a high contrast square wave grating is compared with a sinusoidal 
grating whose frequency is the same as the fundamental frequency of the square 
wave.
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Figure 3: Contrast sensitivity as a function of spatial frequency. Square wave grating: c 
Sinusoidal grating: o. At the low spatial frequency end, the first harmonic is more 
visible than the fundamental, and so the sensitivity is increased for the square wave 
over what it would be for the fundamental alone. From [Campbelll968].

Over a wide range of spatial frequencies, the contrast threshold of any of these 
complex waves is entirely determined by the amplitude of the fundamental component 
of its Fourier expansion. Gratings of complex wave forms cannot be distinguished 
from sinusoidal until the contrast is above the contrast threshold for the next 
harmonic.

Blakemore and Campbell found separate spatial channels with a bandwidth of 
just over an octave [Blakemorel969]. while Sachs. Nachmias and Robson found that 
different frequencies are detected independently if the frequencies differ by 20%
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[Sachsl971]. This suggests that it is a good first approximation to treat errors at 
different frequencies as if they are detectable independently, although a better 
approximation would group neighbouring frequencies together. Wilson and Gelb 
found exactly six slightly overlapping channels [Wilsonl984], however Nielson and 
Wandell pointed out that the Wilson-Gelb model on its own considers far too many 
images indistinguishable [Nielsonl988]. The visual system is clearly not as simple as a 
linear system. At this point, the better models put forward in vision research are still 
in dispute. Using a linear model, at least for small deviations (near threshold), is 
better than ignoring the visual system, and it is the approach followed in this thesis.

The effect of the various phase shifts in the series is sometimes more important 
than amplitude. Oppenheim demonstrated [Oppenheiml981], at least for some 
images, that if the set of amplitudes from two images are interchanged, while 
retaining the phase shifts, the resulting images are clearly recognizable from the phase 
information alone. A simple example which demonstrates the importance of phase in 
at least one pair of images is given in Figure 4. It has been argued by some that 
many natural images may be well described statistically by a 1 // distribution 
[Mandelbrotl977]. The two fractal curves of Figure 4 were constructed to have an 
approximate 1 //  distribution, with uniform, but different random phase. In the 
lower half of the figure, the phases have been interchanged. The images which share 
phase information are more similar than those which share frequency information, 
suggesting that for this example, frequency information is less important than phase 
information.

There are several forms of Fourier series, one of which is obtained by expanding 
the terms as

C„ cos(u-B f + 0H) =Cn (cos(d„ )cos(u'„ 0  -s in (d js in (^ „  £))

=An cos(w„ 0  +B„ sin(o.’„ 0  .

In this formulation, if the values of A„ and B„ are correct, then the phases are as well, 
and small errors in these values appear as small errors in the phase. Larger errors 
lead to errors in phase which are not linearly related to the errors in the values of An 
and Bn , but in high quality images, such large errors should not exist. Most data 
available in the vision literature measures frequency response, and not phase response, 
although errors in phase are important. This is at least partially corrected by using 
this form of series.

Spatial frequency response measurements give the threshold contrast level for 
visibility of an achromatic sinusoidal grating as a function of spatial frequency 
(response to chromatic contrast is more complicated; we will limit ourselves to the 
achromatic case). Results of spatial frequency response measurements are shown as
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Figure 4: At top are two randomly generated fractal curves. These would be 
appropriate as one-dimensional intensity profiles of some varieties of clouds. On the 
bottom left, the phase information from the top left curve has been combined with the 
amplitude information from the top right curve. On the bottom right, the reverse pair 
is shown.

graphs of contrast sensitivity, the inverse of the threshold contrast for visibility. 
Qualitatively speaking, the spatial response of the human visual system is like a 
band-pass filter. Very high frequency variations are invisible, and we are more 
sensitive to mid-range frequencies than to low frequencies (see lower curve of Figure 
3). For images which vary with time, the spatial contrast threshold depends on the 
temporal frequency. Figure 5 shows the spatial frequency response for several 
temporal frequencies, as measured by Robson. The 1 Hz curve is much like the one 
for static images in Figure 3.

The analogue in the temporal domain to grating measurements in the spatial 
domain is a flicker sensitivity measurement. Sensitivity is highest at low frequencies, 
being about level up to a cutoff frequency, and then drops fairly quickly as frequency 
increases past about 10 Hz. The width and position of the peak, if any, is quite 
sensitive to the spatial properties of the image. Figure 6, from the same Robson 
paper as Figure 5, shows the threshold temporal contrast at four spatial frequencies 
[Robsonl966]. An approximate spatiotemporal threshold surface may be constructed 
by combining the data from Figures 5 and 6. This is approximated by a single bicubic 
patch in Figure 7.
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Figure 5: Spatial contrast threshold at various temporal frequencies, o 1, •  6,c 16,* 22 
Hz. From [Robsonl966].

Under computer control, it is possible to correct for eye movements. Kelly 
performed a series of measurements to determine the effect of retinal image motion 
on perception. In them input from an eye tracker was used to move the image on the 
raster, thereby eliminating changes in the image due to eye movements [Kellyl979]. 
From the response to moving gratings, he was able to construct the spatiotemporal 
threshold surface [Kellyl979a]. Like the surface of Figure 7, the surface he found 
was not separable into the product of a spatial response function and a temporal 
response function, since the shape of the spatial frequency response curves change at 
low temporal frequencies.

Kelly also measured thresholds for periodic spatial patterns containing two or 
more differently oriented components [Kelly 1982]. In unstabilized images, each 
component is detected independently. If image position is corrected for eye 
movements, the independence goes away. Since normal viewing conditions do not 
involve stabilized images, this loss of independence is not relevant to most computer
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Figure 6: Temporal contrast threshold at various spatial frequencies o 0.5, •  4, o 16, ■
22 cycles per degree. From [Robsonl966].

image generation. This is further evidence in favour of a linear model, when the 
image is not fixed to one position on the retina.

Koonderink and vanDoorin [Koonderinkl979] repeated Kelly’s experiments 
without stabilization [Kellyl979a], and found the bi-modal surface shown as a contour 
plot in Figure 8. One peak of sensitivity is where previous results predicted (0.5 
cycle/degree,7.6 Hz); another is at approximately 4 cycle/degree, 0 Hz. Once again 
the surface is not separable.

All three of these surfaces (Kelly’s, Koonderink and van Doorin’s, and the one 
constructed from Robson’s data) are alike to first order. For computational 
expediency, Watson ei al. proposed a “window of visibility” approach, based on the 
high frequency cutoffs in both the spatial and temporal domains [Watsonl986]. For 
the sake of computer generated animation, they suggest assuming that anything 
outside of this window (which corresponds roughly to the outer contours of 
Koonderink and van Doorin’s diagram) is invisible, and treating everything within the
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Figure 7: An approximation of the spatiotemporal threshold surface. A single bicubic 
patch was fit by the method of least squares [Forseyl990] to the data of Figures 5 and 
6. Curves of constant spatial and temporal frequency are drawn along the surface.

Figure 8: Contour plot of the spatio-temporal contrast threshold surface. After 
[Koonderinkl979].
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window as equally important, performing antialiasing if this leaves frequencies above 
the high frequency cutoff for the display.

In this thesis, the visual system is characterized purely on the basis of its 
frequency response. This is only an approximation; the human visual system is not 
linear, and its sensitivity depends on more than the frequency content of stimuli. 
Vernier acuity experiments measure the ability of the visual system to discriminate 
small deviations from straightness [Thomasl975], [Fahlel981]. A thin vertical line is 
broken at the middle, and the top half displaced horizontally by an amount which 
regular acuity measurements and spatial frequency measurements would indicate 
should be invisible, and yet the displacement can be seen. The frequency distributions 
of the top and bottom pieces are identical, but all of the components have a constant 
phase shift which is being detected. Other effects which cannot be explained purely 
on the basis of frequency response are adaptation [Barlowl958], [Connorl982] and 
motion sensitivity [Braddickl974], [Westheimerl975], [Burrl979]. The difficulty 
which arises when trying to use a more sophisticated model of the visual system is that 
the appropriateness of the various models is still under debate in the vision literature. 
The spatiotemporal surface gives a good estimate of what is not visible. A more exact 
estimate of levels of visibility must wait until the models accepted by the vision 
research community are more complete.



Problem Definition

j p  ractical display devices are approximations to ideal devices. These ideal devices 
have display surfaces consisting of identical pixels aligned on a rectangular grid. 

The formalism in this thesis is designed for such devices. Not all devices fit this 
description. For example, there exist experimental devices with scanlines which are 
horizontally offset from one another [Wittkel987]. With large scale integration, 
liquid crystal displays could be manufactured with pixels at random locations. It is 
possible to extend the formalism to include such cases, but the examples given in this 
thesis do not use such extensions.

There are many possible descriptions of an image, including a continuous 
mathematical function, a regularly spaced sampling, and a random sampling. Of the 
possible descriptions, several representative classes of image specification are explored 
in detail in this thesis. This chapter gives the assumptions about devices which are 
used in later chapters, and the classes of image specifications which are considered.

A displayed image is specified by giving a sum of intensity values (scalars) 
multiplied by pixel intensity profiles (functions of space and time). In general the 
pixel intensity profiles need not be translations of a single common profile, but in the 
examples presented in this thesis they are. Pixels are assumed to sum independently 
and behave in a linear fashion; the intensity value due to one pixel is independent of 
intensity values at other pixels, and proportional to the value at that pixel. The 
intensity of the image at any point is given by a sum

J
where j  runs over all pixels. Ij is the intensity value for the j'th pixel, and Bj(x ,y,r) 
is the pixel intensity function of the j th pixel. The set of all images which may be 
described in this way forms a vector space; one of the properties which the pixel 
intensity functions are assumed to have is that they form a basis for this space. For 
this reason they are called pixel basis functions or simply basis functions. The set of 
images realizable on a device is a subspace of this vector space; no negative intensities

25
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or intensities greater than the device limits may occur in a realizable image. When 
the pixel basis functions are translations of a single function, they are written
B( x  —Xj,y - y j , t  - t j).

The specific assumptions about devices are the following.
1) It is assumed that a device consists of a regular array of pixels and an array of 

weights which are applied to the pixels to provide an intensity variation. For the 
purposes of this thesis, the array of weights is called the frame buffer.

2) The pixel intensity distributions are translations of a single pixel basis function.
3) The pixel basis must tend to zero as the distance (in space and time) from the 

pixel origin goes to infinity, and it must be normalized, so that an infinite array 
of pixels with unit weight has unit integrated intensity over unit distance. The 
intensity at f is given by

f;  B ( s - P 6).
p xt a — 00
The integrated intensity over unit distance is the integrated intensity between any 
two pixels divided by the interpixel separation, <5, so the normalization condition 
is

1 = t /  S  » « - p
0 p  = — oc 

£- s t
p  «= — oo 0

- t / ®(  i ) d ( -

( 1 )

(2)

(3)

Equation (3) follows from Equation (2) because adjacent elements of the sum in 
Equation (2) are integrals of the same function, over neighbouring segments.
A one dimensional image produced by an infinite raster device with the vector a 

containing the raster values is then

/ ( 0  = S  -
P  B - X

with f one of .r, y . or t . If £ =  r represents time, then the weight ap is applied at 
time tp =p6.  corresponding to the pth frame in an infinite sequence. As an example, 
an ideal CRT being driven from an n Xm frame buffer running at /  Hz for T seconds
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would be modelled as an array of n'X.mXjT pixels, each of which is a translation in 
space and time of the function

B{x ,y, t )  =

Xr— —e ~u e , > 0

0, f < 0 .

At any time, such a pixel has a Gaussian intensity distribution in space, and the 
intensity dies off exponentially with time, at any point in space. Here r is the inter- 
frame interval, <5 is the inter-pixel separation (in x and y,  assuming the pixel spacing 
is the same in x as in y),  X is the phosphor decay constant, and a is the half-width of 
the spatial intensity profile. More generally, the half-width and inter-pixel separation 
can be specified separately in x and y .

The example of a CRT is frequently used to demonstrate the methods developed. 
This is partially because of the familiarity of this device, and its availability for 
testing. The methods are intended to be more generally applicable, and should not be 
construed as CRT specific. The LCD, for example, does not switch instantly. 
Whatever switching characteristic it has can be analysed by the methods described 
below.

Two special cases which come up often are the static image and the flat field. 
Many computer graphics images are static (animated ones are still the exception 
rather than the rule), so this case is directly useful in practice. The flat field is less 
interesting to computer graphics but permits experimentation in a one-dimensional 
temporal domain. When either of these is being used, the unchanging variables 
(either x and y for a flat field or t for a static image) are omitted.

In the flat field case, the problem is to find a set of weights that provides the 
nearest temporal image intensity variation to /(f) . (There are various definitions of 
nearest which are explored later. Ideally, it means “most similar visually” , but this is 
usually approximated.) More specifically, it is the problem of finding a set of weights 
ap such that

00

y ( ') =  E  aPB (' _ ,p)
P «  — 00

is as close as possible to /(f). For example, suppose that the basis function describes 
the exponential decay of CRT phosphors, as above. Then the intensity of a pixel at 
any time depends on the intensity of the pixel at every frame in the past. Each 
intensity is reduced by the exponential decay of the phosphors since that frame. The
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expression above is for arbitrary pixel spacings. For uniformly spaced pixels, it would 
be written as

J (0  = ap B ~P T) •
p  «  — 00

The ideal image /( f )  may be specified in a variety of forms. The only restriction 
is that it must not contain coherent information at frequencies above the limits 
reproducible by the device. The simplest form for discussion is that of a continuous 
closed form function. In practice, this is seldom available. More common forms 
specify the intensity at some set of locations, and may or may not include information 
about what the image does between specified locations. This is the sort of image 
calculated by most sampling methods, including stochastic sampling. The other 
common form gives an approximation of the average of the image between specified 
locations. This form of image specification is provided by techniques which use 
filtering, or approximate it using weighted averages of samples in a region.

One representation which is seldom considered in this way is that of an image 
which is specified as a linear combination of weighted basis functions. A specific 
instance of this is an image which has been computed or otherwise obtained for 
display on a CRT with a frame buffer of resolution hjXw j, such as an image which is 
hand-crafted using a computer paint program. Finding the best possible set of weights 
for a different resolution device (say, n 2Xm2) with a possibly different basis function 
(perhaps a printer, or an LCD display) is a special case of the problem under 
discussion, but a very important one. For monochrome images the solution to this 
special case completely specifies how to move an image from one device to another. 
It may be that in a device-to-device transfer some filtering is required to remove high 
frequencies before the solution may be applied.

Another special case involving change of resolution and change of basis function 
arises in computing for an excessively high resolution device. The technology of high 
resolution devices is steadily advancing. Already there exist devices with resolutions 
exceeding the limits of the human visual system. If the high resolution device is the 
target device from the start, then one method of saving computation time is to 
compute the image for a lower resolution device with a carefully chosen pixel profile 
and then change the basis and resolution to match the high resolution device, in effect 
building bigger pixels with “nice” basis functions out of smaller ones w'ith given 
profiles. The question to be answered is then one of which pixel profile is best.

One important detail has been omitted in specifying the problem. It is how the 
difference between the ideal image and an approximate solution is measured. Several 
approaches are available, each having its advantages and drawbacks.
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1) Sample the image once per pixel. Minimize the difference between the image 
desired and the image constructed from weighted basis functions at the sample 
points. If the image is available only at these sample points, this approach is the 
only choice. This approach is easiest, and under some conditions can be done 
exactly (an example of such conditions is discussed in Section 8.1). In other 
cases, a norm of the difference vector is minimized.

2) Sample the image more than once per pixel, and minimize differences at sample 
points as in approach 1). This approach might be contemplated for images which 
are supersampled for purposes of antialiasing. Since the shape of the basis 
function is fixed, only one parameter can be adjusted per pixel. This means that 
the problem is overdetermined, and an exact solution is unlikely to exist. If there 
is any information to be gained by considering what happens between pixels, then 
Whittaker s theorem indicates that the image contains frequencies above the 
limits of what the display can reproduce. Hence the image should be filtered and 
then sampled at the lower rate, and method 1) used.

3) Define a function localized around sample points, and use it to find weighted 
averages of the image. Minimize differences between weighted averages and the 
image produced on the display at corresponding points. An example of such a 
function is the box function. It can be used to lower high frequency content. 
With the box function the total intensity of the image is preserved, and the 
average intensity in any neighbourhood comes close to matching that of the ideal 
image in the corresponding neighbourhood. If the integral of the ideal intensity 
function is known the computation is similar in difficulty to 1). If the ideal 
image is known only at a set of sample points, the points may be interpolated 
using a polynomial function, giving a new' intensity function, which may be 
integrated. This is tantamount to numerical integration.

4) Use non-localized functions, such as Fourier transforms. For example, minimize 
the difference between the coefficients of the Fourier expansions of the ideal and 
approximate images. The coefficients can be weighted according to their visual 
importance, using the relative visibility of information at the corresponding 
frequencies. This method has several advantages. First, if the image contains 
unw-anted high frequency information, it can be eliminated when the Fourier 
expansion is calculated. Secondly, this method can use the properties of the 
human visual system to improve the quality of the result. Its disadvantage is that 
images are rarely provided as Fourier expansions and so a transformation is 
required to find the Fourier expansion of the image.
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In this thesis, method 4 using Fourier expansions is referred to as frequency space 
minimization, while method 1 is called direct minimization. Methods 2 and 3 are 
variants on the direct minimization approach.

With infinite computational resources, and arbitrarily fine sampling density, one 
can get an arbitrarily close match with respect to any metric. When the sampling 
density is finite, such perfection is no longer available. In this case the choice of 
metric matters. The metric of choice is a visual metric, that is, the best method must 
produce an image as visually close to the ideal image as is possible given the finite 
sampling density. This is not normally an available option, but of the methods 
available, we choose the one which approximates this as nearly as any. Where 
different methods give visually equivalent results, the most computationally efficient 
one is the method of choice.

It is often convenient to assume that the ideal image is periodic. Periodicity 
introduces no error into the solution as long as the period is sufficiently long. The 
basis functions are guaranteed to decay to values less than machine precision by a 
finite distance from their origin. Let the period be larger than the image size or 
duration by this distance. Then the neighbouring copies of the image are sufficiently 
far away that their existence has no effect. In a similar way, the assumption of 
periodicity does not prevent local computation. If the reconstruction of only a part of 
an image is desired, enough of the neighbourhood of the reproduced part should be 
included to prevent the periodicity from being visible.

A photographer, by changing camera settings, filters or film, can accommodate 
most intensity ranges and produce a photograph with much the same tonal range. In 
the same way, in computer graphics it is considered fair to scale the intensity of an 
image to the 0..1 range or any other range that is convenient. Given an image in the 
0..1 range, it might still be the case that the best match to that image on a given 
device requires values for some pixels outside the range of the device. There are two 
solutions possible. One is to find the best match subject to the constraints that the 
values lie within the 0..1 range. This involves constrained optimization. The other is 
to adjust all images before solving, so that an image initially in the 0..1 range is 
adjusted to be in a smaller range, which then produces a set of frame buffer values 
within the 0..1 range. This involves a reduction of dynamic range. A contrast 
reduction should depend on the device and not on the image, so that dim images 
remain dim, and bright images remain bright. A moderate reduction of contrast is 
relatively unimportant. A major reduction results in an unsatisfactory image.

In summary there are three choices to be made: Is the minimization in the 
frequency domain or the temporal/spatial domain? Is the contrast adjusted overall or 
is the minimization performed with constraints? With respect to which norm is the



4. Problem Definition 31

minimization calculated? The next two chapters make it possible to select either of 
the answers to the first two questions, and any of three answers to the third. The 
following chapters discuss tradeoffs between the choices available.



Mathematical Tools and Algorithms

rJ '1 o proceed further requires the use of a number of mathematical tools. Each of the
methods of solution described can be cast in the form of the minimization of the 

difference between two vectors (sets of values), in which one is the product of a 
matrix and a vector. While some knowledge of matrix algebra is assumed, a 
sufficient set of definitions is given to establish the notation, for which no universal 
conventions exist. Circulant matrices play an important role in several forms of the 
minimization. Because they are often considered too obscure or specialized to be 
treated in texts on linear algebra, they are defined, and several theorems relating to 
them are given. Several ways in which they arise are discussed. A related new form, 
termed here pseudo-circulant, is also presented, along with ways in which they arise 
(which, not surprisingly, are closely related to ways in which circulant matrices arise).

The theorems presented here are given to provide a basis for what follows, not to 
provide a balanced understanding of circulant matrices. Circulant matrices are closely 
related to Fourier series. The Appendix contains a number of useful results about 
Fourier series and transforms which are used in this chapter.

The first section presents a way of describing a raster image using its Fourier 
series. For images which are periodic in space or time, the Fourier series 
representation is of the form of a sum of weighted Fourier transforms of the pixel 
basis function. Section 5.2 establishes the notation used throughout this thesis for 
matrices and some operations applied to them, as well as defining certain special 
forms. Section 5.3 introduces circulant matrices, and shows how they arise in this 
thesis. Section 5.4 extends circulant matrices to a new form, which are in a sense the 
rectangular analogue to circulant matrices (w-hich are by definition square).

32
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5.1. Fourier Series Representation of an Image

An image defined as a linear combination of pixels has an intensity at a point which is 
in principle an infinite sum. (The pixel basis may make the sum finite). If the image 
is periodic, or finite in extent, it can be described in terms of its Fourier series. This 
allows us to compare the terms of the series of the image produced by the device with 
those of the desired image. To make a finite image periodic it is necessary to extend 
it far enough that the pixels used to display one period have no effective contribution 
at the next period. The following theorem gives the Fourier series for a periodic 
function made up of pixels.

Theorem 1: I f  f  ( 0  — ^  \Vpc ( £  — p6) and f  is periodic with period A = N  6, with 
s p - ~ x

lim G ( 0 = 0 ,  and f  G (Od f >0, then  i - ic x  JQ

1 )  w p  =  w p  + N  ,

2 )
f ( O = a 0 +

n = 1

V 2tt ,Nwith a 0 = ------ E hi7c[G((i-■là),0] ,
^  / = 1

2 VJjr N
» i?c[G(i■a„ = -------- E ~là),  Çj

/ =i
. . 2V27 N

and b„ = --------
" A E

i =i
"' i?s(G(0-là),Ç„]

Here, 7C[G(0,$]  is the Fourier cosine transform of the function G(£), evaluated 
at frequency f, and 7S [C (£ — /<$),?„ ] is the Fourier sine transform. See the 
Appendix for details.
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Proof:

1) From the periodicity of the image,
OO 00
E  wPG t f - P 6) =  E  Wp G( Z- ( p +N) 6 )  .

p  — — OO p — -0 0

Regrouping the sum,
oo oo N

E ”>G(C-p<5)= £  ¿2™qN+,G(Z-((q +l)N +1)6).
p <=> — oo q *> -o o  / « I

If the same regrouping is done with the left hand side, the equation becomes
oo N  oc N

E  E H^ + / c ^ - ( ? Af + / )<5)= E  E Mv + f G ( £ - ( te  + i )N + i)s>. (4)
q =  -o o  l = 1 ? = -o o  ; =  1

Substituting r = q +1, on the right hand side,
oc N  oc N

E  E w<lN+l G ^ - ( q N  + l)6) = E  E M'(r - lW + /G ( £ - ( r ^  +1)6) .
9 =  - o c / = l  r = — oo / = 1

Since G ( 0  has a finite integral but tends to zero at large values of 0
G (£ ~ (<? N + 1)6) =G  ( f - ( rA ' -|-/) <5) can only hold for all values of f if q = r .
Expressing both sides with the same indices,

oo N  oc N

E  E  w i N + i G { Z - ( q N  + 1 ) 6 )  =  £  E H’ ( i - D  N + , G ^ - ( q N  + 1 ) 6 ) .
q -  - o c  / =1  g =  — oo I - 1

This equation is an identity with respect to £, so the coefficients must be
equal. Hence »’qN +i = w (q - i)n +i> or wqN = w (q-i)N ■ Since this holds for 
arbitrary q,  wp = wp+JN. '
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2) Using the periodicity of wg in the regrouped form of /  (4),

/ ( 0  =  E  +/)*) = £ >  E  G (e - (y N + /) i)  ,
j - - o o  / - l  /  = 1  y - - o o

1 *  00 r  1 N  00

80 fl0 =  T S w/ E  j G ( { - ( J N  + / ) 6 ) d t = ± £ w ,  f  G( Z- l S) d t
^ /  = 1 . / - - o o  0 ^ / = 1  -0 0

^  ; = 1

by the definition of Fourier series.

2 °° - Vo-  N
Similarly an = —  J^w,  J cos?„ Z G t f - l  6)dt =  —— ^  J ]  w, 7C[G ( £-16) , sn]dt .

^ l -  1 -00 ^  / - I
The equation for b„ follows similarly. □

The two dimensional extension follows, using the complex exponential form for 
conciseness.

OC OC

T h e o r e m  2 :  If  f ( x , t )  =  ^  ^  wpgBx (x — qK)B,(t —p t ) ,  with f  periodic in both
P  b - O C  q  es — OC

x and t with periods D and T respectively, and Bx and B, both normalized as before,
00

then f  (x ,t) = £  zrii i(*'x+
r , i  o  -  OC

with *« E ’v' V *1B “ ■/ r). “ <*>,] ?lBx(x - i K ) , - k r]. 
i,j

Proof: The proof is similar to the one dimensional proof, except that the complex 
exponential form is used:

/ ( Jf.O = E E wM fl*(jr “ P T)
P 9

= E  E  E  Y , wijB*(x ~ ( r M + i )K)B,(t ~ ( s n + j ) r )  ,
r  =  — oo i = l  j  =  — oo ,/ — 1

withMK=£> and N r = T .
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So
D T

k f i  I  S4 DT -D  - 7 \  r ,i  ,s J

D T
OC 0 0

4Dr
^  (A/ TO

E /  E / * ,  (f -  (sAf + j ) T)e - iu’’Bx (x -  (rM +  i ) K)e ~*'*dx dt
i , j  r  = - oo -D s = - oo -T

00 00

= I  B' ( { - j  T)e ~iW,, /  B x i * - i  K)e - * rXdxdt. . 4DTi ,J  -  OC

2 7T
“  E H'y 4 ^ 7  0  - j r ) , -  ] î[Bx (jr - i  K) , - k r] .

i j

5.2. Matrix Notation

A variety of different matrix notations are in current use. The notation used in this 
thesis is chosen for its mnemonic value.

D efinition 1: (Matrix notation). A m atrix  M, of o rd e r  mXn,  is an array of numbers, 
consisting of m rows and n columns. The element of M in row i and column j  is 
denoted m{j. Where the row or column index is an expression (such as i +1;, the two 
indices are separated by a comma: e.g. m(- +j j  _ 2- A matrix having only one row or one 
column is called a row - or co lum n-vecto r; a column vector o f order n is the same as an 
array of order nX  1.

D efinition 2: (Vector norm). The norm of a vector v, denoted ||v ||, is a measure of the 
size of the vector. In general, the lk norm of v is defined as

IMU E M *
\/k

The three most commonly used norms are the /j norm, which is the sum of the 
absolute values of the elements of v, the /j norm, which is the square root of the sum 
of the squares of the elements, and the l ^  norm, which is the magnitude of the largest 
element of v.

D efinition 3: (Matrix multiplication). I f A is an ¡Xm matrix and B is an m Xn matrix, 
then the l Xn matrix C=AB is the (matrix) product of A and B. It has elements

m

cu = E ° « V
/ =i

A common problem in matrix algebra is to find the vector x which satisfies A x=b. If
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.A is square and full rank, then this can be solved; otherwise, the norm of the vector 
A x—b is minimized. The error can be characterized by the single number which is 
the value of the norm, or by the entire vector.

DEFiNmoN 4: (Residual vector) In a matrix vector problem of the form
minimize ||Ax—b||, possibly subject to some constraints, the vector A x—b containing 
the errors corresponding to each of the elements of b is the residual vector.
Note that the elements of the residual vector do not directly correspond to errors in 
the elements of the result. They only give an indication of how well the elements of 
the right hand side vector are approximated by the product Ax.

D efinition 5: (Complex conjugate). I f  Z is a complex matrix, it may be expressed as the 
sum of a real and an imaginary matrix, A+iB, with elements 2tJ =au +\btJ. The 
complex conjugate matrix of Z, denoted Z* is then A —iB.
In this thesis, the only complex matrices appear in the frequency space formulation.
D efinition 6: (Matrix transposition). If M is an mXn matrix, then the transpose of M, 
written MT, is an n Xm matrix with nty = mjt .

D efinition 7: (Hermitian transpose). I f  M is an mXn matrix, then the Hermitian 
transpose of M, written MH, is (MT)* = (M*)T.

D efinition 8: (Matrix inverse). The inverse matrix of an n Xn matrix M, denoted M _1 is 
the nXn matrix for which MM 1 = I, where I is the identity matrix, which has ones 
along the principal diagonal and zeroes elsewhere.
If Q is an m Xn matrix, with m < /j, it has a pseudo-inverse P, of dimensions nXm,  
with PQ =1.
The inverse of a matrix, if it exists, is unique. Only square matrices have inverses.
D efinition 9: (Symmetric matrices). I f  M = M H then M is Hermitian. A real Hermitian 
matrix is symmetric (that is M =M Tj.
Note that M must be square to be Hermitian.

T heorem 3: The inverse of any symmetric matrix, if it exists, is symmetric. The inverse of 
a Hermitian matrix, if it exists, is Hermitian.

Proof: The first follows from the fact that (AT) -1 = (A~ 1)T, which is proven in many 
elementary linear algebra texts (for example [Blythl986]). The second follows from 
the fact that (AH) 1= (A _1)H [Smirnovl961]. If A is Hermitian, then the left hand 
side is just the inverse of A, so the inverse must be Hermitian. c
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5.2.1. Compact Representations of Higher Dimensional Matrices

Vectors are useful as a way of specifying a series of pixel values or image samples. 
Linear operators represented as matrices are multiplied by the vectors, giving 
transformed vectors. One such matrix describes the transformation from the set of 
pixel values at successive frames to the set of intensities at known points in time. 
Given the matrix which gives the transformation .and a vector giving the desired 
intensities, it is possible to find a vector which when transformed using the matrix 
gives the closest match to the desired vector. Standard techniques exist for doing this, 
and are available in numerical packages. When the image is specified in two or more 
(spatial and/or temporal) dimensions, the vectors of the one dimensional case become 
matrices, and the matrix defining the transformation is higher dimensional. The 
Kronecker product is a particularly convenient way of representing these higher 
dimensional matrices as two dimensional matrices, and the vec operator allows a 
matrix to be represented as a vector. With these two tools, the higher dimensional 
problems can be solved using the same library routines as are used for the one 
dimensional problem.

D efinition 10. fvec operator) If  A is an n'X.m matrix, then vec A is the column vector 
which consists o f the columns of A arranged, in order, one above the other, vec A is 
necessarily of order nm .

Example:
If
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D efinition 11: (Kronecker product) I f  A is of order m Xn and B is of order rXs ,  then the 
Kronecker product o f the two matrices, denoted A®B, with order rm Xns is defined as

A®B =

a ll®
a 2\B

a  1 2 ®  

a 22®
‘ ‘ ‘ «In®
• ' • ® 2n B

aml® amlB B

The next operator is useful for term by term multiplication of two vectors.

D efinition 12: fd iag  operator) If v is a vector o f order n then diag  v is the n Xn matrix 
having the elements of v, in order v ! ,v 2, • v„ along the diagonal and zeroes
elsewhere.
To multiply two vectors a and b term by term, form the diag of one and multiply the 
resulting matrix by the other: [diag (a)b]y = a jb j .

Many of the properties of Kronecker products are- given in Section 2.3 of 
[Grahaml981]; only a few are needed here:

(A®B)T=A T@BT (5)

(A®B)(C®D)=(AC)®(BD) (6)

vec (AYB) =(BT®A)vec Y

None of these are defined when the matrices do not conform in such a way as to 
make the multiplications valid.

5.2.2. Matrix Differentiation

Minimization of functions of matrices and vectors is central to this thesis. To find 
extrema of a continuous function of a single variable over a continuous domain, it is 
necessary to differentiate and set the result to zero. When the variable is a matrix, a 
definition of matrix differentiation is needed.

D efinition 13: (Matrix differentiation) Given a matrix A ( t ), the derivative of the matrix 
with respect to a scalar t is the matrix whose elements are the derivatives of the 
corresponding elements in A, taken with respect to t .

r d Al d

In a similar fashion, the derivative of a scalar with respect to a column vector is a 
column vector of corresponding derivatives, and the derivative of a column vector with 
respect to a scalar is a row vector of corresponding derivatives.
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Many properties of vector and matrix differentiation are given in [Graham 1981]

5.3. Circulant matrices

Matrices are used to describe transformations. A transformation of interest in this 
thesis maps frame buffer values to regularly spaced samples of the displayed image. 
When the sample spacing is the same as the inter-pixel separation, and the image is 
periodic, the matrix which does this mapping is circulant. A circulant matrix is a 
special case of a Toeplitz matrix. While the Toeplitz form never appears in the 
matrices used later in this thesis, it provides the first step in recognizing circulant 
matrices, and relatively small changes in the formalism produce matrices which are 
Toeplitz instead of circulant. Pseudo-circulant matrices are rectangular matrices 
defined analogously to square circulant matrices. They result from sampling the 
image with a periodicity different from that of the pixels.

5.3.1. Existing Definitions and Results

D efinition 14: (Toeplitz matrices) I f  M is an n Xn matrix, and miy =m,- _ XJ_ xfor i ,j > 1 , 
then M is said to be Toeplitz.
A Toeplitz matrix is entirely specified by its first row and first column. Each 
successive row is given by a right shift of the previous row by one element, with a new 
element introduced in the first column.

D efinition 15: (Circulant matrices). If M is a Toeplitz matrix, and mn =mi _ ln for 
*>1' then M is said lo be circulant. For any row vector v, there exists a circulant 
matrix with v as its first row. v is termed the defining vector for this matrix.
Note that a circulant matrix is entirely specified by giving the first row. Each 
successive row is given by a right rotation of the previous row by one element. 
Example:

Û1 *2 °3 ' ' an
an a 2 ■ ’ On_j
an-l an a i ■ ' an-2

<*1 a 4 • ' a l

Because of the special properties of circulant matrices, it is as efficient to invert the 
matrix and obtain the solution by multiplying x = C -1b , as it is to solve Cx=b 
directly.
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The following theorem gives the inversion procedure.

T heorem 4: The inverse of a circulant matrix A, if it exists, is circulant, and it may be 
computed by the following algorithm:

1) Compute a vector f, which is the inverse discrete Fourier transform, of the first 
row of A.

2) Compute r, a vector in which r( = 1 //,.

3) The first row of A -1 is the inverse discrete Fourier transform of r.
4) Other rows are given by rotations of the first row, by the circulant property.
Proof: See [Davisl979], pp. 66-75. □
This method is not only fast, but more stable than matrix inversion with general 
matrices.
If the order, n , of the matrix is a power of two. or at least highly composite, then the 
inverse discrete Fourier transform may be computed using the Fast Fourier Transform 
algorithm in time O (n log/j).

C orollary: A real, symmetric, circulant matrix has a real, symmetric, circulant inverse. 
A Hermitian, circulant matrix has a Hermitian, circulant inverse.

In computing the inverse of a symmetric circulant matrix, half of the computation 
may be avoided because the transforms have no imaginary part.

5.3.2. Circulant Matrices as Sampled Functions

Circulant matrices arise from sampling a continuous, periodic function with each row 
shifted in phase from the previous one. The phase shift is equal to the period of the 
function divided by the width of the matrix. Such a function describes the effect of 
the pixel basis on a periodic image produced by a set of such pixels. If B( t )  is the 
basis, then

/ ( r ) =  £  aqB { t - q r )
q ** — oo

is the intensity in an image formed from pixels with intensity values aq , and 
separation t. If aq —aq+n, then the image is periodic with period n r, and it may be 
written as

n oc

Xî S  °lB ((P « ~ l ) T  + t) .
1 =  1 p  =  _  o c



5. Mathematical Tools and Algorithms 42

Sampling this at points spaced j  r apart, 

I ( jT)  = Y jaibli
i

with

bj ,= £  B « p n - ( l - j ) ) T ) .  (8)
p  — — OO

The sum in (8) gives the contribution at the point I t of a pixel located at j r ,  and all 
replications of that pixel in a periodic image. We define a function

00
B( t )=  £  B{pn T - t )

p  o - O C

so that 8(0' — l)r) is bji. This function will be used in the generalization of circulant 
matrices to pseudo-circulant matrices. 8 is periodic, with period nr.  This follows 
because each element of the sum is a copy of the same function translated n t from the 
previous one. In an image with period n t , the weight a j  affects every n th pixel.
T heorem 5: The n Xn matrix B with elements given by (8) is circulant.

Proof:

1) B is Toeplitz:

bi +1 j  + i = B((i + 1 —0  +1))")

= S (0 '- ;)7 )

= bu

2) bn — bi _ i „.

bn =B((i  - l ) r )

= 8(((i - 1 )  - n ) 7)

c
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5.3.3. Pseudo-Circulant Matrices

In some cases the sampling in i is not at the same frequency as that in j , for example
when an input image is specified at a different sampling rate than the raster. Here

00

btj — Y j B O'^ — ipn + /')r), which motivates the following new definition.
p  — — 00

D efinition 16: (Pseudo-circulant matrices). I f  B is an mXn matrix, m<n with
00

btj —B(j 1 — i t )  = ^  B (j i1— (pn-\-i)r).  and m r = m t = T , then B is called pseudo-
P n —00

circulant. A square pseudo-circulant matrix is circulant.

Each row and column of a pseudo-circulant matrix B is formed as a fractional rotation 
of its predecessor, in a sense that should be obvious from the definition. The 
(constant) fractional rotation taking one row (column) to the next, if applied to the 
last row (column) yields the first row (column). 8 is periodic with period T . Each 
row consists of n samples from a function with period T . The samples are separated 
by /  = T /n so a row samples exactly one period of the function. Similarly, each 
column samples exactly one period.

Pseudo-circulant systems can be solved as efficiently as circulant ones, 
particularly when matrices that are the product of a matrix with its transpose occur.
T heorem 6: In the limit of wide matrices, and hence high sampling rates o f the function 
B, the product BBT of a real pseudo-circulant matrix B with its transpose is symmetric 
and circulant. I f  B is complex, then the product BBH is Hermitian and circulant, in the 
same limit.

Proof: It is straightforward to show that the product of any real matrix with its 
transpose is symmetric, and that the product BBH of any complex matrix with its 
Hermitian transpose is Hermitian. If B is square, then it is sufficient to show that the 
product BBt of a circulant matrix with its transpose is circulant. Consider the first 
row of the product. Each element is the dot product of the first row of B with a 
rotation of the first row. The first element is the dot product with a rotation by 0, the 
second with a right rotation by 1, and the last involves a right rotation by —1 (a left 
rotation by 1). The second row of the product is made up of dot products of the 
second row with successive right rotations of the second row, by —1,0,1.... 
Throughout the product matrix, the value in an element is determined by the 
difference in the rotations of the two rows whose dot product is used to form the 
element. Since the amount of rotation is always shifted in a circulant manner, the 
product matrix is circulant.
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Since the transpose of a circulant matrix is circulant, it follows that BBT is also 
circulant if B is square.

When the matrix is not square, circulancy of the product only occurs in the limit 
of large n (wide matrices -  it does not depend on the height of the pseudo-circulant, 
which is the dimension of the product). Each element of the product is given by

cij = Y i bllbfj = Y i biibjl = — i —jr)  .
/ - l  / - l  / - l

B(t) is by definition periodic, with period T = mT = m l . In the limit, as n becomes 
large, /  becomes small, since the period, T,  remains constant. The normalization 
condition for the pixel basis function B (from Equation (3)) causes B to become 
smaller as r does. In the limit as r becomes small, this causes the sum to approach the 
definite integral

T

c (i , j ) =  f  B(t - i  r)B(r - j r ) d t  .
0

The integral is best visualized by considering an arbitrary periodic function, 
multiplying it by a copy of itself shifted by a fraction of a period, and integrating the 
result over a single period. Since B is periodic, with period T,  the value of the 
integrand at any point depends only on the phase shift (i —j ) r  and is periodic in t 
with period T . Thus the integral depends only on (/' — j ) ,  and not on either one of i 
or j . c

For the cases examined in this thesis, the product BBT is close to being circulant 
for relatively small matrices, in the sense that substituting a circulant matrix defined 
by the first row of the product and then solving yields a solution which is similar to the 
one which is obtained by finding the solution for the product matrix. For purposes of 
the algorithms in this thesis, nearly circulant is defined as follows:
D efinition 17: I f  A is a square matrix, and Aj the circulant matrix with the first row of A 
as its defining vector, then A is nearly circulant if ||vec (Ai_1A — I)||<e, where e is the 
precision appropriate for the computation.
The definition leaves open the question of how small e should be, which depends on 
the application. In this thesis, a matrix is nearly circulant if using the circulant matrix 
defined by the first row in the place of the complete matrix yields a result which is not 
visibly different from the result which would have been obtained using the complete 
matrix. In order to decide whether a matrix is ‘nearly circulant’ for the purposes of 
some algorithm, both matrices may be used in a few test cases, and the results 
compared. A more practical test, useful whenever the product is to be inverted, is to 
invert the circulant approximation to the product (which is much faster than inverting
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the actual product), and then multiply the product by the inverse. The difference of 
the result from the unit matrix gives a good indication of how nearly the circulant 
approximates the product for this purpose. How much they may be allowed to differ 
depends on the application.

Note that the reverse product BTB with B pseudo-circulant is not, in general, 
circulant, or even nearly circulant. Similarly, if the dimensions of B are reversed, that 
is m >n , then the the product BTB is not nearly circulant, but the reverse product BBT 
is, for large enough values of n .

Algorithms exist for filtering (convolution) in time proportional to the size of the 
image and to the width of the non-zero part of the filter function. Such algorithms 
have the advantage of operating on images of indefinite size, since they need to store 
only as much of the image as is covered by the filter. By contrast, matrix-vector 
multiplication requires the entire image vector to be in memory. As shown in the 
next theorem, multiplication by circulant and pseudo-circulant matrices is equivalent 
to convolution, so space-efficient techniques may be used.
T heorem 7: / /  a vector x of length n is constructed so that Xj = /  (j t), where f  is 
periodic, with period T = «r, and a pseudo-circulant matrix C of dimensions nXm is 
constructed so that

00

Cij = Y j 5 ( ' +>) 7)’ J=nT/ m,
p  b  -  OC

then the product y=Cx approximates the convolution of B with f  at the points t =j~.  
The limit o f the sum as r—► 0 is the convolution integral.

Proof: A single element of the product is y,- 

and x,

n
^ C j j X j .  But by the definitions of C 

J -1

n oc

)i = XI B (iT>~  (pn + j ) r) f  o  t )
j  =  1 P  =  -  OC 

/ ■* — 00

since /  is periodic. In the limit as ►(), is the convolution of B with /  . c 
Digital filtering is a simple form of numerically computing the convolution integral of 
the filter function with the function (image) being filtered. The values of the filter 
that are used for filtering when the filter is the function B{t )  are given by the 
elements of the matrix.
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5.4. Algorithms
This section gives algorithms for finding a solution for the direct method, and for the 
frequency space method. In each case, the algorithms for solving in one dimension 
are given first and then they are extended to two dimensions. Solutions are given in 
terms of finding matrices and solutions to matrix vector problems. Specific matrix 
elements are found for particular cases in Chapter 8.

5.4.1. Direct Solution
If the pixels in a device are independent, the values of the pixels may be related to the 
intensities at evenly spaced sample points using a pseudo-circulant matrix. How this 
is done is shown at the beginning of Section 5.4.

In such a system, the input vector x gives the pixel values; the output vector b, 
gives the intensities produced at the sample points. When the input vector is 
multiplied by the matrix, the output vector is the product. When x is given, b may be 
computed as Bx and used in a simulation of a device with pixels that are constructed 
from several pixels of a real device. When b is given, then the system Bx=b may be 
solved for x, giving the frame buffer values required to produce the intensities 
specified by b. This is the mathematical basis for all of the minimization techniques 
that follow.

The pseudo-circulant system Bx = b, with B m Xn , (m < n ), is under-determined. 
That is. there are more unknowns than equations to satisfy. Thus there is a non
empty vector space, called the null space of B. The sum of a solution vector x with 
any vector in the null space is another solution vector. The vector with zero projection 
onto the null space of B has the least extra information added to it, and in some sense 
is the best choice. This vector is obtained by solving (BBT)v=b for v, and then 
setting x = B tv [Golubl983]. If B is wide enough, then BBT is nearly circulant, and 
its inverse is easily computed as outlined in Theorem 4. The result is then 
x =B T(BBT) -1b.

The complementary system A x=b. with A = B T and B pseudo-circulant as 
before, is over-determined. This corresponds to having more sample values than 
pixels. It is generally impossible to find an exact solution. In this case, the best 
possible is a vector which minimizes a norm of the residual vector r= A x —b. 
Minimizing the 11 norm of the residual keeps the average error as small as possible. 
Minimizing the l ^  norm keeps the maximum error as small as possible. The l 2 norm 
is a compromise between the two.

The problem of minimizing the /j or l ^  norm of a matrix-vector system is a 
linear programming problem, which can be solved with or without constraints, using 
available software. To solve the l 2 minimization problem, the product rHr is
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minimized. The risk of this method is that in forming products of matrices with their 
transposes, small elements might be lost. In this case, the small elements are not 
significant in the result, so it does not matter. Most standard software requires all 
matrices to be real. When r is real, the product is rTr. For reasons which will 
become apparent in the next section, we keep r complex. In any case the product is 
real.

To minimize rHr =(Ax — b)H(Ax — b), expand the product

(Ax —b)H(Ax —b) = xhAhAx- xHAHb —bHAx + b Hb .

The last term is a known real scalar. The second and third terms are complex 
conjugates of each other: their sum is a real scalar. Thus the first term is real since all 
of the other terms are real. It is sufficient to minimize 
xH(AHA)x —(bHAx-f (bHAx)H). Differentiating with respect to x [Dwyerl948] and 
setting the result to zero:

(AHA + A TA*)x=ATb‘ + AHb (9)

or Re(AHA)x =Re(AHb). The /2 norm solution to the minimization problem is the 
solution to this new problem:

x= (A HA +(A HA)T) - 1(ATb* + AHb) . (10)

Since Ah is pseudo-circulant, AHA is real and nearly circulant, but not necessarily 
symmetric. The sum of a matrix and its transpose is always symmetric. Hence the 
inverse may be quickly computed using the algorithm of Theorem 4. If A and b are 
real, the solution is slightly simpler: x = (ATA) ” !(ATb).

These equations can be expanded to higher dimensions using the Kronecker 
matrix notation. Let X be a matrix of pixel values to be determined for a two 
dimensional (one spatial and one temporal) image. The rows of X correspond to 
frames in the image; the columns correspond to the sequence of intensities for 
particular pixels. If A* and A2T are the matrices which would be used in the one 
dimensional cases of space and time, respectively, then A /x  gives the image which 
would be displayed by the device, if it had pixels with no spatial spread, and XAx 
gives the image which would be displayed if pixels had no temporal spread. A/XAj 
gives the image on a device with pixels having temporal and spatial pixels spreads. If 
B gives the sample values, then the difference A/XAj — B is a matrix giving the errors 
at samples. The vec of this matrix is a vector containing the same values. It can be
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minimized using vector minimization techniques. Since 

vec (A/XA j) =(A10 A 2)vec X, 

the equivalent problem is to minimize

II Ax b | |, (1 1 )

where A = A 2®A2, x=vec X, and b=vec B, for matrices A2, A2, X and B. For the 
12 norm, (AHA +A TA*)x =A Tb*-fAHb as before. This equation may be solved 
directly in two ways: by forming the inverse of the matrix expression on the left or by 
using Gaussian elimination to find x. By using the structure of the matrix, we can 
reformulate the problem and the computation can be significantly reduced. 
Expanding

((A10 A 2)H(A1®A2) +(A1®A2)T(A1®A2)*)vec X

= (A1®A2)Tvec B* + (A1®A2)Hvec B , 

=» ((A1H®A2H)(Ai®A2)+ (A IT®A2T)(A1®A2)*)vec X

= (A1T®A2T)vec B* + (AjH®A2H)vec B ,

(by (5))

=> ((A1HA1)®(A2HA2)+ (A 1TAÎ)®(A2TA2*))vec X

= (A1T®A2T)vec B* + (AjI®A2I)vec B ,

(by (6))

=» (((A^Aj) + (A,TA1‘))®((A2HA2) +(A2TA2*)))vec X

= (A7®A/)vec B* + (A1H®A2H)vec B , 

^  vec (((A2hA2) +(A2tA2*))tX((A,hA1) +(A 1tA1*)))

= vec (A2B*AjT) 4-vec (A2*BA|H) ,

(by (7))

^  ((A2HA2)+ (A 2TA2*))TX((A1HA1)+(AjTA,*))=A2B*A1T + A2*BA1H .

Assuming that the appropriate inverses exist,

X =((A 2HA2)+ (A 2TA2*))-TA2B‘A1T+A 2*BA1H((A1HA,)+(AiTA1*))-1 . ( 1 2 )
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Now both terms of (A^A^ + (A /a 2*) are Hermitian matrices, and they are complex 
conjugates of each other, so the sum is real and symmetric. This means that the 
inverse-transpose appearing in (12) is the same as the inverse, so

X =((A 2hA2)+ (A 2tA2*))-1A2B*A1t +A 2*BA1h((A1hA1)+ (A 1tA1*))~1 .

Each of the inverses is of a small matrix. The order of AHA is the product of the 
orders of A|HAj and A^A^. As a result this is a much more efficient technique of 
solution than treating the entire system as a whole. If A^Aj and a “ a 2 are symmetric 
circulant, then each of the inverses can be found in time «¿log«,- time, where n, is the 
order of A^A^

5.4.2. Frequency Space Minimization

The methods above are useful for the direct minimization approach outlined in the 
last chapter. Circulant matrices arise in the frequency space minimization as well, but 
for different reasons. In this method, the Fourier expansions of the desired image 
and an (as yet unknown) image formed from device pixels are compared, with the 
difference between the two being minimized. A more sophisticated variant on this 
weights each Fourier coefficient according to the sensitivity of the human visual 
system at the corresponding frequency. In one dimension, the problem is to find the 
set of amplitudes ap which when multiplied by copies of a function representing the 
pixel shape, B (£), give

v W [ / ( 0 , i „ W <T(?„) (13)

where T(?„) is the contrast sensitivity at frequency , /(£) is the desired image, and
OC

/ '(£ )=  ^2 apB ( £—p 6) is the image produced on the display. In practice /(£) is
P  »  —  00

taken as being of finite duration or periodic, so that the Fourier series can be used in 
the place of the transform. Since any set of weights ap which satisfies (13) is equally 
good, the approach is to minimize

Now let the coefficients in the complex Fourier series of I and / ' be z„ and z 
respectively. The objective is to minimize ||diag (W)(z'—z)||, where W'„ = 1/T(ç„ )• 
From Theorem 1.
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j W j Z N 1 N

i " j - i
2V27rW„

with b„j = ----------- (£ — (Note that n is not the width of the matrix in
this case.) If yn =W„zn , we are minimizing the residual of a matrix vector system: 
l|Ba —y||2, where B is not necessarily pseudo-circulant.

If there are no constraints on the values of a, there is an efficient way of 
computing the l 2 norm solution. The solution is a =(BHB + BTB*)- l (BTy* + BHy), as 
shown in Section 5.4, Equation (10). This solution can be written as a = C -1x, where 
C =(B hB + B tB*), and x =(BTy* + BHy). Expanding,

A A / a

n

and xt =Y^Wn(7[B ( £ - / <5),?„ ]*z„ + zn*7[B ( f - / <5),f„ ]). Using the shift theorem for
n

Fourier transforms (Theorem A .3), c;7 may be re-written as follows:

n
2 \/2 -

= - y ^ x )h'«2cos(?-O’ - n w B  ( f u „ v t [b  (o ,s„ ] .
n

Even though B is neither pseudo-circulant nor real, C is circulant and symmetric, 
independent of the matrix size. The proof follows:

1) C is symmetric Toeplitz, that is, c;7 is real and depends on |j —l |, but not on 
j  + / • The product of any complex number with its complex conjugate is real, so 
each term in the sum is real.

2) j~> 1- It is sufficient that corresponding terms in the series 
represented by the left and right hand sides of the equation agree. That is,

U'n2cos(?n0 - 1 ) « 5 ) ^ ( 0 ,? J ^ B  (O ,? n ]= ^ n2cos(?„ 0 - 1 - ^ ) 6 ) ^ ( 0 , ? J ‘^  ( 0 ,U ,

and since = 2n n/N 6, the identity is true because the cosine is periodic.
Taken together, 1) and 2) prove that C is circulant. □

The two dimensional problem is a straightforward extension of this one
dimensional analysis, as long as the two dimensional basis can be expressed as the 
product of two one dimensional basis functions. In such a case the basis function is 
called separable. Let B, ( t ) and Bx (x) be the temporal and (one dimensional) spatial
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pixel intensity functions, and I (x , t )  be the desired image. If Wrs is the two 
dimensional analogue to with r indexing spatial frequency and s indexing 
temporal frequency, then the problem is to find the set of amplitudes apq which 
minimizes

^ ;r2s(S[I(x  , t),kr ,u;s] - S [ I l(x ,t ),kr ,Us) J ,,
r,s

OO 0 0

with I ' ( x , t ) = Y  Y j °p<i b x (x —<1 K)Bt(* ~P t )> or, more compactly, minimizes
P  =  “ 0C g  a - 0 0

£ H Zr s - z rsl|2 = l|vec z '-v e c  Z||2, with Zrs =  Wrj $ [/(, ,r),* ,,* ,] 
r,s

0 0  0 0

and Zr's =W r¡S[ Y ,  U  °PqBx{ x - q K) B t { t - P T),kr ,<,'s}2 .
p m  — OC $  »  — 0 0

Here $[/ {x ,t ),kr is the (r ,s ) element of the Fourier series of I ( x , t )  (see the 
Appendix). From Theorem 2, in Section 5.1,

OC 0 0

X) X) apqBx(x -pT) , kr ,Us]2
p m  — 0 0  £  m  -  OC

= - j T)>-*t]?[Bx (x - i K ) , - k r]
‘J

-XftPVjS0  .
i j

ThusZ,'
>,j

or z' =vec Z 1 = diag (vec W)vec (B(x)TAB(,i)

= diag (vec W)(B(,,T®Blx)T)vec A .

If W is separable into W t h e  expression for Z'  is simpler:

Z '= (W lx)TB<x,T)A(B(l,W(,)) .

In the non-separable case, the minimization is ||B'a — z||2, with B' = diag (vec 
W)(B(,,T®B(X)T), and a=vec A. The minimization analogous to the one-dimensional 
minimization above (equation (9)). except that the inverse cannot be obtained cheaply 
by taking advantage of circulancy. Thus a more general matrix vector solution 
technique must be used. From Equation (9).
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Re(B'HB')a=Re(B,I1z) ,

B'HB' =  diag (vec W)T(B(,)*®B(x,*)(B(t)T®B(x)T)diag (vec W)

=  diag (vec W)(B(,)*B(,)T®B<x,*B(x)T)diag (vec W) .

The central product of this expression is the Kronecker product of the two real 
matrices used in the one-dimensional formulation. W is real. From this it is clear 
that the entire product is real.

If W is separable, vec z '=  (B(,)W(,))T®(W(x)TB(x)T)vec A and the quantity to be 
minimized is ||(B,®B2)vec A -vec  Z||, which has the same form as (11). Thus the 
solution is

A =((B2hB2) +(B2tB2*))“ tB2Z*B1t +B 2*ZB1h((B1hB1) -H B/B j))-1 ,

from (12). Referring back to the one dimensional frequency space method at the 
start of this section, the matrices to be inverted are the same as the ones which are 
inverted in the one dimensional spatial and temporal cases, for the same basis and 
image width. Thus they are symmetric and circulant.

5.5. Summary

Most of the definitions in this chapter are not original; the definitions of pseudo- 
circulant and nearly circulant matrices are. Notations for matrices, their complex 
conjugates, regular and Hermitian transpose vary from source to source. Some 
definitions are relatively obscure, being either too new or considered of too little 
centrality to mathematics to be well known. The vec operator, Kronecker product and 
matrix differentiation are relatively new; Toeplitz matrices, and circulant matrices in 
particular are not generally considered central enough to be introduced at the 
undergraduate level. Several definitions only appear for completeness: the vector 
norm, matrix inverse and symmetric matrices fit in this category.

The theorem relating an infinite sum of weighted basis functions to its Fourier 
series is new, as is its two dimensional extension. Theorems 5-7, dealing with ways in 
which circulant and pseudo-circulant matrices arise are all new.

The algorithm for minimizing the / 2 norm of a vector expression is well known; it 
is usually presented for real matrices, and some care is required in extending it to 
complex matrices. The concise presentation using matrix differentiation for 
minimizing the l 2 norm appears, among other places, in Rau’s statistics text 
[Raul965]. Dierckx used the Kronecker product notation to extend this presentation 
to two dimensions with B-spline basis functions serving the same purpose as the pixel 
basis functions used here [Dierckxl977], The extension to complex matrices does not 
appear in either of these references.



Minimization Approaches

W hen the problem was introduced formally in Chapter 4, several alternative 
criteria for measuring the difference between images were suggested: matching 

at sample points, matching averages between sample points, and matching in 
frequency space. Although other criteria are possible, these three are representative 
of ways of solving the problem, however it is posed.

Regardless of the method of matching, an exact solution may be impossible: 
intensity values greater than the device maximum or less than the device minimum 
can be required to match the images. There are two solutions to this problem. One 
puts constraints on the input, only allowing images that do not cause problems. The 
constraints typically are contrast restrictions. The other uses constrained 
minimization. Each approach has advantages. The main advantage of using 
constrained minimization is that any input image may be supplied and a valid solution 
is returned. In many images, the locations of changes in intensity are more important 
than the absolute intensity; for such images a reduction in contrast is better than using 
constraints, since edges may be lost in regions where constraints are active. There 
may also be tradeoffs between contrast and accuracy which depend on unknown 
characteristics of the visual system. Unconstrained minimization also runs more 
quickly, and can be implemented as filtering.

Whether the system is constrained or not, and regardless of what is being 
minimized, there remains the choice of norm used to measure the distance of a given 
solution from the ideal image. Here only the / j , /2, and /TO norms are considered, 
since techniques for minimizing them are relatively well known, and they cover the 
spectrum of norms well enough for some comparisons to be made.

The previous chapter provided the mathematical foundations for all three 
methods of solution. In Chapter 7, methods of solution using the tools already 
presented are outlined. In the Chapter 8, tw-o profiles are used as examples to 
illustrate the use of the techniques outlined in general in this chapter.

53
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This chapter begins with the three methods: it considers first matching images at 
sample points, then matching integrals between sample points, and lastly frequency 
space minimization. After this the two methods of avoiding values which lie outside 
the range of the device are considered; the first constraining the input, the second 
constraining the output. Finally using filtering to obtain results equivalent to the 
unconstrained minimization is discussed.

6.1. Minimizing Differences at Sample Points

Just as the basis functions are assumed to be equally spaced, so the sampling density 
of the ideal function is assumed uniform. This could be relaxed, at the cost of some 
efficiency. The spacing of the basis functions and the spacing of samples need not be 
the same. If the density of basis functions is greater than the density of sample 
values, there are multiple solutions, and a strategy must be adopted to select among 
them. If the density of basis functions is less than the density of sample values, only 
an approximate solution is possible. An approximate minimization technique must be 
used to find the best solution. If the two densities are equal then an exact solution 
may be possible, depending on the contrast of the image.

In one dimension, matching sampling values is formalized as follows. We are 
given a sampling of an ideal image I ( t ) ,  for sample points tk = k r , a basis function 
B(t ), and pixel separation /. We want to find the set of values aj which, when 
multiplied by B(tj) and summed, gives a function J( t ) ,  with J(kr )=I (kT) .  In the 
case " = / ,  some simplifications exist. When / (r) is periodic, the matrix which is used 
in the solution is circulant. This does not mean that the image needs to be periodic. 
When it is not periodic, then the image can be extended at both ends w'ith enough 
blank space that pixels used to display the end of one period have no significant 
residual effect on the displayed image at the start of the next period. Mathematically,

I ( k T ) =  £  op B(kr—p t) .
p  — — 00

If I ( f ) is periodic, with period N t = T , ak =a k _Ni, for all integer values of /. Then it 
is possible to write

oc N

I (lcT) = £  £ « ,* ( ( * - ( j + M ) ) T) ,
9 “ - 00 -  1
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and re-arrange the order of summation to
N  oo

r) = E  a; £  B((k - ( j  +Nq ))r) .
J  = 1  9 =  - o o

00 ff
If we let bkJ = J ]  B((k +A^))r), the summation becomes/(* r) =  ^ j bk]aj '

q -  - o o  j  _ j

or x = Ba. Since sample spacing is the same as the separation of the basis functions, a 
has the same number of elements as x, meaning that the matrix B is square. It has 
already been established in Section 5.3 that any B formed in this way is circulant.

The more general case of different (but uniform) sample spacings is 

I (kT) =  Z aP ^ kT~P^ )  >
P e» -  OC

with N t = M tj = T,  s o  that ak =ak _Ni as before. Note that the correspondence of 
N t =M /  can always be arranged, possibly by extending the blank ends of the desired 
image. Then

M  oo

1 (* r) = Y j aJ Z! B(kT~ ( j  +Mq)lJ) , 
j  =  1 q =  -  oc

oc

or x=B a , with bkj = £  B{k - - { j  + N q ) /) .
q ® — oc

In this case B is not square, but if N >M , it is pseudo-circulant. It is for this reason 
that the results of Section 5.3.3 were introduced.

For some basis functions the infinite sum may be found in closed form. In those 
cases in which it cannot, the sum should be calculated from the smallest appreciable 
value to largest in order to minimize numerical error (as long as the non-appreciable 
values are known to have a non-appreciable sum -  which is the case for all reasonable 
pixel bases). Pixel basis functions are generally monotonic on each side of the origin, 
so the smallest to largest ordering is toward the origin.
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6.2. Minimizing Differences of Averages

One of the problems of sampling is that it is not necessarily average preserving. It is a 
desirable property of any procedure applied to an image that the average intensity of 
the entire image and any region within the image be the same in the ideal 
specification as it is in a realization on the device. The average of a function f { i )  
over an interval t i . . t2 is

h
J f O ) d t
h______

' 2 “ ' l

Minimizing the difference between averages over an interval is equivalent, then, to 
minimizing the difference between integrals over the same interval. For the moment, 
consider only the case of equal spacing (7 = /) . Mathematically, matching integrals is 
finding the set of weights aj which give

(* +  l ) r  (* +  l ) r  ^  (* +  l ) r  00 N

v k = f  I ( t ) d t =  f  £  ajB ( t - j r ) d t  = f  Y j £ > * ( ' - ( j N  +l)T)di
k '  k r  y = - o c  icr j ~ - 00 I =0

for every interval k , or minimizing the error in the approximation. Now, it is possible 
to transform this into an instance of the earlier problem as follows:

^  H‘ 1 ^' 00 Ar oc N  ( * + 1 ) r

V k =  J X ] Yj ° ‘B + l )~)cit ~  X ) f  5  ( ' —{jN + l) r )d t  .
k T y =  -  oc / =  0 y =  - o c  /  = 0  k t
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Let u =t  —(jN + /) r  and S (r,r)=  J  B (u )du .
t

( * + l ) r  ( t  — jN  — I +  1) t

Then J  B (t —(jN + l)r)d t = J  B(u)du = B((k — jN .
k r  (k - j N - l ) T

S° Vk = ^2 ai^ ,& ((lc — jN —l ) T>T), which has the same form as for value matching.
1 J

The new basis function B depends on r, which is assumed constant. Thus, matching 
integrals is the same problem as matching sample values, but with a different choice 
of basis function. This is easily extended to the case of t ^ t1.

It is possible to extend this to averages over multiple intervals, and then further, 
to include weighted averages with weighting functions which have finite integrated 
values. To extend it to multiple intervals, the new basis function is formed from the 
integral over multiple intervals, rather than one interval. With weighted averages, the
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new basis function is formed from the weighted integral. Using weighted averages 
over multiple intervals allows a form of filtering of the image, and is common in 
antialiasing.

6.3. Frequency Space Minimization

The general method of doing frequency space minimization was discussed in the 
Section 5.4.2. Finding an unconstrained solution in the / 2 norm with a separable 
approximation for the human visual system’s sensitivity function requires the inversion 
of circulant matrices, or the Kronecker product of circulant matrices, so that the 
solution process is computationally efficient.

Various approximations can be used for the sensitivity function giving the relative 
importance of the different frequencies in the sum. Several of them are discussed in 
the last part of Chapter 3. The simplest approximation is to use an infinite series, 
assuming all frequencies are equally important. In most cases the sum is not available 
in closed form, so it is cheaper to use an approximation in which all frequencies are 
weighted equally up to the cutoff of the human visual system. Because of the shape 
of the human visual system response function, this is a better approximation than 
using the infinite sum, and is equivalent to using Watson’s window of visibility 
approach in one dimension (see Chapter 3). Better approximations use weights 
proportional to the visibility of the corresponding frequencies, based on the spatial or 
temporal response functions.

One approximation is Watson’s window of visibility, the product of a spatial and 
a temporal response function which are both constant up to a finite cutoff value. A 
better approximation is a product of good approximations of the temporal and spatial 
response functions, at intermediate values of the spatial and temporal frequency 
domains respectively, while the best approximation is close to the actual (non- 
separable) spatiotemporal response function, such as the approximation used to draw 
Figure 7 in Chapter 3.

In both the direct and frequency space minimization, the solution lies in solving a 
matrix vector problem. The algorithm for frequency space minimization was given in 
the last chapter. In the unconstrained /2 case, it involved solving a circulant system. 
If there are constraints, then it is still a matrix-vector problem (with a complex 
matrix), although not as simple to solve as inverting the matrix. This is also the case 
for the other norms. In the direct minimization case, a circulant or pseudo-circulant 
matrix-vector problem is solved. If it is circulant, then the choice of norm does not 
affect the solution unless there are also constraints: the solution is exact. For each 
choice, the matrices involved have been described in general terms in Chapter 5 (i.e. 
for a general pixel profile). The elements of specific matrices are given in Chapter 7.
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6.4. Domain Restrictions -  Limiting Contrast

Whatever matching technique is used, the calculated intensities are displayed on 
a device having a bounded intensity range. The bounds on the real device can be 
taken as 0 and 1 without loss of generality. Less realistically the device is assumed 
capable of producing a continuous range of pixel intensities. The best unconstrained 
approximations to some images have all calculated pixel intensities within the intensity 
range of the device. These images may be displayed as is. As shown below the 
important image characteristic is the contrast. For some pixel basis functions it is 
possible to calculate the maximum contrast a representable image may have. In all 
others a bound is at least possible. In this section it is shown how to find the 
maximum or a bound on it.

As is mentioned both in the introduction and two chapters later where the 
problem is defined, unconstrained minimization is always possible if the input contrast 
is adjusted appropriately. If constrained minimization is not used, two approaches are 
available. The first is to provide the contrast requested, as long as the requested 
contrast is not greater than the maximum available; when the contrast of the input is 
too great, the result is undefined. (This is like constrained minimization, in an 
instance in which the constraints are not needed). The second is to map a known 
range of the input (such as the 0..1 range) to the available input contrast range in a 
linear fashion. Both methods are equivalent in the sense that if the mapping used by 
the second method is known, its inverse can be manually applied to the input 
(effectively undoing it) to provide the effect of the first method. Similarly the 
mapping can be applied before using the first method, giving the same effect as the 
second method. The first method is more convenient when, for whatever reason, 
contrast must be specified in absolute terms; the second is more convenient when 
device independence is an asset.

Whichever approach is taken, a measure of the allowable contrast is required. 
For unconstrained minimization with the /2 norm, the problem has been reduced to 
one of solving a matrix vector system, which can be represented as a matrix-vector 
multiplication (with the inverse matrix and the right-hand side vector), regardless of 
whether the method is direct or in frequency space. Because the / 2 norm is the most 
appropriate for problems of this type (as shown in Section 8.1.4), it is the only norm 
which is considered at here. There are two possible ways of ensuring that the output 
image is within the limits of the device. The more appealing is to derive a value for 
the allowable contrast, so that any image with contrast within the limits of the 
allowable contrast, when multiplied by the inverse matrix, yields an output in the 0..1 
range. This method gives the user the value of the allowable contrast and the choice 
of transforming the input to fit in the allowable contrast or paying the penalty of using 
a constrained minimization package. A simpler, but less appealing method is to find
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the minimum and maximum values at the output for an input vector which is in the 
0..1 range. An appropriate affine transformation may then be applied to any output 
vector to guarantee that if the corresponding input was in the 0..1 range, then the 
output is as well. In this case the user should be able to override the transformation 
being applied to the output.

The second approach is outlined first. It is based on the assumption that the 
worst case vector could occur. Consider an output vector b generated from the input 
vector x using Ax = b , with 0<x, <1.

Then bj = Y ajixi .
i

The largest element of b can be no larger than 

¿>raax=max Y j aj i ’
1 i,a/>0

that is largest sum over a row, when only the positive elements are summed. The 
smallest element of b can be no smaller than

¿min = min Y  aji- 
1 i,a/<0

After transforming, the maximum should map to 1, and the minimum to 0, so each 
element of b should be replaced with the corresponding element of b* where

bj b mjn
"i ~  T 3 a '°niax 0min

Note that the transformation is independent of x and b, as expected. This approach is 
device dependent, rather than image dependent. It is useful for presenting a series of 
images of varying contrast.

The other approach, that of transforming the input, is more involved. Here the 
maximum allowable input contrast must be found. Consider an output vector b 
generated from the input vector x using Ax = b. If x has no elements greater than 
fmax anc* no elements less than fmin, then the greatest contrast that can appear in the 
input image is

^min 1 max 
* min “̂ max

What values of rmin and rmaj[ ensure that the vector b has no values outside the 0..1 
range?



6. Minimization Approaches 60

For row i of A there exists a vector x(/), for which bt is a maximum. It is 
defined as

(0 _
f*m ax> a ij  ^ 0

^ l / m in  a i j <''O •

The vector y(f) with roles of tmax and rmin reversed makes b( as small as possible. That 
is,

J'mhr a „ > 0
l /m a x

The smallest element of b,  over all allowable vectors y, is 6mi„= n iin £ \ii;-y^<), while
1 J

the largest is b m n =rnax'^jaij X ^ \  There are two important parameters of the
j

output: the sum and difference of the max and min. The sum is

b  max +  b  min =  m a x £ a , j  * / '  > +  m in  Y f i t j  y / ' ) •
‘ J 1 J

The difference is

b  max -  b min =  m  ax } ~  m i n £ ] a l; y / '  > .
' J ' J

When A is circulant, the sums do not vary from row to row. 

b  max +  ̂ min =  1 l j x} ^
J J

j
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~  (r max ~i~1 min) y~lfl 1 /
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If the device contrast is Cj = —------—---- , the maximum contrast in the image is
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This gives the maximum dynamic range under the worst possible conditions, assuming 
that the worst case vector for a given basis function might be specified as an input. 
Usually, more is known about the input so it is possible to do better. For example, 
the worst case vector may contain the max and min values in adjacent entries. If it is 
known that the image never changes that rapidly, the input may have greater dynamic 
range, without the output values leaving the allowable range.

The above analysis only gives a crude estimate of the dynamic range available. 
An eigenanalysis could also be used to find the worst case vector and the amount that 
the elements of that vector are scaled by multiplication by the matrix [Golubl983].
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6.5. Constraints

Constrained minimization packages are readily available, for example in the NAG 
library [Numericall988]. Details of the numerical methods are not relevant, but two 
features of them are worth noting. General (not hand-crafted) methods assume little 
or no structure exists within the matrix. Writing a hand-crafted method for a new 
kind of matrix structure, such as circulants dominated by the elements near the 
principal diagonal or near the off-diagonal corners, is a major undertaking. Second, 
adding constraints to a system is normally achieved by adding rows to the matrix and 
solving the new system. This eliminates the circulancy of the matrix, and makes it 
unlikely that a solution technique can take advantage of the original circulancy for 
improved efficiency.

Some methods require a starting guess for the solution, and here the circulancy 
may be used to compute a solution without constraints. If this solution does not 
violate any of the constraints, the problem is solved. Otherwise, the unconstrained 
solution provides a, reasonable starting guess. One important reason for using this 
approach is that it can save a very costly calculation in the worst case. My experience, 
particularly with matrices used in frequency space minimization, has shown that if the 
starting guess derived in this way comes very close to violating the constraints without 
actually doing so. then the minimization routines, called with constraints, take days or 
weeks on a VAX 8600 to find a solution on moderate sized problems (16-20 samples). 
It is thought that this is as a result of all or nearly all of the constraints being active at 
each step of the solution process due to the oscillatory nature of the solution 
[Connl989]. If the starting guess calculated using unconstrained techniques does not 
violate any constraints, then the calculation of the constrained solution is avoided 
entirely, since the unconstrained solution is satisfactory.

6.6. Fast Solution by Filtering

Each of the problems above has been cast into the form Ax = b or x = A -1b. In each 
case, circulant techniques can be used to find A or A -1 . It was already noted that 
multiplication by a circulant matrix is equivalent to numerical integration of a 
convolution integral, converging to the convolution as the size of the matrix gets large. 
In order to avoid side effects from assuming periodicity of the image, the matrix 
dimensions are increased until they are “large enough” . Clearly no accuracy is lost in 
increasing the matrix dimensions further, producing a better approximation of the 
convolution integral. The only effect of this is to increase the computation time in 
performing the multiplication. Increasing the dimension to the next power of two 
allows the DFT used twice in the inversion of the circulant to be replaced by an FFT, 
with the result that the inversion takes time proportional to n log2» , where n is the 
width of the matrix. Increasing the dimension indefinitely transforms the DFTs to



6. Minimization Approaches 63

finite Fourier transforms, which are occasionally available in closed form. (Two 
inverse transforms are needed to solve a circulant system. It is quite possible that only 
one of them has a closed form solution.)

When the matrix is sufficiently large, most of its elements are effectively zero. 
Because the matrix is symmetric and circulant, the first off-diagonal is repeated in the 
top right and bottom left corners, which means that the matrix is not banded in the 
traditional sense. Nevertheless, the multiplication may be performed at a cost which 
does not escalate with the size of the matrix if we include only those elements which 
contribute non-negligible amounts to the sum.

If the problem is unconstrained, then it may be solved as follows: First find a 
large enough circulant or pseudo-circulant matrix to avoid the side effects of 
periodicity. This size depends only on the device and not on the image. Next invert 
the matrix, or find a pseudo-inverse in the case of a pseudo-circulant matrix, to 
produce a new matrix, either circulant or the transpose of a pseudo-circulant matrix. 
This inverse is the filter, sampled at all the points at which it will be needed for the 
convolution. Lastly, convolve the input with the filter. This involves, for each output 
pixel, as many multiplications as there are non-negligible entries in a row of the 
matrix, and one fewer addition. The total cost is proportional to the size of the 
output, unless it is so small that the cost is dominated by the inversion of the matrix. 
Because the filter is based on unconstrained mimimization, values outside the device 
range may be generated. Two solutions are suggested in Section 6.4. An ad hoc 
solution is also possible, clipping the output to the device range. If the solution is very 
close to fitting within the device range, then clipping can be justified on the basis that 
the changes which result are no larger than the round-off error in the solution. 
Alternatively, constrained minimization, outside the filtering paradigm, may be 
performed.



Simulation Techniques

G iven a device with known characteristics (pixel shape and phosphor decay time),
it is easy to display the results of a minimization on that display, as long as the 

device characteristics assumed in the minimization are the characteristics of the 
device. This is often too limiting. It is much more interesting to be able to compare 
different minimizations on a single device, and the effects of different devices. 
Without acquiring devices with different characteristics, it is possible to simulate, in a 
limited way, the characteristics of many devices using a high quality CRT. This has 
the advantage that it is possible to simulate devices which do not even exist. It also 
keeps all device characteristics other than pixel shape (such as dynamic range, colour 
balance, etc.) constant. This chapter describes simulations that have been done using 
an Adage/Ikonas frame buffer and various multisync monitors. These simulations 
allowed experimental validation of the theory.

The simulation can be carried out in either the spatial or the temporal domain. 
The calculations are identical, but the details of display and viewing differ. 
Calculation methods are presented first, and then details of display are given. When 
image pixels are simulated using multiple device pixels, in principle any image pixel 
shape can be used. Some shapes are more useful than others. A criterion for finding 
the best pixel spread for any one-parameter family of pixel shapes is given in the last 
section of this chapter. For Gaussian pixels this leads to a particularly simple 
relationship between the pixel half-width and the inter-pixel separation.

64
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7.1. Simulation in general

To see the effect of a different pixel basis function, compute the image for a low 
resolution device, then at as many sample points as there are pixels on the actual 
device, use the methods of Chapter 6 to compute the intensity which the simulated 
device would produce. This gives a set of samples of an image to display on the 
actual device. Since the samples are at the same frequency as pixels in the device, the 
matrix involved in the methods of Chapter 6 is symmetric and circulant, which means 
that the solution may be obtained quickly.

It is often the case that the actual device pixel basis can be approximated in 
simulations as a 6 function, with the simulated basis having a spread over several 
device pixels. In temporal simulations this is the case whenever the decay of the 
phosphor is fast enough that a negligible amount of light remains from the previous 
actual frame when the next frame occurs. This criterion depends on the actual frame 
rate. In spatial simulations it is safe to treat device pixels as «5 functions if they are 
viewed from sufficiently far away. If the device pixels subtend a visual angle at or 
below the limit of visual acuity, then their intensity profile has no effect on their 
appearance. (This corresponds to roughly one minute of arc).

In Chapter 6, several methods of finding the best pixel values for a given device 
are discussed. Of these, the direct method uses a matrix A which, when multiplied by 
a vector of pixel values x, gives a vector of intensities b. To find the best pixel 
values. Ax=b is solved for x. Here the reverse computation is performed: A is 
multiplied by x to give b. In this chapter it is assumed that a vector of pixel 
intensities for the simulated device is already known, and the problem is to display it.

Computationally, it doesn’t matter whether spatial or temporal profiles are 
simulated. Let the intensities of the image pixels be specified as Xj, and the 
intensities of the device pixels be b( . Assume that the values of xj have been 
specified for enough points beyond the image that the introduction of periodicity does 
not produce any errors, and that the period is then fixed at T =M t =N  / ,  where t and 
/  are the inter-sample and interpixel separations, respectively. The intensity at t =i r  
is given by

oo M
I ( i T) =b i = ^  + ') ')  1

p  -> -  00 i =  1

Until B ( t ) is specified, this is the general transformation required for simulating an
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arbitrary pixel basis with 6 functions. It may be re-cast as b =Ax, with A circulant if 
N =M  , and pseudo-circulant if M *CN . Normally the number of pixels is substantially 
greater than the number of samples, so that A is only pseudo-circulant.

OC

Ai j= £  B U S - i N k  +i)r),  1 <i <M,  l < j < N  .
k -  - o o

To compute a scanline spatially or a series of values at one position for a sequence of 
frames, find the matrix A and multiply the vector of device intensities by it. The 
matrix only needs to be calculated once for the device/resolution combination, and not 
for each new input image. If the matrix is treated as a filter (as in Section 6.6), some 
multiplications may be avoided.

Simulation in one dimension may be extended to two dimensions 
straightforwardly for any separable pixel shape, of which the Gaussian of a CRT is a 
good example. Begin with a frame buffer of values to be displayed on the simulated 
CRT. Each horizontal scanline of the actual frame buffer is computed independently, 
using several scanlines of the frame buffer for the simulated device. This gives an 
intermediate image which has a vertical resolution corresponding to the simulated 
device and horizontal resolution corresponding to the actual device. Then each 
vertical scanline of the final frame buffer is calculated in the same fashion, yielding 
the final set of pixel values for the actual CRT. The two passes may be combined 
into one by keeping a small number of intermediate scanlines in memory and 
computing output scanlines as soon as enough information is available. If the 
simulated pixel shape is not separable, the two dimensions must be treated in one 
pass, but the problem is conceptually the same.

7.2. Spatial Simulation

Spatial simulation is a relatively easy task, requiring no special features of either the 
monitor or the frame buffer. To give control over the shape of the pixels, each pixel 
is built up from many actual device pixels. The more device pixels used, the better 
the control, but the lower the resolution of the image.

If enough device pixels are used per image pixel, then it is safe to approximate a 
device pixel as a <5 function. If relatively few device pixels are used per image pixel, 
then the shape of the device pixels must be taken into account. Figure 10 shows a 
single Gaussian image pixel simulated using multiple Gaussian device pixels. Here 
seventeen device pixels make up a single image pixel, with (overlapping) image pixels 
spaced 5 device pixels apart. The device pixels are approximated as 6 functions for 
the calculation of their amplitudes.
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Figure 10: One Gaussian simulated using multiple Gaussian device pixels. The pixel 
spread is appropriate for an inter-pixel separation of five device pixels. The smooth 
curve at the top is the ideal Gaussian, the wavy one below it is the actual simulated 
pixel. The waviness of the simulated pixel is small enough to be invisible from the 
proper viewing distance.

7.3. Temporal Simulation

Temporal simulation is the same as spatial simulation except that Gaussian actual 
pixels are replaced by exponential ones. Fortunately monitors with short persistence 
phosphors are available, and their persistence is sufficiently short that it is a good 
approximation to treat the temporal pixel shape as a 6 function. It is necessary to 
have a high frame rate device to simulate normal frame rates so that multiple actual 
frames combine to produce one simulated frame.

By running the monitor at a high enough frame rate, a reasonable approximation 
of an image pixel shape may be simulated, where the image pixel is replicated at a 
normal frame rate. Since the visual system is practically blind to temporal frequencies 
higher than 60 Hz, one choice of image pixel is visually identical to all other possible 
image pixels which differ only in their high frequency (> 60 Hz) content. To avoid 
aliasing, the monitor is driven w'ell above 120 Hz (non-interlaced), so that a sampling 
of an arbitrary shaped 30 Hz pixel at the frame rate of the monitor is indistinguishable 
from a continuous representation. The value of 30 Hz is chosen for two reasons: first, 
it is a commonly used refresh rate in many display systems; second, it is sufficiently 
slow that the effects of changing pixel profile are easily visible.

7.4. Display

To simulate arbitrary temporal pixel shapes a monitor capable of high frame rates, 
and a frame buffer capable of driving it are needed. The Adage/Ikonas 3000 is one 
of few frame buffers capable of such line rates. Even on the Ikonas, these line rates 
are only possible as long as the number of pixels read from memory in a frame time 
does not exceed the memory bandwidth. Fortunately, the simulation is equally 
informative with only a few (100 or fewer) lines displayed on the monitor. The image 
is computed as I (x , t ) .  with all of the lines the same. Multisync monitors capable of 
more than 150 fields per second are widely available. These simulations used a Sony
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CPD 1302 monitor and a Gigatek CCD1331ST/AC/HG monitor (no longer in 
production).

The Ikonas video chain consists of frame buffer memory, a parameterized video 
controller with 8 control registers, a crossbar switch, colour maps, and digital to 
analogue converters. Pixels are read from the frame buffer in scanline order and their 
values are passed through the crossbar switch to the colour maps. The crossbar switch 
allows arbitrary connections of the 32 bits of a pixel from the frame buffer to the 32 
address bits used in the colour map. Any of the crossbar switch bits may be 
disconnected under program control. The most common setting is straight through: 
every input bit maps to the corresponding output bit. The colour map provides a 
mapping from pixel values received from the crossbar switch to voltages at the digital 
to analogue converters.

Among the frame buffer controller registers are the window location (pan/scroll), 
zoom, display rate control and mode registers. The mode register consists primarily 
of bit fields controlling various modes of the Ikonas operation. The window location 
controls the location in memory of the first pixel to be read each frame. If the zoom 
register is non-zero, then pixels are replicated in x and y the indicated number of 
times. The display rate control register may be adjusted to provide non-standard 
frame rates. The x field determines the number of 209.5ns clock cycles in each 
scanline, and the y field indicates how many scanlines to display before vertical 
retrace. The mode register contains a number of fields, among them a bit which 
selects internal or external sync (internal is required here), and one which selects 
between repeat field and interlaced mode. Repeat field causes the same image to be 
displayed twice, in the same place, instead of two images displayed alternately using 
interleaved scanlines. Unless compensation is made for the effects of interlace, the 
second image appears to be lagging behind the first, resulting in a ragged appearance 
of vertical edges moving rapidly in the horizontal direction. Repeat field mode 
provides the compensation. Further details are available in the Ikonas programmers 
manual [Adagel982].

Values of (303,187) (decimal) in the display rate control register give a frame 
rate of approximately 168 Hz, without loss of sync on the Gigatek monitor. This is 
well above the visual cutoff frequency, so that frames constructed from 5% actual 
frames appear to be frames at about 30 Hz with the basis function used for the 
construction.

The object displayed in animated sequences is a single square or vertical bar 
moving across the screen. This is representative of a wide class of objects encountered 
in computer graphics since it contains two moving edges, one “rising” and one 
“falling” . It is not actually free of high frequency information, but a sampling of it is
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also a sampling of a different object which is free of high frequency information. An 
ideal square wave has significant power at high spatial frequencies; the high frequency 
power is necessary to produce square corners. However, samples from a square wave 
are close to samples from a similar ideal image without high frequency information, if 
the square wave has a wavelength which corresponds to an integral number of pixels, 
and its rising edge is pixel-aligned.

It can be modelled either as a two dimensional function I ( x , t )  or a series of one 
dimensional functions Ix (t) with Ix + i(f) =IX(r + v ). In the latter case, the frame 
buffer is loaded with a linear ramp of values, so that the contents of the Jth column is 
j ,  and then the window- x register is incremented by one each frame time so that the 
contents of colour map register i +j  are displayed in column j  at frame (This 
gives a maximum of 256 frames per cycle). Colour map register i is loaded with the 
(gamma corrected) intensity value for frame i . This display method has two 
advantages: 7 ( t ) may be changed rapidly by re-writing the colour map, and colour 
map entries may be calculated to a full 10 bits, customized for I(r).

Since every scanline is the same, the zoom register is used to replicate scanlines, 
up to a replication count of 16 (256 on older models of the Ikonas). If only 187 
scanlines are displayed before vertical retrace, only 12 unique lines need to be supplied 
per frame. They can be arranged in the frame buffer in successive positions in 
memory, 3 across, and 85 down, for a total of 255 frames in a 1024x1024 frame 
buffer. Then the w-indow register x and y fields are changed each vertical retrace 
time to display successive frames. Greater control over I ( x , t )  is achieved at the cost 
of having a fixed colour map, and slower update rates when the parameters of the 
simulation are changed.

In visual comparisons between the results of different techniques, the screen is 
blank while a new I (x j )  is being computed. It is easier to see the transition between 
two (spatiotemporal) images than it is to see the difference between them. If they are 
indistinguishable, then the techniques should be considered equivalent. It may be that 
a transition is visible. The analogous situation is computing two (static) periodic 
images and then asking an observer whether they are the same. If the observer is 
permitted to place them right against each other, lined up as to phase, then he is able 
to detect much smaller differences by looking for an edge between them than if they 
are to be view-ed in different positions with a slight gap between. For temporal 
images, the equivalent of the gap is a blank screen. The fastest way to blank the 
screen is to set the crossbar registers to unconnected. This has the advantage that it 
affects the contents of neither the frame buffer nor the colour map.
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If the intensities calculated are the not same as the intensities produced by the 
monitor, the entire exercise is meaningless. Gamma correction is needed to 
compensate for the nonlinearity of the function relating gun voltage (which is linear in 
colour map value) to intensity. A good first approximation uses /  ocV1, hence the 
name gamma correction [Foleyl983]. Catmull discusses more accurate device 
calibration [Catmulll979]. One way or another, the correspondence between values 
stored in the colour map and values of intensity perceived or measured is found and 
tabulated, and then appropriate values are stored in the colour map to compensate.

1 . 0 --------------------------------------------------------------------------------------------------------------------------------------------------------------

0.5 r - , - 4 - 1 - -I--------- - t  - J _ L --------  J - L J ______ | - ___
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b)
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Figure 11: An image drawn with Gaussian pixels: a) frame buffer values, b) individual 
pixels, c) resulting intensity profile. The low amplitude ripple is not visible at normal 
viewing distances.
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7.5. Pixel Shape

Since any pixel shape can be simulated, there is the question of which shape is better 
than another. In this section, the decay parameters of the two parts of the CRT pixel 
basis are explored.

In the temporal domain, the choice of decay parameter is a compromise between 
flicker and loss of contrast. In the spatial domain, the compromise is between a loss 
of flat field and a loss of definition. A sum of very broad Gaussians is effectively 
flat, while a sum of narrow Gaussians is like a set of translated 6 functions. If the 
decay parameter is too large, then edges are excessively blurred; if it is too small, 
scanlines are visible. One other criterion is important: there should be a minimum of 
information above the fundamental frequency in an image of alternating scanlines. 
Since any antialiased image contains no information above the fundamental frequency 
in an image of alternating scanlines, any information in such an image is introduced 
by the pixel shape and results in artifacts in all images produced on the device.

For Gaussian pixels, the basis function is 8(r) = ---- 7—  e This function is
a V2 ;r

normalized so that an infinite series of such pixels, all with unit values and spaced 6 
apart, have unit integrated intensity in a unit interval. Figure 11 shows an image 
displayed with the best value of cr. A slight ripple appears in the diagram in the parts 
of the image corresponding to constant values in the frame buffer. This ripple is small 
enough that it is not visible in the image. Figures 12 and 13 show the effect of 
changing a. For larger values of a the ripple disappears, but edges are blurred. For 
smaller values of a the ripple is visible. The choice of a cannot be made without 
knowledge of the human visual system.

Figures 14 and 15 show the pixels and the resulting intensities respectively for an 
exponential decay. Where the decay rate is fast, flicker is a problem, where it is slow, 
flicker is not a problem, but the intensity cannot fall as quickly from one frame to the 
next. An exponential decay is considered because it models the temporal behaviour 
of CRTs. But if the device being used has high enough resolution to permit arbitrary 
pixel basis functions to be simulated, the exponential decay is not the basis of choice. 
A Gaussian pixel basis is more useful than the exponential for several reasons. First, 
it has much faster asymptotic decay. Secondly, it has no discontinuities, which means 
that less high frequency information is introduced by the pixel profile. The symmetry 
of the Gaussian basis is also useful. For these reasons a Gaussian pixel was simulated 
both temporally and spatially.

As already mentioned, the ideal pixel basis is a compromise. The best values of 
the parameter are those for which the ripple between scanlines or the flicker between 
frames is just barely invisible. Both intense flashes and a flicker-free static image are
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Figure 12: The effect of reducing the Gaussian parameter to 2/3 of its value in Figure 
11. The framebuffer values are unchanged.
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b)Figure 13: With the Gaussian parameter at 4/3 of its value in Figure 11, the ripple is 
gone, but edge sharpness is lost as well.

possible when the temporal simulation is done correctly. The choice of parameter 
depends on the spatial and temporal frequencies involved, just as the threshold of 
visibility depends on the frequency. Under “normal” room lighting, the appropriate 
value of the Gaussian parameter was nearly linear in the separation of the peaks, 
when measured by two observers in both a grating visibility experiment and a flicker 
experiment, as shown in Figures 16 and 17. From these graphs, a good 
approximation, for most frequencies of interest, is cr/r = .41 ± . 0 1  with r the inter-
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Figure 14: The effect of changing the value of the exponential parameter on image 
construction. Here individual frames are shown with their entire decay curve. This 
corresponds to part a) of Figures 11-13. The three sequences appear equally bright; a) 
is more likely to show flicker, c) is likely to have after-images. The intensities resulting 
from summing the intensities of all frames, corresponding to part b) of Figures 11-13, 
are shown in Figure 15.

frame separation in the temporal case, and ct/<5 = .51 ±  .01, with b the inter-pixel 
separation. Kajiya and Ullner state that the appropriate spatial Gaussian parameter is 
given by <r/<5 = .43, but give no supporting evidence [Kajiyal981]. The linearity is 
remarkable. The contrast of the simulated flat field is a non-linear function of a\ the 
minimum visible contrast is a non-linear function of spatial frequency, which is the 
inverse of inter-pixel separation; yet for a wide range of spatial frequencies the value 
of <7 corresponding to the minimum visible contrast is linearly related to the inter-pixel 
separation.

Another way of finding the value is to note that each of the images produced as a 
sum of Gaussians is well approximated by a sinusoidal ripple added to a large constant 
brightness. (The approximation fails when a is too small, but then non-uniformity or 
flicker is clearly visible.) An harmonic analysis reveals that the energy at any 
frequency other than the fundamental is less than 1 0 -4  as much as that at the
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Figure 15: The actual intensities corresponding to the frames in Figure 14. Because 
frames fade more rapidly in a), the intensity may be dropped more rapidly without an 
after-image appearing. At the same time, flicker of a static image is most likely to be a 
problem in a). The lag between a transition in the frame buffer value and a stable 
intensity is indicative of the need to compensate for the device.

fundamental. If the contrast of the fundamental is small enough to be an invisible 
deviation from a flat field, then the image appears flat, since the other terms are not 
visible. The best pixel shape has the largest possible contrast in the fundamental 
frequency without losing the effect of a flat field.

The data in Figures 16 and 17 are the raw data from experiments done as part of 
this research which measured the minimum value of a for flat and flicker-free fields, 
respectively. The contrast may be computed from the sum of a small number of 
terms in the series expansion for the intensity. The brightest value occurs at the 
centre of a pixel or start of a frame, the dimmest midway between. The difference 
between the dimmest and the brightest divided by their sum gives the contrast. 
Graphs of derived contrast vs. spatial and temporal frequency appear in Figures 18 
and 19. They show a marked similarity to Robson’s data (Figures 5 and 6 in Chapter 
3). Since the experimental conditions are less controlled, the errors are larger than 
those in Robson’s data, but the trend is the same. Thus Robson’s data may be used
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Figure 16: Minimum flicker free Gaussian parameter, as a function of inter-frame 
separation.

directly in finding the appropriate value of the Gaussian parameter. The method is 
applicable to other one-parameter basis functions as well: find the mapping from the 
parameter to contrast in a simulated flat field, and select the parameter value which 
puts the contrast at the threshold of the human visual system for the temporal and/or 
spatial frequency of the device.
Computational note:

The sum of basis functions needed to compute the image at the pixel centre and
OC

midway betw-een may be rewritten as B((j r - i  / )  - N k  / )  to emphasize the
k =  — oo

part w'hich is held constant. It may be calculated efficiently by finding the range 
of k for which terms are sufficiently large to have a significant effect on the 
image, and then omitting terms outside of this range.

For a Gaussian pixel, let e be considered negligible as a term in the series. 
Then if x =j T — i i1, a term is . negligible when -Afcf072ff,< e or 
(x —Nk r,)2<2ir2ln€. Solving for k gives the values of k beyond which terms need 
not be computed.

(Nk / ) 2 —2xNk /  -fjr2 — 2(72lnf =0 =» k0 = X ± a  V ~ 21nf
N /
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Pseudo-pixel separation  (m in)

Figure 17: Minimum Gaussian parameter retaining a flat field, as a function of pixel 
separation.

x —a V  — 21ne ^ ^  x + a V  — 21ne ------------ :--------< k < ------------------- .
N J ------N ¥

Note that x /N 1 is always between -1 and 1, and £ « 1 .
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Figure 18: Contrast threshold derived from the data of Figure 16, plotted on the same 
scale as Robson’s temporal contrast threshold data (Figure 5).
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Figure 19: Contrast threshold derived from the data of Figure 18, plotted on the same 
scale as Robson’s spatial contrast threshold data (Figure 6).



One Dimensional Image Construction

J n  this chapter two examples of finding the best sequence of pixel values for a (one 
dimensional) temporal or spatial image are presented. The computational 

techniques have already been discussed; here they are applied to two actual pixel 
shapes, for a single image. The two pixel shapes are the exponential decay and the 
Gaussian. The exponential basis is important because it describes the temporal profile 
of pixels on a CRT, the most common graphical display device. Some LCDs also 
have an exponential decay. The Gaussian is a good approximation to the vertical 
spatial profile of a pixel on a CRT. An idealized CRT is one where the duration of 
the beam intensification is vanishingly small. On such a device, the Gaussian is a 
good approximation to the horizontal spatial profile as well. The image is a square 
wave, bright one half of the period and dim the other.

For each of the two basis functions, the matrix used in direct minimization is 
derived. In addition the frequency space solution is described for the exponential 
basis. This solution is band-limited, since the Fourier series representation of the 
square w-ave is used for the ideal image. The consequences of using various choices 
of norm are also discussed.

Currently no device has a Gaussian temporal basis function, but it is conceivable 
that future devices may simulate arbitrary pixel bases using specialized hardware. 
This applies both in the temporal and spatial domains. Among possible customized 
pixels, symmetric ones are likely to be desirable, just because equal numbers of 
images are likely to be well suited to pixels skewed in either direction. Of symmetric 
pixels, the Gaussian is an example which is non-negative, while introducing little 
spurious high frequency information.

The solutions to the minimization at the edges of a square wave indicate how the 
edges of polygons should be treated in a static image. The temporal intensity profile 
of a single (spatial) point in an image containing a moving object may be better 
described by a pulse with sloped sides, but the methods used to compensate for the 
device are no different. A square wave does not meet the criterion for lack of 
coherent high frequencies; a sampling of a square wave at the pixel rate does. (It isn’t

78
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exactly a band-limited square wave, but there is a band-limited function that 
interpolates the sampling, by Whittaker’s theorem [Whittakerl915] -  see also the 
Appendix.) A band limited square wave is also constructed using the Fourier series 
representation. When sampling above the pixel rate, aliasing is thereby eliminated.

8.1. Exponential decay

The exponential function has a property which makes the direct solution particularly 
simple. The sum of two exponentials of different starting values but the same decay 
rate is also an exponential of the same decay rate. Thus, the total intensity in the 
interval between two pixels is an exponential of the same characteristic decay rate. 
As a consequence, only the total intensity remaining from the previous pixel and the 
intensity required at the current pixel need be considered in computing the value for a 
given pixel.

Of direct methods, the solutions obtained by matching the integrated intensity 
value over each pixel are in general better than those obtained by matching samples. 
As shown in Section 6.2, matching integrated intensity values is equivalent to 
matching the intensity values at each pixel, using a different basis function. Because 
the integral of an exponential is a constant times an exponential of the same decay 
rate, the basis used for matching samples is the same as that used for matching 
integrals, except for a normalization constant. Matching the values at each pixel is 
simpler, and in this case is nearly the same. A closed form solution exists for 
unconstrained minimization using exponential basis functions. This solution requires 
limiting the contrast in the input (ideal) image if negative pixel values are to be 
avoided. When the number of sample image values specified is greater than the 
number of pixels required, the problem is complicated by the choice of norm. In 
frequency space, there are also several norms available, although the l2 norm solution 
may be found much more quickly.

8.1.1. Pointwise Matching

Assume that the desired image is specified at regularly spaced sample points with the 
same period as the pixel spacing, r. Without loss of generality, assume that the image 
repeats every N pixels. If the image is not inherently periodic, blank pixels can be 
appended to remove any spillover of intensity from one repetition to the next. The 
input sample values also repeat every N samples. They are given by the elements 
of a vector a of length N .

In this thesis pixels are defined in space and time. The exponential decay is 
common in temporal profiles of pixels, but not in spatial profiles. It is not even 
desirable in spatial profiles, due in part to the inherent assvmetry. In the remainder
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of this section, pixels are synonymous with frames, and pixel profiles are temporal. 
To make it easier to visualize the effects described, “ time” is explicitly used, rather 
than “space or time” .

Time (j  — 1 )r is the beginning of interval j  and time j r  the end. The normalized 
exponential basis is \re -x> so the contribution of pixel j  at the start of the j  th pixel is

a j \ T ( l + e ~ XN T + e ~ n N  T+ • • • )

(1 for the pixel that just started, e ~XN T for the pixel a period previous, and so on).

- k  \N t
= û; X r I >

k - 0  

Oj \ t

=  l - e - XNr '

Usually, e ~ XNr is negligible. More generally, to find the contribution of Oj to the 
intensity at pixel j , there are two cases:
1) For 0< j < j , the contribution from pixel i to the intensity at the start of pixel j , is 

its contribution to pixel / reduced by the decay between pixels i and j .
a¡ X t

1 — e — \N 7
-  X C/ -  I ) T

2) For j  <i < N , the contribution from pixel i is the contribution to pixel i —N 
reduced by the decay between pixels i —N and j .

____ü j X T ____e - \ ( J - i + N ) r
l - e ~ XNT

N -1
Thus the total intensity at the start of pixel j  is given by I (j t) = ^  aj^ij>

i -o

bij =

X r
1 — e - \N 7

X T
1 — e — \N 7

- XC/ - i + t f ) r

0 <i <j  

j  <i <N

The matrix B is circulant, from Theorem 5. Thus rapid solution techniques, requiring 
only O (nlog/i) time, can be used to solve Ba =1 for a. Figure 20 shows the resulting 
intensities when the right-hand-side vector is specified as eight pixels of intensity 0.7 
followed by eight pixels of intensity 0.3.
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Figure 20: A square wave of amplitude 0.2 corrected for an exponentially decaying 
pixel. " =  1/16, X =  a) 16, b) 24, c) 36. In each pair the bottom picture shows the 
intensities generated by the values in the top picture.
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In the figures the integrated intensity in each pixel is matched to the integrated 
intensity of the square wave over the same interval. The top picture in each pair 
shows the frame buffer values; the bottom one shows the intensities that result. Note 
from the frame buffer values that exactly one pixel of overshoot is required at each 
transition. The intensity values are stable immediately after the transition.

If the sampling rate and pixel rate are different, B is pseudo-circulant. If the 
pixels are spaced /  apart, the two cases (on page 80) become
1) j  / > i  t:

the contribution i s --------——e ~ u r ~,T>
l - e ~ XNT

and btJ = ---- ——ttj—e1 l —e ~XN T
2) j  i><i r.

the contribution i s ----- -—rrr—e _x^ 1>~iT+N)
\ - e ~ XNl

and btJ = ---- ^ r r j - e  ~xu1 i _  e ~ 7

With more samples than pixels the problem is overdetermined. In such a case it is 
important that the image be band-limited. The need for band-limiting in the 
overdetermined case is discussed further in Section 8.2.

Solving the circulant equations is appropriate in general cases. The exponential 
pixel has special features that make it easy to work out a solution in closed form. The 
figures show values which are constant after one frame after a transition either from 
high to low or the reverse. This is no accident. As the following derivation shows, 
only the first pixel after a transition needs to be adjusted to compensate for the 
transition.

Consider the trailing edge of a square wave, positioned at t =0. The exponential 
pixel produces light intensity that decays as A e ~ Xl. The first pixel after the square 
wave occurs at t =-.  If this pixel is given a value of —A e ~ Xr then it contributes 
—Ae ~ Xr( e -x^ -T)) = — A e -Xf to the signal, exactly cancelling the decaying intensity 
from the square wave for all t >r. Negative intensities are not possible, but if the 
transition is to a non-zero value C > A e -Xr the pixel may be given the value 
C — A e ~ Xr with all following values at C. The subtracted quantity —i4e_Xr exactly 
cancels the surplus for all time.

This procedure is satisfactory provided the contrast at the transition is low 
enough. In the next section, the limits to the contrast are derived. The derivation 
uses a square wave of period, four pixels. This is enough, because of the four pixels, 
two are at transitions, and two are at the steady state level. In the remainder of this
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section, the interrelationships between the four pixels are derived.
Let be the intensity setting for pixel i ,  i =0,1,2,3 and It be the intensity value 

resulting from this setting and any remaining intensity from all previous pixels. Then 
to obtain the square w’ave, set 70 = l , / 2=0, and / 0 = / j , ¡ 2 = I 3- The solution is the 
square wave of maximum amplitude for a given pixel basis. The decay of the 
exponential dictates that /, = / i _ 1w +Jt , with w =  e -Xr. There are 8 equations in 8 
variables, where 70, / 2, J \ and / 3 are interesting. The solution of the system yields

1 „ 1 1 Æ - w
1 0

1 — IV2
1 1

1 - t v 2

1 w
J  l - w -1-1 J  3 - IV + 1

(14)

1.0

0.5

1.0

Figure 21: With Xr = l ,  a square wave of mean 0.5 and amplitude of 0.3 requires 
negative intensity values.

Note that in Figure 20 as the persistence decreases (X increases), the amount of 
correction required decreases as well. If the amplitude is increased to 0.3, with the 
mean at 0.5, the solution for Xr = l requires negative values. Figure 21 shows such a 
case. (If the pixels are simulated from higher frequency pixels with a very short decay 
constant, negative values can be simulated, since the total intensity is never negative). 
The amplitude at which negative values first appear specifies the available contrast.
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8.1.2. Available Contrast

From Figures 20 and 21, it is clear that when the contrast is too great (as in Figure 
21), negative intensities are required. For shorter persistence phosphors (Figure 20 b 
and c), the contrast may be greater than for longer persistence phosphors. Given the 
intensities obtainable for a square wave (14), it is easy to calculate the available 
contrast:

contrast ■■

As \~ 
As Xr-

h ~ h  _  (1 - w ) / ( l - w 2) _  1 - w  
10 2 (1 ) /( l — w2) 1 4-w
•0, then m> —̂ l and contrast —*0 
•oc, then iv —*0 and contrast —*1

Manufacturers have built two kinds of monitors: one type has long persistence 
phosphors and the other has short persistence phosphors. Long persistence monitors 
are designed for display of static images, particularly computer generated static 
images. These monitors have no perceivable flicker. Flicker is a particular problem 
for images containing high contrast one pixel high horizontal lines. When these are 
displayed at 30 Hz interlaced, the image is blank for alternate fields and the display 
flickers at 30 Hz. With long enough persistence phosphors the flicker is not visible. 
Short persistence monitors are designed for display of moving images, such as 
television pictures. Images broadcast for television viewing generally have little high 
contrast detail so that flicker is less of a problem.

Long decay times correspond to low values of X. Low values of X reduce the 
available contrast. The other way to reduce flicker is to drive the monitor at a high 
enough frame rate that the flicker is invisible. (Depending on the contrast this is 
typically something above 60 Hz.) Increasing the frame rate results in a reduced value 
of t  which also reduces the available contrast. The implication is that if higher line 
rates are to be used in the future, then monitors should have correspondingly shorter 
persistence phosphors, for equivalent performance.

The contrast is a function of Xr, so X is inversely proportional to r for constant 
contrast. Because of the nature of the human visual system this is not the case for a 
flicker-free field. Because the visual system has less sensitivity to flicker at higher 
frequencies, X may be increased faster than r is decreased. Figure 6 in Chapter 3 
shows that at all spatial frequencies flicker visibility drops with increasing flicker 
frequency, for flicker frequencies greater than 10 Hz. The flicker contrast of a 
monitor displaying a static image is
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l - g - Xr
l + e -XT

When \ t is held constant as r is increased, the flicker contrast and the available 
contrast are constant. When the visibility of flicker is constant, the actual contrast 
increases with increasing frequency, so that e -Xr decreases as t decreases, and Xr 
increases with decreasing r. For example, a monitor refreshed at 30 Hz is flicker-free 
if X<2s-1 , while at 40 Hz, X may be as high as 16s_1. When line rates approach the 
limits of human vision, the value of X can be arbitrarily large, which means that the 
available contrast can become arbitrarily close to 1.

It is important to remember that the contrast is the local contrast, not the 
dynamic range. This is the maximum relative change from one frame to another, not 
the maximum change over an entire sequence of frames. Antialiased images or 
animated sequences rarely use the entire dynamic range in the interval of two 
adjacent pixels or frames, so this distinction is important.

Sometimes the phosphor decay cannot be described using a single exponential. 
The Electrohome model 38-D03101-60 monitor, for example, has two components in 
the red phosphor, a deep red shorter persistence one and an orange-red one with a 
longer persistence. In a static image the combination appears red, but when it is 
blanked, the fading image shifts colour toward orange. The one phosphor case, 
described above, and the two-phosphor case follow from the general p -phosphor case, 
which is derived next.

For each phosphor k and each frame j ,  define an intensity 7y>t. For each 
phosphor, define \vk, in analogy with w above. In addition, let Qk be the fraction of 
intensity attributable to the /fcth phosphor at the start of the first frame after a very 
long period of no excitation (a long blank period). Then I j k = I j - i , k wk + ^ a * > with 
Jj the intensity setting for the j th frame as above. This gives a recursive definition 
for Ij k in terms of Jj,  Jj_ 1; etc.

1 j , k  = 0 j  - 2 , k w k +  J j  -  \ a k ) w k + J j a k

=  I j - 2 , k w k + ( J j  - l w k + J j ) Qk 

oc

which expands to I j k = a k ^  Jj For sufficiently large n , Jj = Jj _ ni.
i =o

Then / ; ,* = g* £
f = 0  m =  0
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m = 0 i —0

The inner sum is a geometric series, so

»k
Jj,k ~ ak -, nm- 0 1-VV*

<**

wk

1 m =0

which <**ich gives =
k ~ l i ~ Hkm~0

Ok wk
~  Y / Jj - ”' S  J ».

m = 0  * ~ 1  1 , y fc

mk

in the case of p phosphors. From this form the available contrast may be calculated 
numerically, given the decay constants of the phosphors and the relative initial 
intensities attributable to them.

If the values of X are not known, then values of Jj may be found manually by 
changing the settings of pixels behind a travelling square wave, in an attempt to make 
the trail disappear. This takes only one to two minutes for the single phosphor case, 
since only one pixel setting needs to be adjusted. For multiple phosphors, the manual 
method is quite tedious. For the Electrohome monitor with a two component red 
phosphor, the process takes between half an hour and an hour. Table 1 shows Ikonas 
look-up table values for a square wave of maximum contrast. In the experiment 
where they were found, the last value recorded before an edge is replicated, until the 
beginning of the next edge. The equivalent table for a single component phosphor 
would consist of constant values except for a single value at the leading and trailing 
edges. The inter-trial variance is partly a result of differences being hard to 
distinguish, but primarily results from frustration on the part of the observer. With a 
single component phosphor a very good result may be obtained, but with multiple 
components, the image is eventually good enough that the small improvements 
possible are not worth the time required. Several other factors contribute to the 
inter-trial variability of the data. One is that an error in any pixel affects all values 
beyond that value. It should also be remembered that the values tabulated are not 
intensity values, but the values used as voltages to drive the guns of a CRT. If these 
are converted to voltages using the inverse of gamma correction, the variation is less.
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Table 1
Ikonas RDS 3000 lookup table values for a red travelling square
wave on the Electrohome 38-D03101-60.

Trial 1 Trial 2 Trial 3
Leading Edge 1023 1023 1023

978 937 957
958 915 937
930 843 934
911 878 894
909 828 892
900 833 884
900 860 859
885 832 864

Trailing Edge 0 0 0
356 272 431
566 482 526
628 572 580
680 613 601
668 614 612
718 636 645
692 645 640
713 654 644

8.1.3. Frequency space minimization
For comparison with the direct method, we consider the result of using the 

frequency space method with an exponential pixel decay function. From Section 5.3, 
the problem is to minimize | — r„') I |, where

? \ / 5—  N
z" -  n T ~  u* ] - [ “ ■]-

j -  i

with B (r) = \re  _Xf. r„ is the wth complex Fourier series coefficient of the desired 
output function, and aj is the intensity value of the yth frame. Section 5.3 shows that 
this is a matrix-vector problem. The matrix depends on the device, the visual 
system’s sensitivity function and the number of frequencies being included, and the 
right hand side vector is derived from the Fourier series coefficients of the desired 
image. The solution gives the pixel intensities. From Theorem 2, and the Fourier 
transform of the exponential function,
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7[B (r - j T ) , u n] = e ivnjT7[B (r),w J= X r
e iwnjr (X+ia>„)
V 2 tt (X2 + w„2) '

Expanding the complex exponential and substituting in the expression for z„' gives 

, 2X * Xcoswn jT  — u>n sin j r  + i(w„ coswn j r  + Xsino.’„ j  r)

2" ~ s - R ‘ ^ -------------•
For minimizing in the /j and norms (Section 5.1), let

M 2n-\ , j  = 2 ^
X Xcosw„>r-wnsinw„)r

X2 + «¿
X u'n COSic'„y T + \sinu.’nj  T

X +u.'„,2

The first row of M and even rows thereafter are the real coefficients a„' = Rez„', and 
odd rows after the first are the imaginary parts 6n'= Im :„ '. If the right hand side 
vector is represented in the same way, then such a matrix may be passed directly to an 
11 or / qq linear programming package, possibly accompanied by constraints on the 
values of the result, which is the vector of pixel intensities.

A simple test case is the square wave. Note that representing a square wave by a 
finite number of evenly spaced frequencies is a band-limited approximation. It still 
interpolates the square wave at the sample points corresponding to a regular sampling 
at twice the highest frequency, according to Whittaker’s theorem (see the Appendix). 
This function is better than a square wave for the purposes of this example, because it 
is band-limited, as required by our assumptions for the input.

If the square wave is symmetric about the origin, then bn =0. Let one period of 
the square wave be defined as 
m +a , |r ¡< ^7  
m —a , ts T < \t \ <T.

Such a wave has period 2T , amplitude a . is centred vertically at m , and it is high a 
fraction ts of each period.
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The Fourier series coefficients are 
a 0 = 2a ts +m — a ,

4 a sinn itts

Solving in the /2 norm involves forming a new matrix-vector problem, in which 
the Fourier series coefficients of the pixel basis are used in the new matrix and right 
hand side vector. From Section 5.3, the definitions of this matrix and vector are

'jjk  = ^ ^ £ W7«2cosK C / -k)T)y[B {t),u nY7[B (f),w„]
n

(which is symmetric circulant), and

h  -kT),u:nY2n +*„**[* (r - k r ) ,u n]) .

For the exponential decay,

7[B(r) ,uH]a?[B (r),w„]=X2 ^  + un
2 ít(X2 + c¿2)2 2 7T (X2 + u.'2) ’

so that an element of the matrix is

2XZ
:i,j T V2

cos(un(j - k ) r )  
(X2 + a,-2)

Solving C a= b  gives the vector of intensities which minimizes the error under the l 2 
norm.

On the assumption that W'„ = 1 for all frequencies less than a cutoff frequency 
(treating the visual system as a perfect low-pass filter), the sum becomes

c o s f a n U  ~ k ) r )  

n=0 (X2+u;2)

If cutoff is very large, the sum is expensive to compute directly. For large enough 
values of cu to ff, a closed form for the infinite sum may be substituted for the finite 
sum, which puts a limit on the number of terms that might ever need to be computed. 
*  >?cosu„(j - k )T  

\2 .,.2n ~ 1 * «=1
Ithas the form of V* C?S” , where x = 2 — (/ — k) r = 2— (/ —k) 

^  q2+ h2 T '  N K '

and û = \T  
2 -

The closed form for this sum [Gradshteynl965] is ~ cosha(~ — a ) 1
2 Q sinh o~ 2n- ’
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so that Mi k = —r- H--- =- —
’ N 2 N 2 4

c o s h ^ ( l  - j j - ( l - k ) )

2XT

1

In practice, the number of terms required is usually small enough that the closed form 
solution is not a good approximation to the finite sum. It is useful only for very long 
persistence phosphors, for which Xr is exceptionally small. Typical cutoff values are 
less than 75% of the way to being large enough that the closed form gives a good 
approximation to the finite sum.

8.1.4. Comparative Results
In this section a number of the tradeoffs are contrasted using a square wave as an 
example. The examples were computed in two different ways: a 64 frame sequence 
was generated for display (using the methods in Chapter 7); the tables included in this 
section show’ a similar 16 frame sequence which illustrates the important points equally 
well. In both cases the sequence has a period of one second, and Xr is the same in 
both.

Several considerations have a qualitative effect on the solutions generated. When 
the number of sample points is the same as the number of pixels, and there are no 
constraints, the direct method finds an exact match, and the choice of norm is 
irrelevant. The examples in this section show the effects of the choice of norm in the 
presence of constraints, for both the direct and the frequency space methods. When 
the number of sample points is greater than the number of pixels, aliasing can result, 
unless the sampled image has been filtered prior to sampling. This is discussed 
further in Section 8.2, using Gaussian pixels as examples.

Table 2 shows the pixel values generated by constrained minimization in which 
small negative values w’ould occur in the absence of constraints. (The length of the 
residual is the same as the matrix width; the length of the result vector is the same as 
the height). The results of /j and l 2 are barely distinguishable, while the result of l ^  
minimization is quite different. Once the worst error is as small as possible, none of 
the other errors affect the l x  norm, and the result, while not as good as it could be, is 
/ oc optimal. Of particular note are the largest elements of each residual. These are 
emboldened in the /j and l 2 residual vectors. The elements of the /j and l 2 residual
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Table 2: Comparison of different norms -  Direct Method

*1
Values

h ' /oc ¡1
Residuals

h loo
0.0777 0.0777 0.0137 —3.469e—18 1.735e—18 -0.0824
0.0777 0.0777 0.0137 —3.469e—18 1.735e—18 -0.0824
0.0777 0.0777 0.0137 1 o\ vo 1 00 1.735e—18 -0.0824
0.0777 0.0777 0.0137 -3 .469e-18 1.735e—18 -0.0824
0.0777 0.0777 0.0137 —3.469e—18 1.735e—18 -0.0824
0.0777 0.0777 0.0085 —3.469e—18 1.735e—18 -0.0824
0.0526 0.0563 0.0000 —3.469e—18 1.735e—18 -0.0593
0.0117 0.00000 0.0000 0.1125 0.0960 0.0824
0.6992 0.6778 0.6351 5.551e—17 -0.0214 -0.0824
0.6992 0.6992 0.6351 5.551e—17 2.776e—17 -0.0824
0.6992 0.6992 0.6351 5.551e—17 2.116c—i l -0.0824
0.6992 0.6992 0.6351 5.551e—17 2.116c—\1 -0.0824
0.6992 0.6992 0.6351 5.551e—17 2.116e—I l -0.0824
0.6992 0.6992 0.6351 5.551e—17 2.116e—i l -0.0824
0.6992 0.6992 0.6351 5.551e—17 2.776e—17 -0.0824
0.8777 0.8777 0.8137 5.551e—17 2.116e—i l -0.0824

5.551e—17 2.116e—i l -0.0824

vectors are practically identical (and zero) except for the largest elements. In the / 2 
case an increased error in the second largest element is traded for a decreased error in 
the largest. The visual system is able to detect discrepancies larger than the Weber 
fraction, about i%  [Kaufmanl974], so only the large errors in the /j and /2 norms are 
visible. All the errors in the l x  solution are visible.

Minimizing the point of greatest error while ignoring all others gives a poorer 
result than minimizing one of the other norms in the direct minimization approach. 
In the frequency space approach, there is less reason to choose the norm over the 
Igg norm. Given that the visual system detects different frequencies separately, the 
right perceptual criterion might easily be minimization of the greatest error in the 
frequency domain. The errors at all other frequencies might be almost as great, but if 
the greatest error is small enough to be invisible, there would be no visible artifact. 
This analysis assumes a perfectly linear visual system, with equal sensitivities to all 
frequencies.

Table 3 shows the results of the three norms, under equivalent conditions to 
Table 2.
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Table 3: Comparison of different norms - Frequency Space
Values Residuals

h l2 l2 loo ' i h l 00
(constrained) (unconstrained) (unconstrained)

0.9839 0.9538 0.9555 0.9347 2.776e- 17 1.926e-34 0.0082
0.8912 0.8794 0.8745 0.8788 0.0000 0.0000 -0.0082
0.9311 0.9751 0.9974 0.9929 0.0000 0.0001 0.0082
0.0000 0.0000 -0.0600 0.0000 0.0000 0.0000 0.0082
0.0000 0.0000 0.0026 0.0000 0.0000 0.0000 0.0082
0.0839 0.1233 0.1255 0.1201 0.0000 0.0001 0.0082
0.0716 0.0445 0.0445 0.0532 0.0000 0.0000 -0.0082
0.1310 0.1124 0.1129 0.1740 0.0000 0.0000 0.0082
0.0161 0.0462 0.0445 0.0441 0.0000 0.0000 0.0057
0.1088 0.1206 0.1255 0.1454 -0.0296 0.0001 -0.0082
0.0689 0.0249 0.0026 0.0200 0.0000 0.0000 0.0082
1.0000 1.0000 1.0600 1.0000 0.0000 0.0000 0.0075
1.0000 1.0000 0.9974 1.0000 0.0000 0.0000 0.0082
0.9161 0.8767 0.8745 0.8743 0.0116 0.0001 0.0082
0.9284 0.9555 0.9555 0.9363 0.0000 0.0000 -0.0009
0.8690 0.8876 0.8871 0.9579 0.0000 0.0000 0.0039

0.0000 0.0000 0.0082

There are two things worthy of note in this table. One is the relative quality of 
the 12 and / ̂  solutions, the other is the nature of the solution.

The ¡ 2  solution is better in the / TO sense than the l<*, solution. Since different 
algorithms were used to find the solutions, this discrepancy is likely the result of 
different round-off errors.

The ¡oo residual also tends to change sign frequently. The result is that while the 
individual errors are smaller, they happen to add up in such a way as to cause the 
solution to oscillate. Presumably the phase is aligned so as to make the error 
particularly bad. This problem is easier to see in the solution of a larger system, such 
as N =64. Ringing at the edge of the square wave is well below the precision of 
current display devices after a few oscillations, in the /2 solution. Contrarily, it 
continues significantly further for l ^.  In addition to the slightly better result 
numerically, the / 2 norm solution may be found much more quickly than the /j.

Oscillations in the solution are undesirable, but only in the frequency space 
version is the solution based on a band-limited square wave. A non-band-limited 
square wave contains a discontinuity, which causes Gibb’s phenomenon, oscillations in
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the solution at points close to a discontinuity. When the values found by frequency 
space minimization are used for display, oscillations are not visible on the screen. 
The overall appearance is one of very slight edge enhancement over the solution by 
the direct method. By the direct method, the moving square wave looks very much 
like a moving square wave. In fact it looks so good that it seems like no improvement 
is possible, until the solution of the frequency method is displayed. The solution of 
the frequency space method looks just slightly better, in the sense that it looks more as 
a square wave should. The oscillations are not visible, and the edge looks even 
sharper.

From the examples discussed in this section, it appears that the /2 norm gives 
results which are either superior to, or visually indistinguishable from the results of 
minimization under the other norms. The results of the frequency space method are 
slightly better than the results of direct solution, but it is unlikely that the difference 
will be noticeable in any but contrived images, since it is small. The /TO norm is not 
likely to be useful for work of this sort, even in the frequency space method.

8.2. Gaussian Pixels
The Gaussian basis function is

B {x) = —e
IT

x'/lo3

It is normalized to provide unit integrated intensity in unit distance with pixels spaced 
6 apart. If the pixel values repeat every N as before, then the effect of the ith pixel 
value at x = j 6 is

OC

bij = S  B ((PN +i - j )  t)
P es — OC

00 r

_  ° - ( ( p N + i - j ) i ) 1/2a3

^  <t V 2 itP «= — 00
This is analogous to the matrix B used for the exponential decay. Because no closed 
form exists for the sum of Gaussians, a finite sum is used to calculate matrix values. 
The elements of the series being summed drop quickly with increasing distance from 
the highest, so the number of elements needed is small. Where the exponent is less 
than —11, the contribution is less than one part in 105 as great as at the centre of the 
pixel. For <7 = 0.56, which is greater than that for a properly focussed CRT, 
(p A' -f / —j )  must have magnitude less than 6 for any contribution large enough to be 
seen to result from that term and all others further away from the pixel centre. This 
means that for this value of a, not more than 11 terms are needed to approximate the 
infinite sum.
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If the sampling rate is not the same as the pixel rate, the matrix is pseudo- 
circulant, not circulant. With the pixel rate at / ,  its elements are

b ^  e -« p N +*)»-}!?p *
V  Z j  a  V 2  JT

p  »  — 00

The quality of images produced with 6 functions simulating Gaussians improves 
with the number of 6 functions per Gaussian being simulated. Going the other way, 
using many more samples than Gaussian pixels potentially makes matters worse, 
rather than better. When there are more samples than Gaussians, high frequency 
information may be introduced, which cannot be well approximated by the sum of 
Gaussians. Since the sum of errors is minimized the solution contains both high and 
low frequency errors. Figure 22 shows the effect of allowing high frequency 
information to be present in the input in this way. Note particularly the lack of 
symmetry at the edges of the square wave in b) and c). This is a result of aliasing.

One result of introducing more high frequency information is an increase in the 
maximum value of the derivative of the image function, causing the range of the 
image function to be greater. This increase is visible in the pixel values as the amount 
of high frequency information is increased. Because the sampling grid is finer, more 
overshoot is required to interpolate close to the discontinuities. The lack of symmetry 
in the square wave is a result of aliasing.

When the image is filtered prior to sampling, and the high frequency information 
is removed, the problems associated with aliasing cannot occur. In Figure 23 the 
finite Fourier series of a square wave with eight frequencies is sampled in 16, 18 or 20 
places to provide the input. The same matrices were used as in Figure 22. The 
results are nearly independent of the sampling rate, and the image has the proper 
symmetry.

8.3. The Solution as a Filter

The multiplication of a vector by a circulant or pseudo-circulant matrix is 
mathematically equivalent to convolution, which is equivalent to filtering. The filters 
for the exponential and Gaussian cases are given in Table 4. The exponential filter 
has only two non-negligible entries. This is in agreement with the fact that only one 
frame needs to be corrected in a pure exponential decay model. The Gaussian filter 
has seven entries large enough to make a significant difference to the result (an error 
of less than one part in 2000 is well below the 1% Weber fraction). Both of these 
filters are sufficiently narrow to be practical for use in computer graphics.
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Figure 22: A square wave corrected for a Gaussian pixel, a  =  .516. 16 pixels per 
period. The number of samples in the input is a) 16, b) 20, c) 24. The width of the 
square wave is half the period in each case, but as the number of samples increases, the 
transition occurs on a region more and more narrowly specified.

0.5
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1.0

a)

1.0

b )

1.0

c)
Figure 23: A square wave corrected for a Gaussian pixel. Parameters as in Figure 22, 
except that the square wave is constructed as a Fourier sum of 8 sinusoids, so its highest 
frequency is at the Nyquist rate for the display.
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Table 4: Matrix and Filter Values
Exponential (Xr =  l) Gaussian (a =  .516)
Matrix Filter Matrix Filter
1.00000 1.00000 1.00000 1.04495
0.36788 -0.36788 0.14516 -0.15488
0.13534 0.00000 0.00044 0.02249
0.04979 0.00000 0.00000 -0.00327
0.01832 0.00000 0.00000 0.00047
0.00674 0.00000 0.00000 0.00007
0.00248 0.00000 0.00000 0.00007
0.00091 0.00000 0.00000 0.00047
0.00034 0.00000 0.00000 -0.00327
0.00012 0.00000 0.00044 0.02249
0.00005 0.00000 0.14516 -0.15488

The existence and narrow width of the filters are significant because filtering is 
computationally practical. To correct still images, for each pixel in an uncorrected 
image, compute a new value using a weighted average of the pixels in its 
neighbourhood. If the filter values appropriate for a given pixel basis are used as 
weights, the resulting image is corrected for the pixel shape. In a similar way frames 
can be corrected for the effect of preceding frames. Because of the particularly simple 
filter for the exponential basis, this amounts to calculating a frame of correction values 
from the first frame in the sequence, and then subtracting it from the next frame. 
The resulting frame is the second frame in the filtered sequence, and from it the next 
frame of correction values is calculated. In a single pass through an entire animated 
sequence, consisting of the simple loop

for /' from 1 to number of frames
multiply frame i by filter value giving correction frame, 
replace frame i +1 with frame i + l  minus correction frame.

end

the effect of exponential decay can be corrected.
If the pixel basis is other than those for which the filter has been shown above, it 

can be readily calculated by building the circulant matrix which appears in the 
formulation of the l 2 solution, and inverting it. As shown in Section 5.3.3, the 
inverse matrix has as its values samples of the filter at the points for which it is 
needed.
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8.4. Summary
Two one dimensional pixel profiles are considered in this chapter: the exponential 
decay, and the Gaussian. The exponential has a simple closed form solution, while 
the Gaussian has to be solved in matrix form. As the effective pixel width increases, 
the available contrast decreases, because it is not possible to change the intensity as 
much from one pixel to the next. The image should always be free of coherent high 
frequency information before sampling. One way of ensuring this is to use the 
frequency space method, another is to prefilter the image.

Of the three norms considered, the l 2 norm is the least expensive, and for the 
two pixel basis functions considered in this chapter, gives results which are never 
worse than those given by the other norms. The norm is a poor choice, even in 
the frequency domain.

The method works for resizing of images as well as compensation for device 
pixels on devices at the same resolution as the image. In resizing, if the device has 
fewer pixels than the number of samples, then the image should be filtered to prevent 
information above the Nyquist limit for the device.



Two Dimensional Image Construction

A  n image specified in two dimensions can be a static picture or an animated
sequence of one dimensional spatial images. If the pixel profile is separable a 

solution can be found using the direct method in two passes, as shown in Section 5.5. 
To the extent that the response function of the human visual system is separable, the 
frequency space approach can use the efficient two pass technique as well. The two 
pass technique solves the problem in each dimension independently and for each 
dimension finds a solution in the same manner as discussed in Chapter 8. This 
chapter explores the effects of using a particular separable response function, in 
contrast to using a good (non-separable) approximation to the actual response 
function.

On a CRT the y-profile of a pixel and the x -profile are much the same. For the 
purposes of this thesis they are approximated as Gaussians, so the two dimensional 
pixel profile is radially symmetric. Both the two dimensional spatial and the spatio- 
temporal pixel basis functions are separable. Other than a small correction, the 
human visual system’s spatial response is separable into the product of its responses to 
horizontal and vertical variations. Because both the visual system and the pixel shape 
are separable for this case, it can be solved in two passes. A two pass technique is 
available regardless of whether the solution is found in frequency space or directly, for 
any pixel basis which is separable into a product of two one dimensional functions.

When the second dimension is time, the response of the human visual system is 
no longer separable. If the human visual system is not taken into account, then any 
separable pixel basis can be used in a two pass solution with one dimension being 
time. If the human visual system is taken into account, the two pass solution does not 
apply to the frequency space solution, with a non-separable sensitivity function for the 
human visual system. Some approximations to the response of the visual system are 
separable. Their use gives different results from the results of an accurate model, but 
requires much less computation. This chapter addresses the question of how 
important the use of the more accurate non-separable model is. compared to the 
separable approximations. If the differences between the results are not visible, then

99
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the extra computation is not worthwhile.
If no compensation is made for the device, the image resulting can be 

considerably less sharp than possible. Figure 24 shows the result of specifying the 
intensities for a moving square wave as if no device compensation were necessary. 
The curves show the spatial intensity of each frame. The intensity is “calculated” by 
displaying it on a CRT. Each of the spatial profiles is considerably less sharp than the 
profiles in the last chapter, which are calculated with one dimensional compensation. 
The image has no sharp edges, as a result of the blurring inherent in the pixel basis. 
Very little high frequency information has been retained.

Figure 24: A moving square wave constructed as if no device compensation were 
necessary, and then displayed on a CRT. Each frame is shown displaced slightly to the 
left and up from the previous one (position increases to the right, time increases 
upward). The square wave is moving from left to right, and moves across the entire 
display every 16 time intervals. Note that each frame is an exact translation of the 
previous.

Each of the methods explored in the last chapter can be applied in two 
dimensions. In this chapter the example device is the CRT, with Gaussian pixels 
spatially and exponential pixels temporally. In Chapter 8. it is shown that for these 
two pixel bases, minimizing the l 2 norm produces the same results as minimizing the 
/i norm, but in less time, and they both produce better results than the l K norm. For 
this reason, only the / 2 norm is considered in this chapter. For the direct method, it is
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shown in Section 5.5 that two dimensional solutions in the /2 norm may be obtained 
by two passes of the one dimensional technique. (The direct method always neglects 
the nature of the human visual system). For band-limited input images, the direct 
method gives almost the same results as the frequency space technique if all 
frequencies are weighted equally. This follows from the definition of Fourier series, 
and is demonstrated in Section 8.1.4 to hold for the case of exponential decay. For 
equal weighting of different frequencies with a separable sensitivity function, 
frequency space minimization can be performed in two passes, as shown at the end of 
Section 5.5.

The interesting question remaining is how much difference does it make whether 
a realistic sensitivity function is used, or whether a separable approximation is used 
instead. The way in which this is addressed is to find the solution both with a 
separable approximation, and with the surface constructed from Robson’s data in 
Chapter 3, and compare the results. The mathematics has all been covered in 
Chapters 5 and 8, so only results are presented in this chapter.

The separable approximation used in this chapter weights all frequencies equally 
up to the Nyquist frequency for the display, and gives zero weight to all others. A 
uniform weighting with a higher cutoff value has serious aliasing artifacts, just as it 
does in one dimension. The number of frequencies with non-zero weight is one 
greater than the number of pixels, (N /2 negative, N / 2 positive, and 0), so the 
problem is slightly overdetermined. The results are almost exactly the same as if the 
problem were solved using the direct method (differences are around one part in 
10~8). For this reason only results for the frequency space method are presented in 
this chapter.

Figure 25 shows the results of weighting frequencies equally. Note that there is 
some ripple in the waveform, particularly in the trough. The data in Figure 25 is less 
meaningful on its own than the images viewed on the screen, displayed using the 
methods of Chapter 7. When a single frame is viewed in isolation, the ripple is 
visible. When the frames are set in motion, the ripple disappears. Thus ripple at this 
combination of spatial and temporal frequency is not visible. Referring back to the 
contour diagram of Koonderink’s spatio-temporal response function (Figure 8 in 
Chapter 3), the top right corners of the contours are rounded. At 0 Hz, the spatial 
ripple is above threshold, but at the temporal frequencies involved in the moving 
display, it is not. Since the visual response function is not used in computing the 
waveform, the invisibility of ripple is not so much by design as by chance.

If frequencies up to the Nyquist limit are weighted with sensitivities 
corresponding to the spatiotemporal surface graph in Chapter 3, then the results are 
scarcely distinguishable from those shown in Figure 25. The differences are
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Figure 25: A travelling square wave calculated with all frequencies up to the Nyquist 
rate weighted equally. The picture for weighting according to the spatiotemporal 
response function is identical to this resolution, as long as only frequencies up to the 
Nyquist rate are given non-zero weights. Frames are no longer translations of each 
other. The steepness of the edge has improved significantly, at the cost of introducing 
some ripple.

approximately one part in 1015, in pixel values in the range of 0..1, which is just 
enough that roundoff error is not the only source of the difference, but little enough 
that the difference is well below the precision of any device used to display the image. 
As frequencies beyond the Nyquist limit are added, the results slowly diverge from 
those in Figure 25. When frequencies up to the limit of the human visual system are 
considered, the image appears as in Figure 26.

In both figures the square wave is band-limited by using the Fourier expansion up 
to the Nyquist limit, and zeroes beyond. The difference between the two is that in 
Figure 26, errors in frequencies beyond the Nyquist limit (non-zero amplitudes) are 
possible. These result in some aliasing, which is traded for reduced errors in 
frequencies below the Nyquist limit, which result from the pixel shape. The artifacts 
in Figure 25 are not visible. This means that the differences between Figures 25 and 
26 are not large enough to be visible. For the particular case of the CRT, it appears
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Figure 26: The same wave as in Figure 25, but constructed with the full response of the 
human visual system taken into account. The steepness of the edges in Figure 25 is 
hardly changed, but the ripple is nearly eliminated.

that the use of weights based on the human visual system’s responses does not add any 
quality, in a visual sense. While the differences between the data of Figures 25 and 
26 are not visible when the data is displayed as an animated image, Figure 24 is much 
different. The animated image corresponding to Figure 24 has a less sharp edge to 
the square wave, but more noticeably, a trail of decaying phosphor behind the trailing 
edge.

While the elimination of pixel structure artifacts in Figure 26 is quite effective, 
the artifacts remaining in Figure 25 are quite small. The visibility of such artifacts is 
sufficiently small as to be unimportant. The two pass technique can be used to find 
the values used for Figure 25; it cannot be used to find the values used for Figure 26. 
The difference, while it shows up on the graph, is invisible in practice.

The figures show small images: 16 frames with 16 pixels per frame. There were 
two reasons for this. One reason was presentation. Too many frames or too many 
pixels would make it difficult to see the information contained in the figures. The 
other reason was computation time. To compute the solution for Figure 26 took
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overnight on a VAX 8600, and the algorithm is quadratic in the number of pixels in 
each dimension. The.two pass technique takes time O (nm log/i logm ) where n and m 
are the numbers of pixels in each dimension. Because the two pass technique lends 
itself to implementation as a filtering method, the O (nm logn logm) time can be off
line preprocessing cost, in which case the time required for an image is proportional to 
the total number of pixels, or 0(m n). Even without the efficiency of filtering, 
computations such as the one required to compute the data for Figure 25 take minutes 
rather than hours to find a solution. Computations that size are sufficient to define a 
filter, which then can be used on practical problems, yielding solutions at a rate of 
several frames per minute on a VAX 8600.

The results of the two techniques are similar, but not indistinguishable, at least 
numerically. For some displays they are likely to be easily distinguished visually. The 
computation times are not at all alike, the single pass version being too slow for any 
practical use. For these reasons, the two pass technique with either equal weights at 
all frequencies up to the Nyquist limit, or a separable approximation to the 
spatiotemporal response function is recommended.



Discussion

basing artifacts result from attempting to display high frequency information on a 
device with insufficient resolution. Examples of aliasing artifacts are Moiré 

patterns in regular textures, and jaggedness of near-horizontal and near-vertical lines. 
Pixel structure artifacts are the result of ignoring a specific property of the real device 
used to display any raster image: the device is made up of pixels, which have an 
influence over a region of the display. Examples of pixel structure artifacts are loss of 
sharp edges due to a Gaussian spread, and fading trails behind moving objects due to 
an exponential decay. Under the right circumstances, both of them can be reduced or 
avoided entirely. This thesis addresses the removal of pixel structure artifacts. The 
methods used to remove them can be used to remove aliasing artifacts at the same 
time, and thus generalize filtering techniques found in the literature.

Several methods were explored. Of these, direct minimization of discrepancies 
between the ideal image at sample positions and the device image at the same 
positions is representative of methods which include comparisons with filtered versions 
of the ideal image. Distinct from these methods is minimization of errors in 
frequency space. Three norms are used as measures of the size of the error in the 
results. Of these, the / ro norm produces equivalent or inferior results to those 
produced by the / 2 and /j norms, which produce results which are nearly identical to 
each other. Finding minima using the l 2 norm generally involves inverting circulant 
matrices, w-hich can be done very efficiently using the Fast Fourier Transform.

Two particular pixel shapes are considered as examples. They are characteristic 
of the temporal and spatial pixel profiles of an idealized CRT. For these two shapes, 
the results of frequency space methods are the same as the results of the direct 
method, to within device precision. Other pixel shapes may require use of the 
frequency space method to give the best results.

For either method (frequency space or direct), some images cannot be displayed 
without needing intensities outside of the range of the device. Constrained 
optimization is one way of dealing with this. This is a local solution, in that 
corrections are made to a small region of the image, or to a small number of
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frequencies, to prevent the frame buffer values from being outside of the acceptable 
range. The results of constrained minimization depend on the extent to which 
constraints are needed. If the intensity values required without constraints violate the 
constraints significantly, then a poor quality image results. If not, then the image 
produced with constraints has small errors introduced by the constraints. The other 
way of dealing with images that need intensities outside of the device range is to 
reduce the dynamic range of the image until the contrast is reproducable by the 
device. This is a global change, in that the entire image is changed, but no particular 
part of the image is singled out. Just as for constrained optimization, an image which 
can almost be displayed without needing values outside of range is only slightly 
degraded. One which needs significant correction results in a poor quality image. 
Using the contrast reduction approach allows the minimization to be carried out in an 
unconstrained form, which results in considerable reductions in computation time.

When minimization is carried out in the l 2 norm with no change in size, the 
inverse of the matrix for the calculation defines a filter, which can be used for space- 
and time-efficient solution for any number of images on the same device. For the two 
pixel basis functions considered in this thesis (Gaussian and exponential), the filter is 
only a few pixels wide, making the filtering operation fast. This technique should 
result in a considerable improvement in the quality of images displayed on CRTs. 
For increases in resolution, the matrix multiplied by the input vector (a pseudo
inverse) is pseudo-circulant; it also defines a filter (the same filter as for no change in 
size), sampled at all the positions needed for enlarging by digital filtering. It is a 
simple matter to construct the filter from the matrix. The width of this filter is the 
product of the width of a filter for no change in size and the scale factor for resizing, 
which makes this as fast as filtering without resizing an image the size of the 
enlargement. For reducing image size, a band-limiting filter should be used to 
prevent aliasing.

With the methods in this thesis some pixel structure artifacts can be avoided. On 
very high resolution devices, pixels which induce fewer artifacts can be simulated. 
There remain ample opportunities for further work, as many questions remain 
unanswered. One is optimal pixel shape. The measurements presented in Section 7.5 
provide a partial answer. The best Gaussian pixel spread is directly related to the 
contrast threshold of the human visual system. It is a compromise between giving the 
best contrast between pixels which are alternating between full on and off, and giving 
a good flat, flicker-free field in an image with all pixels full on. For Gaussian pixels, 
the flat field has low amplitude oscillations which contain nearly no information above 
the fundamental frequency. The minimum Gaussian spread for the pixels is readily 
derived from the contrast threshold of the human visual system. If the pixel is 
broader than the minimum, then the device is not able to change the intensity
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between pixels as rapidly as possible, and so any image displayed is more blurred than 
necessary. A good measure of the device’s ability to change its intensity from one 
pixel to another is the contrast of an image with pixels alternating between on and off. 
In such an image, pixels with too broad a spread reduce the contrast. If these were 
the only two considerations (quality of flicker-free flat field and contrast of alternating 
pixels) the ideal pixel would be a flat square pixel, i.e., one which had no influence 
outside of the region between pixel midpoints, and equal influence everywhere within. 
One other criterion is important: there should be a minimum of visible information 
above the fundamental in an image of alternating scanlines. Since an antialiased 
image contains no information above the fundamental frequency in an image of 
alternating scanlines, any information in such an image is introduced by the pixel 
shape and results in artifacts in all images produced on the device. For this reason the 
Gaussian is a better choice than the flat square pixel response. Finding the best 
possible spatiotemporal pixel shape is still an open problem. It may be a three 
dimensional Gaussian -  the lack of harmonics in the flat field constructed of 
Gaussians is suggestive -  but that remains to be proven. Whichever pixel shape is 
best, it can be simulated on a very high resolution device using the methods in 
Chapter 8.

Solutions to the general problem of selecting pixel values for an image which is 
known only from a sampling are given only for regularly spaced sample points. 
Because of the effectiveness of stochastic sampling as a method of removing aliasing, 
it is very much worth trying to find an efficient method of finding a good set of device 
pixel values for an image which is known from a sampling with irregular intersample 
spacing. A global method is easy to state, but much too slow to be of any practical 
interest in the foreseeable future: the error at the sample points may be minimized in 
the least squares sense. This is conceptually similar to the / 2 minimization described 
in Chapter 6. This would involve a system of as many equations as there are sample 
points, in as many unknowns as there are pixels. For a 512x512 image, which is 
toward the low end of devices in use today, there are 218 unknowns and a similar 
number of equations. For this reason such a method is impractical. Since pixels only 
have an influence over a small region of the screen, the matrix contains a narrow 
band in which values are non-negligible, so that banded matrix techniques could be 
used to speed up the process, but the size of the matrix is still such as to keep the 
solution process slow. The narrow influence of pixels suggests the existence of a local 
solution technique, which is probably close in expense to the cost of methods currently 
in use to combine the values of multiple samples to find the values assigned to a pixel.

The frequency space method is instructive in the similarity of its results to those 
of the direct method for the pixel shapes explored in this thesis. It would be 
interesting to see whether this is the case for other reasonable pixel shapes.



Appendix

Fourier analysis has already been introduced as a means of describing a signal by the 
phases and amplitudes associated with a set of sinusoids at various frequencies. A 
more complete definition is given here, including theorems which indicate how to 
obtain the Fourier expansion of a known function.

Fourier series provide a means of expressing many functions in terms of pure 
sine and cosine functions.
T h e o r e m  A .l: A n y  fu n c t io n  / ( £ ) ,  d e f in e d  o ve r  a f i n i t e  in te rva l  0..A or  p er io d ic ,  w ith  

p e r io d  A ,  a n d  hav in g  f in i t e l y  m a n y  f i n i t e  d i s c o n t in u i t ie s  in the in te rva l ,  m a y  be 

r e p r e s e n te d  u n iq u e ly  as the sum

00

/ (O = O 0 +  Y l a» C0Ŝ ^ +b>' Sin?n€,
n =1

, 2II ~
w h e re  f „ =  — — ,

A A

fl0 = Jr f f ( O d C .  en = - ^ / / ( O c o s ? „ ^ .  
n  0 ^  0 

A

b n =4-/7 (Osins,
A 0

w h ic h  is k n o w n  as  the F o u r ie r  ser ies  o f  f  .

P r o o f :  The proof of this theorem appears in most texts on Fourier series, (e.g. 
[ChurchilU963] pp. 89 ff.). □
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These conditions,for which /  (f) may be represented by its Fourier series,are known as 
the Dirichlet conditions. Note that there are many other sets of sufficient conditions.

Two alternative definitions of the series are

/ ( O = a 0+
n — 1

with i40= a 0,

An ~ y / an + bn >
<t>n =tan ~ \ - b n/an),

and the complex form

/ ( ? ) =  £  .
n ■* — oc

A

with zn ==2̂ '  f  f ( O e ~ iUdi;

The two dimensional Fourier series of a space- and time-periodic function f  (x .t) with 
spatial period D and temporal period T is given by

OC OC

/ (* > ')  = J ]  ^  :mne 
m ■= -  oc rt œ — oc

2 m "

i(̂ m * + l )

- 2,1 n t^ îtn U-̂  « y j
D T

and zmn == 4D T /  / '-D-T

£> ’

Fourier series of many functions appear in tables, such as the CRC standard 
mathematical tables [CRC1978], and Gradshteyn and Ryzhik’s tables of integrals, 
series and products [Gradshteynl965]. When the function is not a standard form, it 
may be a shifted version of a standard one. In such a case the following theorem is 
helpful.
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T heorem A .2: (Shift Theorem) I f  f  (£) = a 0 +  ^  an cosfn £ +bn sinf„ £, then
n . 1

00

/(?-< 5)= flo  + + sin?„£ ,
n - 1

with oq = a 0 ,

a„'=a„coss„6-b„sinsn6 , 

bn' = b„ cosf„<5 + a„ sinf„6 .

00

Proof: Using the second definition of the series, / ( 0 = ^ o +  y ^ ncos(?,, £ +  <£,,)■
n » 1

00 00
Clearly, /  (€ -  <5) =/l 0 + £} An cosC?n (£ -  ¿) + 4>n ) =A o + ¿„cos(f„ £ + (^„ -  ?„ ¿)) •

n =  1 n =  1

Converting this back to the form of the original series, 

a o = A 0= o 0 ,

= An cos(<5„ — <$) =A„ (cosd„ cosf„ 6 4- sind„ sinf„ 6) ,

=/\„ (cos(tan ~ \ - b „  /an ))cos?„ 6 + sin(tan~ 1(-b „  /an ))sin?„ <5) ,

= v w
cosçn 6_____________  ( f r w / Q s i n & ó

V l + b J / a f  " y/ÏT bJJÏJ• +

= a„cos?„($-fcnsin?„(5 .

The expression for follows in a similar manner, o

DEFiNmoN A .l: The Fourier Transform of a function f  (£) is
00

J  [/(0,?] = W f  ■

The Fourier cosine transform is Jc[f (£),$■] =
OC

^ / / ( O c o s ç Ç r f r .
— oc

00

The Fourier sine transform is ^ [ / ( O .d  = 1
V Ì T /  /(f)s in tfd r.

Note: J [/ (0 ,f] = 7C [f (£)>?] + i^  [ / (0??] follows directly from the Euler relations, 
e ±l$ = cos$ ± i sin#. The Fourier transform of a function of time characterizes its 
frequency content. In the same wav as a Fourier series gives the series of amplitudes
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at discrete frequencies from which any periodic function may be reconstructed, the 
transform gives the amplitudes at frequencies distributed continuously, from which a 
possibly aperiodic function may be reconstructed.
D efinition A .2: The set of amplitudes in the series or the continuous transform function is 
referred to as the spectrum of the original function.

In two dimensions, the transform is defined as
00 00

7[f (x , t ) , k , u ] = ^ - J  f / ( r , i ) e 1(h+w)M  ,
L n J J— 00 — 00

with the sine and cosine transforms defined analogously.
In Theorems A .l and A .2, the Fourier transform of a function with a phase-shifted 
argument appears as part of each term in the sums. The following theorem relates the 
Fourier transform of a function to the transform of the same function with the phase 
shifted.
T heorem A .3: (Shift theorem for Fourier Transforms)

i .  n /(£ -< 5 ) ,? ]= * ifi? [ / ( 0 ,d
2 - ĉ[/(^-<5),?]=cos?(5fc[/(0,f]-sin?(5fJ[/(0,?]

3- 7S i f  (? “  *), ?] = cos [f (0 , f] + sinjWc [/ (0 , ?]

Proof: 1: The proof is quite straightforward; see, for example [Gaskilll978].
2 and 3: Since 7 \ f  (£),?] = 7C [f (0,?] +i?t I f  (0 ,i] ,

e '<S? [ f  (O .d  =cos$ J C [ / (0 ,f] +isinsWc [/ (0-?l H-icosfif, [ / (0 ,f] -sinffi7S [ / (0,?] . 

Matching terms, relations 2 and 3 follow immediately. □
The following definition and theorem are related to filtering. They show two 

equivalent ways of changing the spectrum of a function.
D efinition A .3: The convolution integral of g (£) with a filter f  (£) is defined as

00

f o g ( 0 =  f  g( S) f {Z-S)d6  .
— 00

The effect of convolution is to change the spectrum, in the following way:
T heorem A .4: (Convolution Theorem) I f  the Fourier transforms of f  (£) and g(£) exist, 
then ? [ f o g t f U ] = 7 [ f U U ]  ?[g(0, ^] .

Proof: The proof of this theorem appears in most introductory texts on Fourier 
transforms, c
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The significance of this theorem is that if / (£ )  is a filter function, designed to 
enhance or remove high frequency information from g(£), then its ability to do so 
may be determined immediately from the transform of / .  The amount of 
information passed by the filter at any frequency is proportional to the value of the 
transform at that frequency. Practical filtering in computer graphics involves filters 
which are non-zero over a small region, so that the integral may be computed cheaply.

For reference, the transforms of several functions which are used as examples 
appear below.

Name / ( Ü

6 function ¿(0
i

V 2n
Gaussian , e -Vfto> o e - W

Exponential e X,£>0 1 X +  if 
V2 7T X2 +<2
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