
G raphics Support for Cognitive Research in Human Factors

by

Michael F. Morgan

An essay
presented to the University of Waterloo 

in partial fulfillment of the 
requirements for the degree of 

Master of Mathematics 
in

Computer Science

Waterloo, Ontario, 198S



Acknowledgments

I would like to thank Phil Bryden for providing me with a basic understanding of the work that 
has been done in mental rotation (both past and present). I would also like to thank my supervisor, 
Kelly Booth, for many valuable discussions concerning Watkins’s algorithm.



Table o f Contents

1. Introduction .............................................................................................................................. 1

2. Mental Rotation .......................................................................................................................  3

2 .1 . The Original Experiment ..............................................................................................  3

2 .2 . Current Research ........................................................................................................... 7

2 .2 .1 . The Mental Rotation Experiment ...............................................................  8

3. The Hidden Surface Algorithm .......................................................................................... 10

3 .1 . W atkins's Algorithm ..................................................................................................  10

3 .2 . Complexity of Watkins's Algorithm ........................................................................  IS

3 .3 . Current Implementation ...........................................................................................  16

3 .3 .1 . Calculation of Visible Spans ........................................................................  22

3 .3 .2 . Adding Entering Edges .................................................................................  24

3 .3 .3 . Crossing Edges ............................................................................................... 28

3 .3 .3 .1 . Left Visible Edge Crosses Left Visible Edge ..................... 30

3 .3 .3 .2 . Left Visible Edge Crosses Right Visible Edge ...................  30

3 .3 .3 .3 . Left Visible Edge Crosses Left Invisible Edge ...................  31

3 .3 .3 .4 . Left Visible Edge Crosses Right Invisible Edge ....................  31

3 .3 .3 .5 . Right Visible Edge Crosses Left Visible Edge .......................  31

3 .3 .3 .6 . Right Visible Edge Crosses Right Visible Edge .................... 31

3 .3 .3 .7 . Right Visible Edge Crosses Left Invisible Edge .................... 31

3 .3 .3 .8 . Right Visible Edge Crosses Right Invisible Edge ..................  32

3 .3 .3 .9 . Left Invisible Edge Crosses Left Visible Edge .......................  32

3 .3 .3 .10 . Left Invisible Edge Crosses Right Visible Edge .................. 33

3 .3 .3 .11 . Left Invisible Edge Crosses Left Invisible Edge ..................  33

3 .3 .3 .12 . Left Invisible Edge Crosses Right Invisible Edge ..............  33



3.3.3.13. Right Invisible Edge Crosses Left Visible Edge .................. 33

3.3.3.14. Right Invisible Edge Crosses Right Visible Edge ..............  33

3.3.3.15. Right Invisible Edge Crosses Left Invisible Edge ..............  34

3.3.3.16. Right Invisible Edge Crosses Right Invisible Edge ............  34

3.3.4. Removing Edges .............................................................................................. 34

4. The Slide Sets ........................................................................................................................  37

5. Conclusion .............................................................................................................................. 45

5 .1 . Results ..........................................................................................................................  45

5 .2 . Further Work ............................7................................................................................ 46

6. References ................................................................................................................................ 49

7. Appendix 1

ii

.......................................................................................................................  51



Graphics Support For Cognitive Research in Hnman Factors

Michael F. Morgan

Computer Graphics Laboratory 
Department of Computer Science 

Faculty of Mathematics 
University of Waterloo 

Waterloo, Ontario.

ABSTRACT

This essay describes collaborative work done with the Department of 
Psychology, for a series of experiments designed to investigate spatial 
imagination as it relates to the mental rotation of graphic representations of 
three-dimensional objects. Previous research into mental rotation, as well as 
the current work is described. The experiments required the generation of a 
large number of high quality images to be used as test stimuli. In order to 
produce these stimuli, new software was developed implementing a version 
of Watkins's algorithm. A review of Watkins's original algorithm and its 
complexity is provided. This is followed by a detailed description of the 
implementation used to generate the experimental stimuli.

1. Introduction

A goal of the Computer Graphics Laboratory has been to find new applications for 
computer graphics. This essay describes collaborative work done with the Department of 
Psychology to conduct a number of experiments designed to investigate human cognition.

Many experiments in Psychology require die production of a large number of test 
stimuli. Using conventional methods this can often be tedious. In some cases it is very 
difficult or even impossible to produce the desired stimuli using such techniques. The 
experiment described in this essay required the production of 1,872 photographies slides, an 
example of the first case. Other work being done in the laboratory involves the production 
of high frequency spatial masks, an example of the second case.
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The work described in this essay is based on research in human cognition done by 
Shepard at Stanford University, Shepard (1971). Shepard’s research was designed to 
investigate the process of mental rotation. Mental rotation is one type of thought used to 
determine if two shapes represent the same three-dimensional object. Researchers in the 
Department of Psychology at the University of Waterloo have been interested in studying this 
phenomena. Previous work done at Waterloo in this area had been conducted using wooden 
block models. The current study, however, required a large number of varying stimuli that 
could not be represented using the wooden blocks. The Psychology department could not 
easily produce these new stimuli by themselves. Therefore, computer graphics techniques 
were used to solve their problem. The flexibility of computer graphics allows the production 
of virtually any type of stimuli that could be desired. Furthermore, the production of large 
numbers of stimuli can be automated in a fairly simple way.

The specific requirements of the Psychology department were for 35mm slides of 
shaded and outlined (wire-frame) images. The objects in the images were arm-like structures 
composed of blocks, similar to the figures used by Shepard in his original work.

The z-buffer device in the GR graphics package was initially considered for rendering 
these images. However, the images that it produced suffered from aliasing, and it was 
thought that those artifacts might affect the results of the experiment. At the time that this 
project was started the only software available in die laboratory that could render high 
quality anti-aliased images was a ray-tracing package. It was not practical to use this package 
for such simple images because of die large amounts of computing time that would be 
required. This led to a decision to implement a version of Watkins’s algorithm. The 
advantages of this were threefold. First, a new output device would be added to die GR 
graphics package. Second, it would provide a higher quality image than could be obtained 
using the z-buffer device without incurring the expense of ray-tracing. Finally, Watkins’s 
algorithm could be applied to scenes in order to determine the visible edges that composed 
them. The edges could then be written to a virtual device, and subsequendy displayed on 
other devices without incurring the penalty for visible surface calculations.

This essay discusses the basic aspects of the Psychology experiment as well as the details 
involved in the implementation of Watkins’s algorithm. Chapter Two discusses previous 
research into mental rotation and describes the current work being done in the Psychology 
Department at Waterloo. Chapter Three describes Watkins’s algorithm. The first section of 
that chapter introduces his original scanline algorithm. The second section gives a brief 
discussion of the complexity of the algorithm and describes some improvements that can be 
made to its running time. The final section of Chapter Three gives the details of the current 
implementation. Chapter Four describes how the stimuli were produced. Chapter Five 
discusses some of the preliminary results of the latest mental rotation experiment and 
describes future work in this area.
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2. Mental Rotation

An area of current interest in psychology is the investigation of the mechanisms 
involved in human thought processes. Of particular interest is one mode of thought known 
as mental rotation. The first section of this chapter describes the pioneering research in this 
area done by Shepard at Stanford University. The second section describes current research 
into mental rotation that is being done by the Psychology Department at the University of 
Waterloo. This work has served as the motivation for this essay by providing an interesting 
application for computer graphics.

2 .1 . The Original Experiment

Shepard’s experiments were designed to investigate the process of spatial imagination. 
Specifically, the goal of his work was to establish how human beings determine whether two 
representations of three-dimensional objects are the same or different. The original study 
done by Shepard and a graduate student, Metzler, found that the time required to recognize 
that two perspective drawings represented the same three-dimensional object was a linearly 
increasing function of the angular displacement between the orientations of the two objects. 
These results, along with information from post experiment interviews, led Shepard to 
hypothesize that the decision about “sameness” was made by mentally rotating one of the 
objects into congruence with die other, and then checking to see if the two objects were 
identical.

The mental rotation experiment is significant in the study of human cognition because it 
was one of the first attempts to investigate human thought processes in an empirical manner. 
Much of early psychology was based on introspection, and thus was subjective and 
qualitative. The behaviorist movement insisted that psychology must become empirical in 
nature, based on specific stimuli and objective responses. However, the problem of how to 
investigate mental processes in a quantitative manner remained unsolved. Shepard’s 
experiment was designed to address, at least in part, this problem. He studied the human 
thought processes involved in spatial manipulation, an area previously unexplored. 
Shepard’s work met the criterion set by the behaviorists in that it was objective and 
quantifiable; answers were either correct or incorrect, and response time was an easily 
measurable quantity.

In the actual experiment conducted by Shepard and Metzler, each of eight adult subjects 
was shown 1,600 pairs of perspective outline drawings that represented three-dimensional 
objects. The subjects were asked to decide as quickly as possible whether the two objects 
depicted in a drawing were the same. Two objects were deemed to be the same if one of 
them could be rotated into congruence with the other. Once this determination was made the 
subject pulled a right hand lever to indicate that the two objects were the same, or a left hand 
lever to indicate that the two objects were different. A warning tone was used to signal that
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a pair of objects was about to be displayed. Presentation of the stimulus corresponded with 
the starting of a timer. Depression of one of the levers stopped the timer and caused the 
recording of the response time and the subject's answer. Half of the pairs depicted similar 
objects, which could be rotated into congruence, the other half depicted isomorphic pairs 
which could not be rotated into congruence. The reason for malting half of the pairs 
isomorphic was to prevent subjects from making the decision of non-congruence based on 
some feature possessed by only one of the objects. Slide 1 shows two similar objects, these 
can be rotated into congruence. Slide 2 shows two isomorphic objects, these cannot be 
rotated into congruence.

Each figure used as a stimuli was composed of ten blocks that formed an arm-like 
structure with three right angle twists. This particular type of object was chosen because it is 
relatively unfamiliar and meaningless to most subjects. The twists were placed at strategic 
points along the structure to ensure that the object could not be rotated into congruence with 
itself. This condition is necessary so that there will only be one axis about which an object 
can be rotated into congruence with another similar object that is in a different spatial 
orientation.

In all, ten such objects were used. The ten objects were further subdivided into two 
distinct subsets of five objects each. These objects are distributed between the two subsets 
such that, each object’s mirror object was contained in the other subset. These figures were 
then previewed in eighteen orientations that corresponded to 20° steps about a specified axis. 
Seven of these eighteen orientations were selected in order to avoid views in which some part 
of an object was occluded by another part. Furthermore, the selected orientations had to 
allow the construction of pairs of objects that differed by every increment of 20° between 0° 
and 180°.

The resulting seventy views were photocopied and placed on cards in pairs to be used as 
stimulus for the experiment. Half of the pairs were rotated in depth (about the x-axis), the 
other half were rotated in the picture plane (about the z-axis). Of the 1600 pairs used in the 
experiment, 800 were identical pairs. These were further divided into 400 unique pairs, 
twenty depth pairs differing by each of the ten 20° increments between 0° and 180°, and 
twenty picture plane pairs differing by each of the 20° increments between 0° and 180°. Each 
of these unique pairs was presented twice to make up the total of 800 identical pairs. The 
second group of 800 consisted of 400 unique isomorphic pairs that were each presented 
twice. Each of the isomorphic pairs corresponded to one of the identical pairs from the first 
group, except that one of the objects had been reflected about one of the three principle 
planes. The identical pairs and the isomorphic pairs were randomly mixed throughout the 
entire group of 1600 drawings.
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The experiment was administered in eight to ten one hours sessions for each subject. 
The exact number of sessions depended on the individual subject’s ability. Each session was 
limited to no more than 200 pairs, and used either depth rotations, picture plane rotations, 
or an equal number of both types of rotation.

The results of this initial experiment showed that as the angular displacement increased, 
so did the time required to judge whether the two objects were die same or different. The 
mean reaction times increased from approximately one second for pairs in which the objects 
were identically oriented to 4.4 seconds for pairs in which the objects differed in orientation 
by 180°. This data tended to suggest that subjects compared objects by mentally rotating 
them at a rate that traversed 180° in an average of 3.4 seconds. This rate is calculated from 
the 4.4 seconds required to make determinations at 180° difference minus 1.0 seconds to 
make determinations for identical (non-rotated) objects. From this a rotation rate of 
approximately 53a per second was implied. Polynomial regression lines were computed for 
each of the subjects for each type of rotation. In every case a highly significant linear 
component was present. No significant quadratic or higher order effects were found. 
Another observation made by Shepard was that there were no significant differences between 
rotations in depth and rotations in the picture plane.

The treatment of isomorphic pairs was different from that of the same pairs, since die 
angle through which they are rotated to congruence is not defined. In general it was found 
that the response time for isomorphic pairs was approximately a second longer than the 
response time for the corresponding same pair. Subjects indicated that they rotated one end 
of one of the objects into congruence with the corresponding end of the other object, and 
then compared the free ends. If the free ends did not match the objects were deemed 
isomorphic.

Other methods for discriminating between objects, such as developing a coded 
representation for each of the figures and then comparing the codes, were dismissed by 
Shepard. Such methods would not depend on the orientation of an object, and thus should 
display a constant response time.

The description to this point has focused on the initial work done by Shepard and 
Metzler. In order to gather further evidence that the process of mental rotation was 
analogous to the corresponding physical operation, Shepard continued his study. A brief 
description of more recent work, done by Shepard and Cooper, follows.

In order to show the correspondence between mental rotation and physical rotation it 
needed to be demonstrated that the internal process passed through states that corresponded 
to the intermediate orientations of the physical process. Towards this end a second series of 
experiments was devised. These tests were single-stimuli experiments, and used polygons 
instead of three-dimensional objects.
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Before this second set of tests could begin, it had to be established that the single
stimuli test caused die subjects to imagine die same progression of mental rotations as the 
paired drawings had. The subjects were first required to differentiate between a polygon and 
its mirror image, for each of eight polygons. Once this learning phase had been completed 
the actual test began. During each trial the subject was shown one of the polygons in an 
orientation that either matched the training position, or differed from it by some increment 
of 60°. The subject was asked to determine as quickly as possible whether the polygon was 
the standard version or a mirror image. As with the two-stimulus test, a linearly increasing 
relationship was found between angular displacement and response time. Once again 
subjects showed a consistently higher response time when mirror images were displayed. Of 
interest here is the fact that die angular sweep time for two-dimensional polygons was 
approximately 450° per second, while the three-dimensional figures used in the initial study 
were only rotated at a rate of S30 per second.

The next experiment in this series was designed to establish that subjects actually 
imagined the stimulus turning until it matched the orientation of the learned shape. During 
these sessions subjects were asked to imagine the rotation of a learned polygon. They were 
then presented with another polygon for comparison. Initially a vector was displayed 
indicating the orientation that was to be imagined. The subject then mentally rotated the 
specified test polygon to the desired orientation. Once this task was completed the subject 
indicated readiness and a polygon, which was either a standard image or a mirror image, was 
displayed. The subject was asked to decide whether the polygon was a standard or mirror 
image. Two times were recorded for each trial, the first was the set up time (the time that 
was required to perform the mental rotation), and the other was the response time (the time 
required to determine whether the polygon was a standard or mirror image). The 
preparation time once again exhibited a linearly increasing relationship between angular 
displacement and time. The response time was consistently fast, and averaged less than 0.5 
seconds for all angular differences. These results once again supported Shepard’s initial 
conjecture about the nature of the mental rotation process.

The final set of trials done by Shepard and Cooper was designed to show that the 
process of mental rotation passes through stages corresponding to the intermediate angles of 
physical rotation. Shepard speculated that if such a relationship did exist, the orientation that 
would elicit the fastest response would change steadily and progressively with time, and in 
step with the actual mental rotation process itself. In order to show that this was the case 
subjects were asked to imagine a specified polygon rotating at the rate that was natural for 
that particular subject. In should be noted that the same subjects were used throughout this 
second series of experiments, so there was extensive information about each individual’s rate 
of mental rotation. At random intervals this shape or its mirror image were displayed. The 
subject was asked to identify the object as standard or mirror as quickly as possible. In half 
of the trials the stimuli was shown in a position to match the subject’s presumed current
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mental image; these were called “probe-expected" trials. In the other half the stimulus was 
displayed at varying angles from the subject’s current mental image, these trials were called 
“probe-unexpected” .

In half of the probe-expected trials the orientations were increments of 60°. These 
orientations were the same as the those used in the earlier single-stimulus experiment. In the 
other half of the probe-expected trials objects were shown at odd multiplies of 30°. These 
orientations were unfamiliar to the subjects. If Shepard’s conjecture that mental rotation 
progresses smoothly through all angles rather than in jumps is true, then the results from 
these unfam iliar trials should be approximately the same as those from the familiar trials. 
Analysis of the test data showed that die results were almost identical.

In the probe-expected trials the subject’s answers were uniformly fast, with a mean 
response time of approximately 0.5 seconds. In the other trials the response time increased 
linearly as a function of the angular displacement. This suggested that the mental process 
passes through intermediate angles in a continuous manner as does the physical process.

All of this empirical data seems to support Shepard’s initial hypothesis. However, a 
number of questions remained. For example, how much physical detail do the mental 
images preserve as they are transformed? What is the neurophysiological basis of the mental 
images? How are the internal manipulations performed? The next section will describe the 
goals of the current research being done in the Psychology Department at the University of 
Waterloo. Readers who are interested in a more detailed description of Shepard’s work are 
referred to Shepard and Metzler (1971) for a description of the initial study, and to a 
Scientific American survey article by Shepard and Cooper (1984) for a description of both 
sets of experiments. The description of Shepard’s work given here is largely based on the 
latter article, it, however, provides more detail.

2 .2 . Current Research

Researchers in the Department of Psychology at the University of Waterloo have been 
interested in investigating the process of mental rotation for some time. Work in this area 
has been done by Bryden and Tapley (1977). Their study was designed to determine if there 
were any significant sex differences in the ability to perform mental rotation. The results of 
this study confirmed Shepard’s initial findings about the linearity of the relationship between 
reaction time and angular displacement, although there were also significant quadratic and 
cubic components to the rotation effect. The study also indicated that men were superior at 
the mental rotation task, both in terms of speed and accuracy.

The current work being done by Bryden is aimed at designing an experiment that will 
test a subjects’ ability to perform mental rotation on a number of different stimuli. The first 
set of trials are using shaded objects composed of seven blocks. Two types of seven-block 
stimuli are used, one is the Shepard and Metzler seven-block object. It has three right angle
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twists. The other is a seven-block object with only two right angle twists. Two ten-block 
objects are being used as well. Again there is a Shepard and Metzler three-twist figure and a 
two-twist figure. For the final second set of trials, each of the objects will be displayed as 
outlined (wire-frame) drawings. Those figures more closely correspond to the original 
stimuli used by Shepard and Metzler.

The use of this broader range of stimuli will allow comparisons based on a number of 
physical features of these objects. The study will be primarily concerned with comparing the 
time taken to respond to large objects and small objects (ten-block objects versus seven-block 
objects), simple objects and complex objects (two-twist objects versus three twist-objects), 
and shaded objects versus outlined (wire-frame) objects. The comparison between shaded 
objects and outlined objects is of particular interest to computer graphics users, since it may 
indicate which representation is easier to understand. Information of this nature might be 
used to determine which representation is more suitable for particular applications.

The study performed by Shepard and Metzler was done with a select group of subjects, 
chosen from among the Stanford University undergraduate population, and screened for high 
spatial ability. They were trained specifically for the tasks that they were expected to 
perform. A goal of the current study is to investigate the mental rotation process in people 
who have not been specifically selected and trained to perform this task. A further 
difference between this study and Shepard's initial study is that Shepard used only a small 
number of subjects and a large number of trials. This study will use a larger number of 
subjects and a smaller number of trials.

The final goal of this study is to again investigate possible sex differences in the ability 
to perform mental rotation, and to see if any differences that are present become more 
pronounced with different sets of stimuli.

2 .2 .1 . The Mental Rotation Experiment

As in Shepard’s original study, subjects are shown pairs of three-dimensional objects 
and are asked to deride as rapidly as possible whether the two objects are the same or 
different. Objects are considered to be the same if they can be rotated into congruence.

This study is comprised of two major sections of four phases each. The major division 
is between shaded and outlined (wire-frame) objects. Each of the four phases corresponds to 
one of the test objects. A phase is further subdivided into three viewing rounds, each of 
which consists of 104 pairs of objects.

The subjects in this experiment are undergraduate students from the University of 
Waterloo. Since one of the objectives of this study is to see how average people perform 
the mental rotation task, no prescreening is done on the basis of spatial ability. The only 
requirement is that subjects be right handed. The reason for this stipulation is that the 
subject’s use the second and third fingers of their right hand to press the buttons that give
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their response to the current stimuli. Once this has been assured, die subject is given the 
Vandenberg and Kuse mental rotation test. Subject's are given fifteen minutes to complete 
this test. The test is given to obtain an independent measure of how good a particular 
subject’s spatial abilities are.

A set of 104 slides showing pairs of objects is used as the basic stimulus set for the 
experiment. A set consists of 52 “same" slides, (slides in which the two objects can be 
rotated into congruence with each other) and another 52 slides showing two isomorphic 
objects. The isomorphic pairs differ by a reflection as well as a rotation, and therefore the 
two objects cannot be rotated into congruence with each other. Two duplicate sets of the 104 
slides are used for each phase of the experiment. Each set of slides is randomly arranged so 
that there is no discernible pattern that might aid the subject in making determinations. One 
of the slide sets is used for the first and third viewing rounds, the other set is used for the 
second viewing round. The three viewing rounds are separated by rest breaks. Subjects 
generally take about two hours to view all 312 slides.

Subjects were seated at a table 90 indies from the screen. The slide projector was 
placed 114 inches from the screen, and was located to the left behind the subject. The 
response box was placed on the table, and the subject was allowed to position it so that it was 
comfortable. Before starting the experiment subjects were given eight practice trials. 
During a trial a subject is presented with one slide at a time, the flash of a slide being 
displayed triggers a photocell, which starts an electronic timer. The electronic timer 
measures the subject’s response time to millisecond accuracy. The subject has two buttons, 
one to indicate that the objects are the same, die other to indicate that they are different. 
Depression of either button stops the timer and signals the experimenter of the subject’s 
choice. The experimenter records the subject’s response and time and then proceeds to the 
next slide.

The preliminary results of this first experiment tend to confirm the results of Shepard’s 
initial study. Discussion of the preliminary results from this experiment is given in Chapter 
Five.
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3. The Hidden Surface Algorithm

The hidden surface package described in this section is based on the scanline algorithm 
for hidden surface removal developed by Watkins at die University of Utah. The primary 
reason for choosing a scanline algorithm to solve the hidden surface problem is that it 
facilitated the implementation of an anti-aliasing capability. It was necessary to anti-alias the 
images being produced for the Psychology Department because it was thought that rastering 
phenomena might affect the results of the experiment. Slide 3 gives an example of the 
aliasing effects that are present in images rendered using a z-buffer. Before discussing the 
implementation of the current package, a description of Watkins’s original algorithm will be 
given.

3 .1 . W atkins's Algorithm

Scanline techniques generate an image on a line-by-line basis. This type of algorithm 
differs from other rendering algorithms in that it processes sections of the screen at one time, 
rather than the individual objects that make up a scene. Another difference is that Watkins’s 
algorithm solves the hidden surface problem at screen resolution. These differences allow 
for greater efficiency since scanline coherence can be exploited.

Scanline coherence is a property of most raster images. Scanline coherence means that 
adjacent scanlines appear very similar. This allows one to reduce the computation required 
to display a particular scanline to an incremental calculation based on the preceding scanline.

Decisions about visibility are also simplified. Hidden surface calculations can be made 
in two-dimensional space rather than in three-dimensional space, since the intersection of a 
polygon with a scanline is a line segment. Thus, the scanline algorithm can make depth 
decisions in the x-z plane. This reduces the hidden surface problem to deciding, for each 
scanline, which segments or portions of segments should be displayed. The remainder of 
this section describes Watkins’s algorithm as given in Newman and Sproull (1979).

To solve the hidden surface problem Watkins’s original implementation used four basic 
data types. These were polygons, edges, segments, and spans. A scene is described by 
planar polygons. Polygons are, in turn, described by their edges, and edges are described 
by their end points. Each edge contains pointers to the two polygons that it separates. If an 
edge is part of only one polygon then one of these pointer fields is empty. A segment 
describes a section of a polygon sliced along a particular scanline, and is itself described by 
its left and right edges. This edge description consists of values for XLEFT, XRIGHT, 
ZLEFT, and ZRIGHT. XLEFT and XRIGHT give the x-coordinates of the left and right 
edges of a segment, ZLEFT and ZRIGHT give the depth of each of these edges. The 
YLEFT and YRIGHT fields are used to count the number of scanlines until the left or right 
edge, respectively, terminates. In addition to edge information, segments contain shading 
information. Depending on the user’s preference, Gouraud or constant shading can be used.
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Gouraud shading, shades a polygon by linearly interpolating intensity along each edge and 
then between edges along each scanline. Constant shading calculates a single intensity value 
for shading an entire polygon. The final data type, the span, is used to described a visible 
portion of a scanline.

Table 1 -  POLYGON data type

Field Meaning

SEGLIST Points to a list of segments associated with this polygon.

CHANGING Used to link together all polygons that are changing on
a given scanline.

SHADING Intensity levels maybe stored here if constant shading is used.

Along with vertex and polygon descriptions, each edge also has an ENTERLIST Held. 
This field is used to create a linked list of edges that enter on a particular scanline. For each 
scanline there is a YENTER list, this list contains all of the edges that enter on that scanline. 
These edges are linked together using the ENTERLIST field of each of the edges.

Table 2 — EDGE data type

Field Meaning

POLY1 A pointer to one of the polygons that the edge bounds.

POLY2 A pointer to the other polygon that the edge bounds, 
(may be NULL)

VERTEX1 A pointer to one of the edge’s endpoints.

VERTEX2 A pointer to the edge’s other endpoint.

ENTERLIST Used to link together all edges that enter on a scanline.
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Table 3 -  SEGMENT data type

Field Meaning

POLYGON A pointer to the polygon to which this segment belongs.

POLYSEGMENT Used to link together all of the segments that belong to a polygon.

XLEFT X-coordinate of the left edge.

ZLEFT Z-coordinate of the left edge.

XRIGHT X-coordinate of the right edge.

ZRIGHT Z-coordinate of the right edge.

DXLEFT Increment added to the z-coordinate of the left edge.

DZLEFT Increment added to the z-coordinate of the left edge.

DXRIGHT Increment added to the z-coordinate of the right edge.

DZRIGHT Increment added to the z-coordinate of the right edge.

YLEFT The number of scanlines remaining before the left edge ezits.

YRIGHT The number of scanlines remaining before the right edge ezits.

SHADELEFT Shading for die left edge, (optional: For Gouraud shading.)

SHADERIGHT Shading for the right edge, (optional: For Gouraud shading.)

DSHADELEFT Shading increment for the left edge, (optional: For Gouraud shading.)

DSHADERIGHT Shading increment for the right edge, (optional: For Gouraud shading.)
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Each segment has a POLYGON field and a POLYSEGMENT field. The POLYGON 
field is used to point to the polygon of which this segment is a part. The POLYSEGMENT 
field is used to maintain a linked list of all segments for a particular polygon. The 
POLYSEGMENT list is sorted on the increasing value of XLEFT for each of the segments 
belonging to a particular polygon. It should be noted that segments are not part of the 
original scene description, and are derived from the edge descriptions contained in the 
YENTER list for each scanline.

The primary data structure used in Watkins’s implementation of the scanline algorithm 
is the XSORT list. The XSORT list links all active segments together in sorted order of the 
increasing value of XLEFT. On each scanline two major tasks are performed. The first task 
to update the XSORT list. The second task is the solution of the hidden surface problem for 
that scanline.

The first of these tasks is conveniently divided into four steps. The first step is to 
incrementally update the XSORT list. This list will consist of the segments that were 
considered on the previous scanline. For each segment the values of XLEFT, ZLEFT, 
XRIGHT, ZRIGHT, must be computed. This is done by adding DXLEFT, DZLEFT, 
DXRIGHT, DZRIGHT to XLEFT, ZLEFT, XRIGHT, ZRIGHT. YLEFT and YRIGHT 
must also be incremented on each scanline. If YLEFT, or YRIGHT equals zero after 
incrementing, then that edge is terminating. When this happens that particular edge’s 
polygon is marked as “changing” . The CHANGING field is used to create a linked list of all 
polygons that are changing on this scanline. If Gouraud shading is being used, the shading 
information must also be updated. This is done by adding DSHADELEFT and 
DSHADERIGHT to SHADELEFT and SHADERIGHT.

The second step is to process the YENTER list for this scanline. The YENTER list 
contains all the edges that enter on this scanline. Processing at this stage involves the 
creation of new segment blocks, if necessary, and the insertion of these blocks into the 
segment list for the appropriate polygon. All polygons that have entering edges are marked 
as changing and added to the CHANGING list.

The third step is to process the changing polygons. All of these polygons will have 
been marked in steps one or two. This processing involves the Ailing of any holes that may 
have been left in the segment list by actions that were taken in the first two steps. Holes will 
be formed where there are incomplete segment blocks. Incomplete segment blocks are 
blocks that are missing a left edge, a right edge, or both edges.

The Anal step is to sort all segments, thus creating a new XSORT list. This new list 
consists of the segments retained from the previous scanline and die new ones that were 
added on this scanline.
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Once the preliminary work to update the XSORT list has been done, the hidden surface 
problem can be solved. The scanline is divided into spans, and the hidden surface problem is 
solved for each of these individual spans. Two routines are used to solve the hidden surface 
problem for a span, die LOOKER and the THINKER.

The hidden surface problem for spans can be divided into four categories. The first 
category consists of those spans in which there is only one segment. This segment will be 
visible throughout the span. The second type of span is one which contains a “spanner” that 
obscures all other segments in the span. A spanner is a segment that extends to or beyond 
the edges of a sample span. The third category consists of spans which contain a simple 
intersection. If only two segments fall inside a span then there may be a simple intersection. 
In this case, the intersection point, DIV, can be computed. One segment is visible in the 
region SPA N ^  s  X, s  DIV, the other is visible in the region DIV s  X, s  SPANrllkr The 
forth type of span is a complicated span. Spans are categorized as complicated when they do 
not fall into one of the first three classes. A complicated span is handled by dividing it and 
then testing the smaller spans that are created as a result. Subdivision occurs at the leftmost 
segment endpoint within the span. If there are no segment endpoints within the span, 
division occurs at the midpoint of the span. The reason for choosing to divide at the leftmost 
endpoint is that it hastens the resolution process, since successful spans tend to start and end 
at segment boundaries.

The LOOKER processes each segment that lies wholly or partially within the current 
sample span, by retrieving the information necessary for the THINKER to decide which 
category that span belongs to. If the THINKER decides that the current span is a simple 
case, (one of the first three categories), it generates the information necessary to display that 
span. If the thinker detects a complicated case (the fourth type of span), it fails and 
subdivision occurs. The XSORT list serves as the source of spans for the THINKER. In 
addition to the XSORT list two other lists are m aintained. The SEGOUT list contains 
segments whose right edge lies within the span currently being considered. Spans to the right 
of the current span do not need to know about these segments. The SEGACT list contains 
segments whose right edge extends beyond the right limit of the current span. These 
segments should be considered by subsequent spans on this scanline. If processing of a span 
succeeds, the segments in the SEGOUT list do not need to be considered again on this 
scanline. The segments in SEGACT are retained for the processing of subsequent spans. If 
processing of the current span fails, then all segments considered in the original span must be 
considered in the subspans. Therefore, the SEGOUT list is merged with the SEGACT list. 
The LOOKER, THINKER, subdivision of spans, and segment bookkeeping, are managed 
by an overall CONTROLLER.

This implementation of the scanline algorithm does not take advantage of scanline 
coherence. To use scanline coherence a list of SPANr,tkt values (sample points) are used to 
divide a scanline into spans. The successful subdivisions on one scanline are used as the
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sample points on the next scanline. The purpose of sample points is to provide the 
THINKER with a high number of spans that are easy to evaluate.

3.2. Complexity of Watkins's Algorithm

Watkins’s algorithm has been widely used since it was first described, Watkins (1970). 
However, analysis of the complexity of the algorithm has proven to be difficult. Some of 
this difficulty has arisen from an inability to find a precise formulation for the complexity of 
this algorithm. A term that is often used to describe the running time of Watkins’s 
algorithm is “visual complexity”. According to Newman and Sproull (1973) Watkins’s 
scanline algorithm is quite fast; they claim that the computation grows roughly as the visible 
complexity increases. However, no precise relationship is given.

Beatty, Booth, and Matthies (1981) made the following observations about the 
operations that are performed in Watkins’s algorithm. Work proportional to the number of 
edges in a scene is being performed during the x and y bucket sorts at the start of each 
frame, and on various scanlines as each edge enters and leaves the scene. Initialization of 
the scene requires work proportional to the number of polygons that describe that scene. 
Incrementing the x and z values for each edge on each scanline requires work proportional to 
the number of edges x scanlines. The work needed to maintain the edges in an x-sorted order 
is proportional to the number of edge crossing. Finally, work proportional to the linear 
screen resolution is required to initialize the bucket sorts, and to perform the outer loop of 
the top to bottom scan of the scene. Actual pixel setting is proportional to the area (number 
of pixels) on the screen. Since this is independent of the algorithm, it is ignored. These 
observations can be used to give some insight on how the efficiency of this algorithm can be 
improved.

From these measures of work Beatty, Booth, and Matthies proposed that the visual 
complexity of a scene is the sum of the number of edges in the scene, the number of 
edgesx scanlines, and the number of visible edge crossings. This definition was chosen 
because any algorithm that solves the hidden surface problem must examine every edge at 
least once. Since these edges must be incrementally updated on each scanline, a term 
proportional to the number of edges x scanlines is included. The final term arises from the 
observation that each visible edge crossing requires output.

Beatty, Booth, and Matthies have further suggested that the running time of Watkins’s 
algorithm is not proportional to the visible complexity. The reason for this is that the 
complexity of Watkins’s algorithm is proportional to the total number of edge crossings, not 
just the visible edge crossings. This is due to the fact that the active edge list is kept in x- 
sorted order, even though only the visible edges need to be ordered. This ordering is 
maintained by using a bubble sort, which does work proportional to the total number of 
inversions in the data (each edge crossing is an inversion). For n data objects a bubble sort
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has a worst case running time of n1. It is this that leads to the quadratic behavior of 
Watkins’s algorithm.

Based on these observations the following improvements were suggested. First, 
scanline coherence is not only exhibited by adjacent scanlines, but also by whole groups of 
scanlines. Therefore, the algorithm need only be concerned about scanlines on which 
“critical events" occur. Critical events are the visible entry, exit, or crossing of edges in the 
scene. For scanlines on which no critical events occur it is sufficient to incrementally update 
the spans that were visible on the preceding scanline. The next scanline on which a critical 
event occurs can be easily predicted. Since the span list must be traversed on every scanline 
in order to generate display information, future edge crossings and exits can be predicted 
while this information is being checked. The next scanline on which an edge enters can be 
determined by examing the entering edge list. Since the crossing of invisible edges does not 
affect the visibility of the scene being rendered, those crossings can be ignored. A final 
observation is that when a critical event is known to occur on a given scanline between two 
edges, the processing need only occur in that specific region.

These improvements increase the average efficiency of Watkins’s algorithm, however, 
the running time is still not proportional to the visual complexity of the scene being 
displayed. This is easily seen by observing that an invisible edge that crosses many visible 
edges will still cause a number of scanlines to be unnecessarily processed. The current 
version of Watkins’s algorithm must perform a depth comparison when an invisible edge 
crosses a visible edge even though there may be no change in the visibility of the image. 
Even with these improvements quadratic behavior seems possible. More complex data 
structures which maintain z-sort information may be a way of avoiding this quadratic 
behavior for scenes whose visual complexity is not quadratic in the number of objects.

3 .3 . Current Implementation

This section describes the implementation of Watkins’s algorithm used to produce the 
images that were used as stimuli in the experiment. The implementation is largely based on 
the improvements to Watkins’s original scanline algorithm that were suggested by Beatty, 
Booth, and Matthies (1981). It is designed to be integrated into an existing graphics 
package, therefore a brief description of the existing software will be given before going on 
to the details of the new implementation.

The Computer Graphics Laboratory currently uses the GR graphics package. This 
system is a CORE-like package that has evolved, over a period of seven years, from a set of 
programming assignments that are given in the introductory course on computer graphics. 
This package is now the model used for teaching the introductory graphics course. Students 
are expected to implement their own version of the GR package in stages that correspond to 
the assignments in the course. The package was initially written in FORTRAN, and was
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rewritten in Pascal when it replaced FORTRAN as the principle programming language at 
Waterloo. This change allowed the addition of some sophisticated data structures. In 
addition to the improvement to the capabilities of the package, it was found that student 
productivity also benefited from the change of languages. The final stage in this 
evolutionary process was a move from a Honeywell 66/60 running GCOS-8 to a VAX 11/780 
running Berkeley UNIX. The research graphics package used by the Computer Graphics 
Laboratory is conceptually very similar to the Pascal teaching version. The major differences 
are that the research package is implemented in the C language and it is capable of 
interacting with a larger number of input and output devices.

Design of the GR package is based on modularity, and device independence. The 
package consists of a five-level hierarchy. Levels one to four form the basic graphics 
package, level five is used for application routines. This type of organization is ideally 
suited to incremental implementation, as is done in the assignments for the introductory 
graphics course.

The following is a brief description of the functions performed at each level of the 
package. Level one is the bottom level, it contains the drivers for the supported input and 
output devices. Calls to this level are in the form of device independent display requests. 
The virtual device has 15 bits (0 -  32767) of resolution in each of x, y, and z. The primary 
purpose of this level is to translate the “virtual coordinates" for output into the appropriate 
device specific coordinate system, and to then issue the proper commands to perform the 
desired operations. This process is reversed for input. Input coordinates are translated from 
the device specific coordinate system to the virtual coordinate system.

Level two performs the viewport transformation. A viewport is established by calling 
the routine Viewl2. If no viewport is specified, a default viewport is provided. This level 
maps floating point “clipping coordinates" to the fixed point virtual coordinates that are 
passed to level one.

The primary function of level three is to perform clipping. Clipping is the process of 
removing those portions of the scene that do not appear within the specified viewing volume. 
The package is capable of performing both line and polygon clipping. Level three accepts as 
its input points in a “homogeneous coordinate system". The points are clipped by level 
three, and passed to level two. The output from level three is in clipping coordinates in the 
ranges—1.0 s  x,y s  +1.0, and 0.0 s  z s  +1.0.

Level four is the user interface. At this level the user has primitives for drawing 
points, lines, polygons, and text. The user is also provided with facilities for the 
specification of colour, light sources, and geometric transformations. A text facility similar 
to the GSPC CORE implementation is provided. Input to level four is in non-homogeneous 
three dimensional “world coordinates". Level four maps an arbitrary window in world 
coordinates to a 2 x 2 x 1  window centered on the origin. Input coordinates are transformed
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to homogeneous coordinates to allow for a uniform matrix representation of the perspective 
and translation transformations.

Level five consists of application routines. These routines are primarily used for 
creating and traversing data structures which are used to describe scenes.

The current implementation of Watkins’s algorithm is tailored to replace portions of the 
level one output section. Input to level one is in the form of polygons which have been 
processed by the higher level routines. These polygons all lie within the bounds of the 
virtual device’s screen coordinates. Given this input there are two major tasks to be 
performed. The first of these is to create the appropriate data structures to allow for the 
solution of the hidden surface problem. The second task is to render the scene using these 
data structures and to then display it on the appropriate output device. The next section 
describes the data types and structures used in this package. This will be followed by a 
detailed description of the actual implementation of the scanline algorithm.

There are three main data types: polygons, edges, and spans. A polygon node is 
created for each polygon that is passed down from the upper levels. Level one calculates the 
coefficients of each polygon’s planar equation. These coefficients are used when it is 
necessary to calculate the depth of a polygon. This depth information is required to solve the 
hidden surface problem. In addition to the planar coefficients, each polygon node contains 
shading information. The current implementation supports constant shading only. Each 
polygon node contains a pointer, OPEN, to any span belonging to this polygon that is 
currently active. This pointer is used to simplify the retrieval of spans from the depth sort 
structure that is maintained while visible spans are being calculated. Polygon nodes are 
stored in a polygon structure which is an array of buckets of pointers to polygon nodes. 
When a polygon node is created it is given a unique number that corresponds to the next free 
bucket in the polygon array. This number is also given to all of the edges that belong to that 
particular polygon. When one of these edges needs to reference some information about its 
polygon, this number can be used to address the appropriate polygon node within the 
polygon structure.

The second data type is the edge. When a polygon is passed to level one the edges 
associated with that polygon are maintained in a doubly linked ring. This ring is traversed, 
and the edges are unlinked into chains of edges which are in turn placed in an edge structure. 
An old chain is ended and a new one started when there is a change in the vertical direction 
of the edges in the ring. Thus a chain consists of edges that continue from one to the next 
such that each edge’s starting y-coordinate is greater than die starting y-coordinate of the next 
edge. A polygon node’s pointer into its linked ring of edges points to the edge with the 
highest starting y-coordinate. Given the direction of traversal of the ring, one can tell 
whether a given edge is a left or right edge of that particular polygon. The edge structure is 
an array of buckets of pointers to lists of chains. The number of buckets corresponds to the
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Table 4 -  POLYGON data type

Field Meaning

RED Red component of the polygon colour.

GREEN Green component of the polygon colour.

BLUE Blue component of the polygon colour.

A ,B,C,D The coefficients of the polygon’s planar equation.

OPEN A pointer to any open spans belong to this polygon, 
(used in determining visible spans)

number of scanlines. For each scanline the lists are ordered by increasing value of the x- 
coordinate of the first edge of each edge chain. A chain is placed in a particular bucket of 
the edge structure according to the starting y-coordinate of the first edge of the chain. If 
there is already a non-null list of chains at the bucket where a new chain is being placed, the 
new chain is inserted into the list according to the value of the starting x-coordinate of the 
first edge in that chain. In cases where two chains have the same value for their starting x- 
coordinate, the slope of the first edge in each chain is used to determine the correct 
placement. If the bucket in which a new chain is being placed has a null list of chains, the 
pointer in that bucket is made to point directly to the new chain.

Each edge contains coordinate information. This information consists of the starting 
and ending y-coordinate, the starting x-coordinate, and an x-increment. The x-increment is 
calculated from the slope and is the change in the x-coordinate per scanline. The starting x- 
coordinate is updated on each scanline with the x-increment, to give the x-coordinate for that 
edge on the next scanline. In addition to coordinate information, each edge contains a 
polygon number to indicate which polygon contains this edge’s depth and shading 
information. Two flags LORR and VIS are used to record whether the edge is a left or right 
edge, and whether it is currently visible. The LINTER and RINTER fields are used to tell 
the next scanline on which an edge crossing involving this edge occurs. Finally, there are a 
number of pointer fields. The NEDGE field is used to link edges together into chains of 
edges. The PREV and NEXT fields are used to create doubly linked lists of edges. These 
fields can be used in two contexts, to link together lists of visible edges, or to link together 
lists of invisible edges. The final two pointer fields are LSPAN and RSPAN. LSPAN points 
to the span that has this edge as a left bounding edge. RSPAN points to die span that has
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Table 5 -  EDGE data type

Field Meaning

POLY Number of the polygon to which this edge belongs.

X Current x-coordinate.

INCX Increment to be added to X before processing the next scanline.

LINTER Next scanline on which this edge intersects a visible edge to its left.

RINTER Next scanline on which this edge intersects a visible edge to its right.

NEDGE A pointer to the next edge in this edge chain.

NEXT Used to create doubly linked lists of edges.

PREV Used to create doubly linked lists of edges.

LSPAN A pointer to the span that has this edge as a left bounding edge.

RSPAN A pointer to the span that has this edge as a right bounding edge.

LORR Indicates whether the edge is a left or right edge.

VIS Indicates whether the edge is visible or invisible.

LASTY Gives the scanline on which this edge exits.

this edge as a right bounding edge. If an edge is invisible then both of these fields are null.

The final data type is the span. A span corresponds to a visible section of a polygon. 
Each span has left and right visible edges that bound the span. The EDGES field is used to 
point to a doubly linked list of edges that are obscured by this span. The PREV and NEXT 
fields are used to create doubly linked lists of spans. The following fields contain 
information that is used to exploit scanline coherence. LINTER and RINTER give the next 
scanline on which one of the obscured edges crosses the left or right bounding edge. The 
EXIT field gives the next scanline on which an edge associated with this span exits. Finally,
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each span contains the number of the polygon that is visible within its bounds. This number 
allows a span to access shading and depth information.

Table 6 -  SPAN data type

Field Meaning

POLY Number of the polygon that is visible within this span.

LEFT Pointer to the left bounding edge.

RIGHT Pointer to the right bounding edge.

LJNTER Next scanline on which an edge intersects a the left 
bounding edge.

RINTER Next scanline on which an invisible edge intersects a the right 
bounding edge.

EXIT The next scanline on which an edge associated with this 
span exits

EDGES Pointer to the invisible edges associated with this span.

NEXT Used to create doubly linked lists of spans.

PREV Used to create doubly linked lists of spans.

Spans and edges are used to create the visible span structure. This is the main data 
structure used in solving the hidden surface problem. The visible span structure is a doubly 
linked list of the spans that are visible on the current scanline. This structure is updated as 
edges enter the scene, exit the scene, or cross. Each of the spans in this structure has a left 
and right bounding edge. These edges are linked together throughout the entire structure to 
form a doubly linked list of the visible edges which are maintained in x*sorted order.

The processing done to the visible span structure on a given scanline depends on 
whether a critical event occurs on that scanline. As mentioned previously, the next scanline 
on which a critical event occurs is easily predicted using the coherence information that is 
contained in the individual spans.
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For scanlines on which there are no critical events a minimal amount of processing 
needs to be done. As the visible span structure is traversed die visible edges are 
incrementally updated, and display information is retrieved. It should be noted that the use 
of this type of structure allows a saving since invisible edges are only updated when it 
becomes necessary to do so.

Processing for scanlines on which a critical event occurs is more complicated. Using the 
coherence information it is possible to tell which critical events have occurred. Processing 
for the three types of critical event occurs in the following order. First, the exiting edges are 
deleted using the routine Remove. Next, any crossing edges are processed by the routine 
Crossover. Finally, if there are any entering edges they are placed in the visible span 
structure by the routine AddEdges. If one of the types of critical events does not occur on a 
given scanline, that phase is omitted. After a critical event has occurred the coherence 
information must be updated. The next section gives a description of the routines that are 
used to solve the hidden surface problem. The first of these routines, Resolve, is used to 
calculate visible spans.

3 .3 .1 . Calculation of Visible Spans

Resolve is used to set up the initial visible span structure, and is called by other routines 
to calculate the spans that are visible in any gaps that may be formed by crossing or exiting 
edges. As input, this routine accepts a doubly linked list of edges in x-sorted order, and a 
list of polygons that are active at the current position on the scanline. The list of active 
polygons is used to set up the initial span information. Given this input, the routine then 
calculates the spans that are visible over the range defined by the edge list. If the edge list is 
null the routine will calculate the polygon (span) that is visible at the current position on the 
scanline.

To solve the hidden surface problem Resolve maintains two structures. Hie first is a 
visible span list. This list contains visible spans whose right bounding edge has already been 
encountered. The second structure, the currently active tree, contains spans whose right 
bounding edge has not yet been encountered. The elements of this structure are 
hierarchically arranged based on the depth information that is currently available. If a span 
is known to be hidden by a particular span, then it along with all the other spans obscured by 
that span are children of this span. If the depth relation between two spans is not known 
then these spans are “siblings” . Siblings are spans that are on the same level of the 
hierarchy. By maintaining such a structure, one reduces the number of depth comparisons 
that must be made to find the closest span. When one is trying to find the closest span only 
those spans at the highest level of the hierarchy need to be considered. This allows one to 
immediately dismiss all of the children of these spans. This allows a saving in the number of 
computations that need to be made since a smaller set of spans need to be tested to find the 
closest span. By ignoring the children, until their level has become the top (visible level) of
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the active span structure one saves further on the number of computations, since some of 
these spans may terminate before it becomes necessary to test this level of the hierarchy.

Resolve starts by checking the active polygon list that it received as input. For each 
element in this list a span node is created and placed in the active span structure. The first 
element of the active span structure is the closest and thus currently visible span. The second 
element is the next closest span, the rest of the spans are maintained in unsorted order. 
These unsorted spans become the children of the second closest span, and will all be siblings 
of each other.

Once the initial span information has been processed the input edge list is scanned. 
When a left edge is encountered a new span node is created for the polygon that it starts. 
The OPEN pointer in the polygon node associated with that edge is made to point to the 
newly created span. When the corresponding right closing edge is encountered this pointer is 
retrieved and the span can be deleted. The depth of the newly created span is compared with 
the depth of the currently visible span. If the new span is closer than the currently visible 
span, the currently visible span is given the left edge as a right bounding edge. This span is 
then removed from the active span structure and attached to the end of the visible span list. 
Since the span's visibility was terminated by a new closer span, it remains active as the 
second closest span. In order to keep the active span structure correct another span must be 
created with the same polygon information as the span that was just placed in the visible span 
list. This new span is the immediate child of the new visible span and represents the 
continuing section of the previously visible span. All of the children of the previously visible 
span are pushed down one level as a result. The closer span is placed at the top of the active 
span structure, and becomes the new currently visible span. The currently visible span will 
have the left edge as its left bounding edge. If the new span is deeper than the currently 
visible span, it becomes a sibling of the children at the level immediately below the currently 
visible span. When the currently active span structure is empty, the new span can be 
installed as the currently visible span without any depth comparisons.

When a right edge is encountered, one of the currently active spans must be 
terminating. If it is the currently visible span that is terminating, then this right edge is made 
the right bounding edge of the currently visible span. This span is removed from the 
currently active span structure and added to the end of the visible span list. The children at 
the level immediately below the currently visible polygon must now be checked to find the 
new currently visible span. To do this the depth of each of the sibling spans at this level 
must be checked. The closest of these spans is then moved from its current position to the 
top of the visible span structure. This check will also find the second closest span, it 
becomes the immediate child of the currently visible span, and the rest of the sibling spans 
become children of this span. If the right edge terminates one of the hidden spans then there 
is no change in the visibility of the scene. The terminating span is deleted from the structure 
and its immediate children are moved up to the level that it had previously occupied. This
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must be done since it is possible that a child of the deleted span may be closer than the 
deleted span’s siblings.

The hidden surface section of this routine terminates when all of the input edges have 
been processed. Before the routine ran finish some work must be done to the visible span 
list. If the currently active span structure is non-null at this point, then the currently visible 
span must be added to the end of the visible span list. This may occur when Resolve is being 
used to fill gaps in the visible span structure, since the terminating edge of the last visible 
span may not be among the input edges. After the visible spans have been determined all of 
the input edges are still doubly linked. This must be changed so that the visible edges are 
connected in a doubly linked list, and the invisible edges are associated with the span that 
obscures them. This is easily accomplished, the edges that fall between the left and right 
bounding edges of a span are the edges that are obscured by that span. These edges can be 
unhooked from the doubly linked list and associated with the appropriate span by using the 
EDGES field. Once the invisible edges have been removed, the left and right bounding 
edges are reconnected. The final processing to be done involves the calculation of coherence 
information for each individual span.

3 .3 .2 . Adding Entering Edges

The AddEdges routine is used to add entering edges to the visible span structure. 
AddEdges accepts a doubly linked list of z-sorted chains of edges. Since edges are linked 
together in chains, the edges of new polygons are guaranteed to enter on a given scanline in 
pairs. This makes the process of adding and removing edges much easier. The fundamental 
purpose of AddEdges is to compare the depths of the entering polygons with the depths of 
the currently visible polygons at points where the two overlap.

This routine starts by checking if there are any edges that fall to the left of the leftmost 
edge in the visible span structure. If there are any such edges, they are unlinked from the 
rest of the input edges and passed directly to Resolve so that the visible spans defined by the 
edges can be determined. The resulting visible spans are attached to the front of the visible 
span structure. When connecting the end of the new spans to the front of the visible span 
structure one must check the two spans at the connection point to see how they should be 
properly joined. If the right bounding edge of the last of the new spans is non-null then the 
spans and the visible edges can simply be connected. If the right edge of the last span is 
null, however, a depth comparison must be performed to see if this span or the first span of 
the visible span structure is closer. If the new span is closer it is flagged as continuing (this 
is denoted as the “open” condition), and the rest of the entering edges are processed. The 
visibility of this open span will be terminated in one of three ways, the right closing edge of 
this span will be encountered, a closer left edge will be encountered, or a currently visible 
span that is closer will be encountered. If the first span of the visible span structure is closer 
than the last of the new spans then the left bounding edge of this span becomes the right
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bounding edge of the new span. In this case the spans and the visible edges can be 
reconnected. For the remainder of this section the term “current span" will refer to the span 
that is currently visible at this point in the visible span structure. The term “active span" will 
refer to any new span that is in the open condition.

The main loop in this routine scans over the visible span structure until the section of 
the structure is reached where the next entering edge is active. There are a number of 
checks that must be performed during this scanning process. When there is an active span 
the following checks must be performed. If the left bounding edge of the current span is a 
left edge, then this span may be closer than the active span. Thus a depth comparison must 
be performed at the x-coordinate of the left bounding edge of the current span. If the active 
span is closer it remains active and the left bounding edge of the current span becomes an 
invisible edge associated with the active span. This edge is added to a list of invisible edges 
that are obscured by the active span. Depending on where the active span terminates the rest 
of the edges belonging to die current span may also become invisible edges associated with 
the active span. If the current span is closer than the active span, then the active span 
terminates at the left bounding edge of the current span. The left bounding edge of the 
current span becomes the right bounding edge of the active span. The open condition is no 
longer true, so the span and visible edge lists can now be reconnected. The list of invisible 
edges associated with the active span are now attached to that span, and its coherence 
information is calculated. The active span’s polygon number is added to a list of currently 
active polygons. This is done because the span’s visibility was terminated by a closer span 
rather than by the right closing edge of that polygon. This active polygon list is maintained 
in order to keep track of the polygons that may become visible if any gaps exist in the visible 
span structure. The depth of these polygons must also be checked whenever a deeper 
polygon emerges from behind a closer polygon.

If there is no open span then the following checks must be performed. If the current 
span’s left bounding edge is a right edge then a deeper polygon is emerging from behind a 
polygon that had previously obscured it. In this case one of the entering polygons may be 
closer than this emerging polygon. Thus the depth of the current span must be checked 
against the depth of the closest of the active entering polygons. If the current span is closer, 
no changes occur. However, if one of the new polygons is doser then it becomes active. 
This active span starts at the right bounding edge of the previous polygon, and will obscure 
at least part, and possibly all of the current span. As mentioned previously, some or all of 
the invisible edges assoaated with the current span may become assodated with the active 
span.

If a new polygon does not become active because of the previous check, then another 
check is done to see if there is a gap between the current span and the next span. If there is 
no gap then nothing needs to be done. If there is a gap, then the dosest of the active 
entering polygons will become visible in this region. A new active span must be created and
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inserted after the current span. This active span will have the right bounding edge of the 
current span as its left bounding edge. If the previous two checks do not apply then no 
further processing needs to be done.

This scanning loop terminates when the span that the next entering edge overlaps is 
reached. If there is an active span at this point, the entering edge is processed with respect 
to this span. The visible span structure is ignored because it is being obscured by the active 
span at this point on the scanline. If there is no active span then the following situations may 
occur. If the entering edge falls in a gap between spans, the scanning loop terminates at the 
span that lies to the immediate right of the entering edge. If the next entering edge falls 
beyond the rightmost edge of the visible span structure, then the rest of the input edges can 
be passed directly to Resolve. In this case processing becomes much simpler. The visible 
spans returned by Resolve are appended to the visible span structure. The connection of 
these two sets of visible spans presents problems that are analogous to those encountered in 
attaching new spans to the front of the span structure. If the left edge of the first span of the 
new visible spans is non-null and there is no active polygon then the spans and edges need 
only be connected. If there is an active span, then the left edge of the first of the new spans 
becomes the right bounding edge of the active span. If the left edge of the first span of the 
new spans is null and there is no active span, then the right bounding edge of the last span of 
the span structure becomes the left bounding edge of the first span of the new spans. If 
there is an active span, then these two spans represent the same polygon and must be 
merged.

If the next entering edge falls within the visible span structure, the processing considers 
the current span. The nature of the scanning loop assures that the current entering edge will 
fall either in a gap to the left of the left bounding edge of the current span, or within the 
current span itself. With these stipulations the following cases may occur.

If there is no active span and the left bounding edge of the current span is a right edge, 
then a test must be made for emerging polygons. This test may cause the creation of an 
active span. If this happens the rest of the processing is the same as for an active span.

When the left bounding edge is a right edge the entering edge must fall within the 
bounds of the current span, since there can be no gap between the current span and the span 
to its immediate left. Once this check has been done, processing of the entering edge can 
start. If the entering edge is a left edge then a new span may be starting, depending on the 
depth of the entering polygon. If there is an active span then the new span’s depth is 

' compared with the depth of the active span. If the entering edge is deeper than this span it 
becomes one of the invisible edges associated with the active span. If the new edge is closer 
than the active span, then the active span’s visibility is terminated with the new edge 
becoming its right bounding edge. A new active span is created with the entering edge as its 
left bounding edge. The polygon visible in this region is the one that the entering edge



27

starts. Care must be taken to ensure that the invisible edges associated with the current span 
are properly placed with either the old active span, the new active span, or the remaining 
portion of the current span.

If there is no active span then the depth of the entering edge is compared with the depth 
of the current span. In this case it is possible for the entering edge to fall in a gap to the left 
of the left bounding edge of the current span. If this is the case a new active span is started, 
with the entering edge as its left bounding edge. This span is attached to the preceding span, 
the remaining connections to be made later in the processing.

If the entering edge does not fall to the left of the current span, it must fall within the 
bounds of the current span. The depth of the entering edge is compared with the depth of 
the current span. If the entering edge is deeper, it becomes an invisible edge associated with 
the current span. If the entering edge is closer, then a new active span is started. The 
current span must be split into two sections. One section is for the part of the span that lies 
to the left of the new span. This section is bounded on the right by the entering edge. The 
other section is used to represent the rest of the current span, it will remain visible if the 
right closing edge of the entering polygon occurs before the right bounding edge of the 
current span. The new edge becomes the left bounding edge of the newly created active 
span. Once again care must be taken to ensure that the invisible edges associated with the 
current span are properly distributed among the new arrangement of spans.

If the entering edge is a right edge, then one of the entering polygons must be 
terminating. If there is an active span and the entering edge is the right closing edge of that 
span then its visibility is terminated. If the entering edge is not the right closing edge of the 
active span it becomes an invisible edge associated with the active span. In both cases the 
terminating polygon’s identification number is removed from the active entering polygon list. 
When closing the active polygon and reattaching it to the rest of the visible span structure the 
following cases may occur. If the entering edge falls to the left of the current span’s left 
bounding edge, then the visibility of the current span is not affected. The entering edge 
becomes the right bounding edge of the active span, and this span and the current span are 
connected. If the entering edge overlaps the current span then there may be a change in the 
visibility of this span depending on the depths of the two spans. If the current span is closer 
than the active span, the left bounding edge of the current span becomes the right bounding 
edge of the active span, and the right closing edge of the active span becomes an invisible 
edge associated with the current span. If the active span is closer than the current span, then 
a change occurs in the visibility of the current span. The entering edge becomes the right 
bounding edge of the active span, and the left bounding edge of the current span. The old 
left bounding edge of the current span becomes an invisible edge associated with the active 
span. Once again care must be taken to ensure that the invisible edges associated with the 
current span are properly reassigned to either the active span or the current span.
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If there is no active span then the entering edge becomes an invisible edge associated 
with the current span. Since the entering edge is a right edge it must be invisible, or its 
polygon would be visible to its immediate right. As in the previous cases the closing edge’s 
polygon identification number is removed from the active polygon list. The AddEdges 
routine terminates once all of the entering edges have been added to the visible span 
structure.

3 .3 .3 . Crossing Edges

The second routine used for updating the visible span structure is called Crossover. It 
processes visible edge crossings and ensures that the span structure remains correct. The 
Crossover routine is based on the analysis of edges crossings done in Hamelin and Gear 
(1977). Tables 7 and 8 give a brief synopsis of the type of edge crossings that can occur, and 
the actions that should be taken in each case.

Table 7 -  Analysis of Edge Crossings

2mi edge LV RV LI RI

1M edge

LV 11 E Cl H

RV C2 12 NC NC

U NC - H NC NC

RI NC C3 NC NC

LV
RV
U
RI

Left visible edge. 
Right visible edge. 
Left invisible edge. 
Right invisible edge.

1** edge is the leftmost edge before the crossing. 
2md edge is the rightmost edge before the crossing.
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Table 8 -  Actions

Occurrence Action

E Error; the edges belong to the same polygon

NC No change in visibility

11 First edge becomes invisible

12 Second edge becomes invisible

Cl If the second edge is in front of the polygon visible 
to the left of the first edge, make the second edge visible

C2 Compare the depths of the polygons to which the edges 
belong. The edge with the forward polygon remains visible

C3 If the first edge is in front of the polygon visible to the 
right of the second edge, make the first edge visible

H Hard crossing. Compare the depths of all polygons under 
the crossing to see which is visible

Crossover is invoked when the coherence information indicates that a crossing has 
occurred that involves a visible edge. Processing of the visible span structure proceeds from 
span to span until all of the spans have been checked. If changes are required they are made 
locally to the section of the visible span structure where the crossing has occurred.

Four checks are applied to each span. The first check is to see if the left bounding edge 
of the current span has crossed the preceding visible edge in the visible edge list. If this has 
occurred some action must be taken to correct the visible span structure. In general an edge 
will be tested against the edges to its left in the visible edge list until the edge to its 
immediate left has a smaller x-coordinate, or until it becomes the first edge in the visible 
edge list.

The second test checks to see if any of the invisible edges associated with the current 
span have crossed the left bounding edge. As in the previous case, if an edge crosses more 
than one edge it need only be compared against those edges that are visible. The third check 
tests if the right bounding edge has crossed any of the invisible edges associated with the



30

current span. The final check tests if the right bounding edge of the current span has crossed 
the left bounding edge.

Any crossings involving visible edges are passed to the next section of the routine. This 
section consists of two nested switch statements which implement the Hamelin and Gear edge 
crossing table. This section tries to adhere as closely as possible to the terminology used by 
Hamelin and Gear. First refers to the edge that was leftmost before the crossing, and second 
refers to the edge that was rightmost before the crossing.

Before any processing can be done the types of the crossing edges must be determined. 
This is done by checking the LORR and VIS fields. The LORR field tells whether an edge 
is a left or right edge. The VIS field indicates whether or not an edge is visible. The types 
of the first and second edges are then used to determine the particular type of crossing that 
has occurred.

The following sections give a detailed description of the processing done for each of the 
sixteen types of crossings. The format for each of the following subsections is “type of the 
second edge” crossing “type of the first edge".

3 .3 .3 .1 . Left Visible Edge Crosses Left Visible Edge

The 1" edge becomes invisible. The following changes must be made to the visible 
span structure. If the 1" edge is the right bounding edge of the preceding span, then the 2”'  
edge becomes the new right bounding edge of that span. One must now check the preceding 
span to see if any of the invisible edges associated with that span now belong with the current 
span. Once these edges have been transferred the RINTER value for the preceding span can 
be calculated. In general when a left or right bounding edge is replaced by another edge, 
either LINTER or RINTER will have to be recalculated. From this point on, this 
computation will be assumed to be implicit in the bounding edge replacement process. Once 
the preceding span has been processed the span that was just obscured can processed. The 
left bounding edge and the invisible edges associated with this span are transferred to the 
obscuring span. The coherence information for the obscuring span can now be updated. 
Once this has been done the span and visible edge lists can be reconnected.

3 .3 .3 .2 . Left Visible Edge Crosses Right Visible Edge

This case requires a depth comparison. The closer of the two spans remains visible. 
The following changes must be made to the visible span structure. If the 2"' edge (left 
visible) is closer than the 1** edge (right visible), then the V* edge becomes the right 
bounding edge of the preceding span. Once again the invisible edges of the preceding span 
must be checked to see if there are any that should be moved. Once this has been done the 
coherence information can be calculated and the span and visible edge lists reconnected. If 
the 1“ edge is closer, then the 1" edge becomes the left bounding edge of the next span. If
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the 2nd edge falls within the bounds of the 1** edge’s span then it is added to the invisible 
edge list associated with this span. If the 2nd edge does not fall within the bounds of this 
span it must cross one or more additional visible edges. Evaluation of these crossings will 
determine the 2md edge’s final placement. The final step is to update the coherence 
information and reconnect the span and visible edge lists.

3 .3 .3 .3 . Left Visible Edge Crosses Left Invisible Edge

There is no change in the visibility of the scene. No depth comparisons need to be 
made since it is already known that the polygon that the 1" edge (left invisible) starts must be 
deeper than the polygon that the 2nd edge (left visible) starts. Therefore, LINTER and 
RENTER are calculated and the 1" edge becomes an invisible edge associated with the 2nd 
edge’s span.

3 .3 .3 .4 . Left Visible Edge Crosses Right Invisible Edge

There is no change in the visibility of the scene. No depth comparisons need to be 
made since it is already known that the polygon that the 1" edge (left invisible) starts must be 
deeper than the polygon that the 2nd edge (left visible) starts. Therefore, LINTER and 
RENTER are calculated and the 1" edge becomes an invisible edge associated with the 2nd 
edge’s span.

3 .3 .3 .5 . Right Visible Edge Crosses Left Visible Edge

This case cannot occur since both of these edges would have to belong to the same 
polygon.

3 .3 .3 .6 . Right Visible Edge Crosses Right Visible Edge

The 2nd edge becomes invisible. The 1" edge becomes the new left bounding edge of 
the span that the 2nd edge starts (if such a span exists). The visible edge list can now be 
reconnected and the coherence information updated. If the 2mi edge falls within the bounds 
of the 1” edge’s span, it is placed in the invisible edge list associated with this span. If the 
2nd edge does not fall within the bounds of this span then it must cross one or more 
additional visible edges. These crossing must be evaluated to determine the final placement 
of the 2nd edge.

3 .3 .3 .7 . Right Visible Edge Crosses Left Invisible Edge

If the 1" edge (left invisible) is the left starting edge of the polygon that is visible to the 
right of the 2md edge (right visible), then a “hard crossing” has occurred. A hard crossing is 
a crossing where all polygons that are active under the crossing must be examined in order to 
determine which polygon or polygons are visible. This must be done because a gap is left
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between the 1" edge and the 2nd edge. The 1" edge becomes the left bounding edge of the 
span that is visible to the right of the 2nd edge. The next step is to fill in the “visibility gap“ 
that is left between the 1" edge and the 2Hi edge. This is done by passing an active polygon 
list to Resolve, and placing the resulting visible spans in the gap. If the 1" edge is not the 
left starting edge of the polygon that is visible to the right of the 2nd edge, then the l"  edge 
is added to the list of invisible edges that are obscured by this span.

3.3.3.8. Right Visible Edge Crosses Right Invisible Edge

If the 1“ edge (right invisible) is closer than the polygon that is visible to the right of 
the 2Hd edge (right visible), then the 1“ edge’s polygon becomes visible. If there is no 
polygon visible to the right of the 2td edge, then the 1” edge’s polygon is known to be 
visible, without performing any depth comparisons. If the right bounding edge of this newly 
created span overlaps the left bounding edge of the next span in the visible span structure, 
then this will be resolved when this crossing is evaluated. If there is a polygon visible to the 
right of the 2md edge, then a depth comparison must be made between the currently visible 
polygon and the emerging polygon. If the emerging polygon is closer, then the 1“ edge 
becomes the left bounding edge of the currently visible polygon. A new span is created and 
inserted to indicate that the emerging polygon is now visible in the region that is bounded by 
the 1" edge and the 2nd edge. If the emerging polygon is deeper than the currently visible 
polygon, then the l'* edge becomes an invisible edge associated with the currently visible 
span.

3.3.3.9. Left Invisible Edge Crosses Left Visible Edge

If the 2nd edge (left invisible) is closer than the polygon that is visible to the left of the 
1** edge (left visible), then the emerging polygon is visible. There are two cases to be 
considered. If the span in which the 1" edge is the left bounding edge is the first span in the 
span list then the emerging polygon is known to be visible without any depth comparisons, 
however, it must be ensured that this new span is designated as the new first span of the 
visible span structure. The second case occurs when there is a gap to the left of the 1" edge. 
Once again the new span is known to be visible without any depth comparisons. Therefore, 
a new span is inserted in the span list immediately to the left of the span in which the 1" edge 
is the left bounding edge. If the left bounding edge of this new span overlaps the span to its 
left, then this will be corrected when that visible edge crossing is evaluated. If there is a 
polygon visible to the left of the 1" edge, a depth comparison must be performed. If the 
emerging polygon is closer than the currently visible polygon, the 2md edge becomes the right 
bounding edge of the preceding span. A  new span is created and inserted between the 1“ 
edge and the 2nd edge to indicate that the emerging polygon is now visible in this region. 
Care must be taken to ensure that the previously visible span’s invisible edges are properly 
distributed between the remaining portion of that span and the emerging span. If the
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emerging polygon is deeper than the currently visible polygon, and if the 2md edge falls 
within the bounds of the span to the right of the 1" edge, it becomes an invisible edge 
associated with that span. If this is not the case, the 2nd edge must cross one or more 
additional visible edges. Analysis of these crossings will determine the final placement of the 
2nd edge.

3.3 .3 .10 . Left Invisible Edge Crosses Right Visible Edge

There is no change in the visibility of the scene. If the 2"rf edge (left invisible) falls 
within the bounds of the span to the right of the 1” edge (right invisible), then the 2nd edge 
becomes an invisible edge associated with this span. If the 2nd edge does not fall within the 
bounds of this span, it must cross one or more additional visible edges. Analysis of these 
crossings will determine the final placement of the 2nd edge.

3.3 .3 .11 . Left Invisible Edge Crosses Left Invisible Edge

The crossing of invisible edges does not affect the visibility of the scene. Therefore this 
case is not tested.

3.3 .3 .12 . Left Invisible Edge Crosses Right Invisible Edge

The crossing of invisible edges does not affect the visibility of the scene. Therefore this 
case is not tested.

3.3 .3 .13 . Right Invisible Edge Crosses Left Visible Edge

If the 2md edge (right invisible) is the dosing right edge of the polygon that is visible to 
the left of the 1** edge (left visible), then a hard crossing has occurred. Second becomes the 
right bounding edge of the span that lies immediately to the left of the current span, and a 
gap is left between the \ n edge and the 2<“f edge. This gap is filled by calling Resolve with a 
list of active spans, and a list of the edges from the preceding span that now fall in the 
newly created gap. The visible spans returned by Resolve are inserted in this gap. If the 2Hd 
edge is not the dosing right edge of the polygon visible to the left of the 1" edge then this 
edge is obscured by the span visible to the left of the 1** edge. If the 2nd edge falls within the 
bounds of this span it is added to the list of invisible edges assodated with that span. If the 
2Hi edge does not fall within the bounds of this span it must cross one or more additional 
edges. Analysis of these crossings will determine the final placement of this the 2*d edge.

3.3 .3 .14 . Right Invisible Edge Crosses Right Visible Edge

There is no change in the visibility of the scene. If the 2Hi edge (right invisible) falls 
within the bounds of the span to the left of the 1* edge (right visible), it is added to the list 
of invisible edge associated with this span. If the 2*d edge does not fall within the bounds of
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this span it must cross one or more additional visible edges. Analysis of these crossings will 
determine the final placement of the 2U edge.

3.3 .3 .15 . Right Invisible Edge Crosses Left Invisible Edge

The crossing of invisible edges does not affect the visibility of the scene. Therefore this 
case is not tested.

3.3 .3 .16 . Right Invisible Edge Crosses Right Invisible Edge

The crossing of invisible edges does not affect the visibility of the scene. Therefore this 
case is not tested.

Crossover terminates once all of the spans in the visible span structure have been 
evaluated, and if necessary updated.

3 .3 .4 . Removing Edges

The final type of updating that needs to be done to the visible span structure involves 
the removal of exiting edges. There are two types of exiting edges. If there is another edge 
following the exiting edge in its chain, this new edge will enter the visible span structure at 
the exact point that the current edge is exiting. This new edge can replace the exiting edge at 
its current position in the visible span structure. Exiting edges of this type are denoted as 
“continuing” edges. If the current edge is the last edge in its edge chain then the polygon 
that this edge belongs to is terminating. Exiting edges of this type are denoted as 
“terminating” edges. The use of chains guarantees that terminating edges will only occur in 
pairs. Remove processes both continuing and terminating edges.

Remove is called when the coherence information indicates that an edge or edges are 
exiting. If the removal of any edge causes gaps to be formed in the visible span list, Resolve 
is called to generate a new set of visible spans (if any are visible) for that region. The 
following discussion gives a detailed description of the processing done by Remove.

Remove examines the visible span structure in a span by span fashion. A distinction is 
made between exiting edges that continue and exiting edges that terminate. The former can 
be replaced by the next edge in its chain. If the exiting edge is invisible when it exits only 
the coherence information for the newly entering edge needs to be calculated. If the exiting 
edge is visible either LINTER or RINTER will have to be recalculated for the entire span. 
The processing for terminating edges is more complex and is outlined in the rest of this 
section.

The first section of the Remove routine determines the status of the current span. 
There are five types of spans. The first type of span has no change in visibility. The fact 
that the visibility does not change does not necessarily mean that no changes have occurred in
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this span. Any invisible edges that have exited will not affect the visibility of this span, 
however, the coherence information will have been updated. Left terminating edges must be 
remembered until their closing right edge has been encountered, since the visibility of other 
spans may be affected by the termination of these polygons. The reason for this is that it is 
possible for a span’s visibility to terminate without either of its bounding edges terminating. 
This type of span will have a right visible edge as its left bounding edge and a left visible 
edge as its right bounding edge.

The second class consists of those spans in which the left bounding edge terminates. It 
is guaranteed that the left bounding edge of these spans will be a left visible edge. If the left 
bounding edge had been a right visible edge then its polygon would have been visible to its 
immediate left. Thus there would have to have been a span with this edge as a right 
bounding edge. This span will precede the current span and will also have to be processed 
since its right bounding edge is terminating. Therefore, any right edges will be processed 
before the current span is encountered. When the left bounding edge is removed a gap is 
formed in the visible span structure. This gap is filled by calling Resolve with a list of the 
currently active polygons, and the edges that were obscured by the exiting span. Resolve 
will return the spans that are visible in this section. The process used to insert the new spans 
into the gap is essentially the same as the one that was outlined previously, with one 
additional case. This case occurs when the last span before the gap in the visible span 
structure has no right bounding edge, and the first span of the newly created spans has no 
left bounding edge. These two incomplete spans represent the same polygon, and must be 
merged. The same situation arises when the last span of the newly created spans has no right 
bounding edge, and the first span of the remainder of the visible span structure has no left 
bounding edge. This case is also solved by merging the two spans.

Spans with only the right bounding edge exiting make up the third category. If the right 
bounding edge is a left visible edge, nothing is done. Processing for this edge is left for the 
next span, since the exiting polygon is actually represented by the subsequent span. If the 
right bounding edge is a right edge then this span’s polygon is exiting. First the terminating 
edge is removed. The resulting gap is filled by calling Resolve with a list of the currently 
active polygons, and the edges that were obscured by the exiting span. The new spans are 
inserted by the previously outlined procedure.

The fourth type of exiting span is one in which both bounding edges terminate. This 
case is very similar to the two previous cases. Once again the left bounding edge is 
guaranteed to be a left visible edge. If the right bounding edge is a left visible edge then this 
edge is left for processing with the next span, since it is this span that represents its polygon. 
The left bounding edge is removed, if the right bounding edge is a right visible edge it is also 
removed. Resolve is then called to determine the spans that are visible in the gap that is 
formed by the exiting polygon. These spans are inserted in the visible span structure by the 
previously outlined procedure.
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The final type of exiting span is one in which the polygon represented by the span 
terminates but the two bounding edges do not. The gap left here is once again filled by 
calling Resolve.

The final section of this routine performs the insertion of new spans into any gaps that 
have been formed in the visible span structure. The procedure used to do this has already 
been outlined. There are, however, two special cases. When the first span of the new spans 
becomes the first span of the visible span structure, care must be taken to ensure that the 
pointer to the visible span structure is properly updated. The second of these special cases 
occurs when Resolve returns a null list. Resolve will return a null list when there is nothing 
visible in the region that has analyzed. In this case the spans that are on the left and right 
sides of the gap must be connected. The cases that arise in this situation are similar to those 
that occur when inserting a list of new spans into the visible span structure.

Remove terminates once all of the spans in the visible span structure have been 
checked.
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4. The Slide Sets

A total of nine different sets of 104 slides each were produced. Two copies of each of 
the sets were made. One of these nine sets used a four-block object as the stimulus, this set 
was used primarily for calibration. The other eight sets consisted of four objects, each 
rendered in shaded and outlined (wire-frame) versions. Two of the objects are composed of 
ten blocks, and two are composed of seven blocks. One of these ten-block objects has two 
right angle twists and the other has three right angle twists. There are also two and three 
twist seven-block objects. The right angle twists on each object are strategically located so 
that an object cannot be rotated into congruence with itself. This stipulation is necessary so 
that there is only one axis through which an object can be rotated into congruence with 
similar objects that are in different orientations. For each type of object there are two 
specific objects, which are the enantiomorphic versions of that object. Enantiomorphic 
objects are isomers that differ only in handedness. Therefore, they are related to each other 
as a object is related to its mirror image object. Slides 4 to 12 show the nine objects that 
were used for the experiment. On each of these slides the lefthand figure depicts a standard 
object, the righthand figure depicts a mirror object.

Each of these objects was rotated about the x-axis to produce a set of unique 
orientations. The set of orientations used for this experiment corresponded to the 24 
increments of 15° that lie between 0° and 360°. These orientations were used to construct 
pairs of objects that differed in angular displacement by each of the thirteen unique 15° 
increments between 0° and 180°. Each slide set contains eight pairs that differ by each of 
these 15° increments. Four of these slides depict same objects. Two of these examples 
depict two similar standard objects, and the other two examples depict two similar mirror 
objects. The other four pairs depict differing objects. Two of these different pairs have the 
standard object on the right and the other two pairs have the standard object on the left. 
Table 9 gives the specific orientations that were used to create each pairing. This tabic can 
be divided in half, with each half consisting of 26 pairs. Pairs in the left half were used to 
create slides that had two standard objects. These pairings were than re-used with a mirror 
object on the left and a standard object on the right. These two groups total 52 slides. The 
pairs in the right half of the table were used to create slides with two mirror image objects, 
and then re-used to create slides with a standard object on the left and a mirror object on the 
right. These two groups also total 52 slides, and together with the previous two groups make 
up the overall total of 104 slides.

The standard orientation for an unrotated object is +22.5° in each of the three primary 
axes. The angular displacement of a given orientation from the standard orientation can be 
calculated as follows, (orientation number — 1) x 15°.
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Table 9 - Pairs of Orientations

Displacement left right left right left right left right

0° 4 4 22 22 7 7 12 12

15° 9 10 15 16 5 6 1 2

30° 11 13 18 20 1 3 19 21

45° 5 8 11 14 19 22 23 2

60° 3 7 8 12 13 17 20 24

oIT) 1 6 13 18 21 2 23 4

90° 3 9 17 23 10 16 18 24

105° 10 17 22 5 8 15 14 21

120° 1 9 4 12 11 19 16 24

135° 4 13 17 2 14 23 6 15

150° 5 15 8 18 10 20 21 7

165° 3 14 9 20 11 22 16 2

180° 1 13 7 19 18 6 24 12

In addition to the rotation about the x-axis, each pair of objects may also have been 
rotated about the z-axis. This rotation is used to adjust the orientations of the two objects so 
that the results of the experiment would not be affected by poor views. Any adjustment in 
the z-axis was applied equally to each object so that the angular displacement between the 
two objects remained the same.

The purpose of introducing this second rotation is to eliminate three artifacts that might 
cause ambiguous pictures. The first of these artifacts is the total occlusion of more distant 
parts of an object by nearer parts of the objects. This occurrence can give the impression
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that a particular object is composed of fewer blocks than it actually is. The second problem 
with some of the orientations was that one or both of the objects appeared two-dimensional. 
Objects tended to appear two-dimensional when one of the principle axes of the objects was 
in a line with the sight vector. It is desirable to have all of the views easily identifiable as 
three-dimensional objects for two reasons. First, the sudden appearance of an object that is 
visibly different from the majority of objects tends to confuse subjects, and thus affect their 
reaction time. Second, the rate at which human beings can rotate two-dimensional objects 
seems to be significantly higher than the rate at which they can rotate three-dimensional 
objects. It was not known what affect the two-dimensional appearance of these objects might 
have on the rotation rate so these views were eliminated. The final criterion used in the 
adjustment process was only used for the shaded objects. It was found that the presence of 
two adjacent surfaces that were very similarly shaded made the object much harder to 
discern. As two surfaces become more closely shaded the internal edge that separates them 
becomes fainter, and thus it becomes harder to determine where one surface ends and the 
other begins.

Each of these artifacts can be eliminated by rotation in one of the other principle axes. 
In the case of occlusion, the hidden part of the object can be rotated back into view. In the 
case of a two-dimensional appearing object, it can be rotated out of alignment with the sight 
vector. Finally, in the case of poor shading, the object can be rotated so that different 
lighting is cast on the two similarly shaded surfaces.

Only the shaded slides were previewed. The reason for this was that the line drawings 
were rendered in exactly the same orientations as the shaded drawings. Thus, all of the 
occlusions and two-dimensional views had already been eliminated, and shading was no 
longer a criterion. Of the images that were previewed, about half needed some adjustment. 
These adjustments ranged from 5° to 180°. This adjustment process was done using the z- 
buffer device of the GR graphics package. The reason for using the z-buffer for previewing 
was that it took less time to display an image than the method that was used to render the 
production images. Since these images were only being previewed and adjusted, picture 
quality was not important.

The images used in the production of the slides were rendered using the GR graphics 
package and the additional software described in Chapter Three. The test objects were 
specified using the Read_Scene scene description language. Read_Scene reads a file 
describing an instance of a directed acyclic graph (DAG), builds the corresponding DAG, 
and returns a pointer to that structure. A scene file contains a one line description for euch 
node in the DAG. The node description lines are indexed, starting at 1, and incrementing 
with every successive node. Each node is identified by a single character field, an is 
followed by a number of numeric fields that specify parameters. In addition to these fields 
are pointers to siblings and children. These pointers consist of the index of the node that is 
the sibling or the child. The pointers are used to link the individual node descriptions into a
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scene.

The ReadScene language has the following capabilities.

rotation of objects 
translation of objects 
scaling of objects 
text objects 
polygon objects 
colouring of objects 
Bezier curves and surfaces 
B-spline curves and surfaces 
Beta-spline curves and surfaces

There are many shortcomings in the Read Scene language. The worst of these is the 
difficulty in adding or removing nodes from a scene file once it has been created. This 
requires the renumbering of all the node indices. Since the stimuli used in this experiment 
where so simple this did not prove to be a problem. However, if more complex stimuli were 
desired the F6dt scene description language could be used. Ffedt is a hierarchical language 
for describing scenes that was developed by Sylvia Lea, Lea(1983).

A specific stimuli is created by die following method. First a unit cube centered on the 
origin is described. This cube is replicated and translated to form the desired arm-like 
structure. This much will describe the geometry of the object. Addition scaling and x, y, z 
rotation nodes are added so that the object can be scaled to the desired size, and rotated into 
any orientation. Rotation and scaling are accomplished by changing the value specified in 
the scaling or rotation node. This can be done under program control once the structure has 
been created by Read_Scene and passed to the renderer. Each object used in the experiment 
was given an initial rotation of 22.5° in each of the three principle axes, and an initial scaling 
of 0.90. Two scene files are used for each type of object, one describes the standard object 
and the other describes the mirror image object. Read_Scene provides a mirroring facility. 
However, it mirrors an object about the origin, and this application only required mirroring 
about the x-axis. Thus, the need for two scene Hies. The following is an example of a 
Read_Scene file, which describes the Shepard and Metzler seven-block object.



rotation of objects
* points - nodes root

8 0 20 20

* Vertices of a cube
1 -0.5-0.5-0.5 0 0  0
2 - 0.5 -0.5 +0.5 0 0 0
3 - 0.5 +0.5 +0.5 0 0  0
4 +0.5 +0.5 +0.5 0 0 0
5 +0.5-0 .5  +0.5 0 0  0
6 + 0 .5 -0 .5 -0 .5  0 0 0
7 +0.5 + 0 .5-0 .5  0 0  0 
8-0.5 +0.5 -0.5 0 0 0
* Faces of a cube
1 p 00 02 4 2 3 4 5
2 p 00 03 4 6 7 81
3 p 00 04 4 1 8 3 2
4 p 00 05 4 5 4 7 6
5 p 00 06 4 1 2 5 6
6 p 00 00 4 8 7 4 3
* Scale all cubes
7 s 01 00 + 0.90 + 0.90 + 0.90
* Position individual cubes 
8 107 09 1.0 1.0 3.0
9 1 07 10 1.0 2.0 3.0
10 1 07 11 1.0 2.0 2.0 
l i t 07 12 1.0 2.0 1.0
12 1 07 13 2.0 2.0 1.0
13 1 07 14 2.0 3.0 1.0
14 1 07 00 2.0 4.0 1.0
* Orient reference figure
15 1 08 00 -1 .5-2 .5-2 .0
16 2 15 00 +22.5
17 y 16 00 +22.5 
18x17 00 + 22.5
19 1 18 00 +0.0  + 0.0-3.75
* Scale and translate entire picture
* to fit, putting in two copies of the
* object, one rotated, the other not.
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20 s 19 00 + 1 .0 + 1 .0 + 1 .0

A slide rendering program was written to read in scene description files and to perform 
the appropriate rotations in order to display a given pair of objects in the desired 
orientations. Each of these images consisted of two objects, each displayed in its own 
viewport. The use of two viewports means that when two identically oriented objects are 
displayed, identical images will appear in each of the viewports. If there was only one 
viewport, the perspective transformation would m ake the objects appear as if they had been 
slightly rotated with respect to each other. The previous arrangement was chosen, because it 
was thought that this apparent rotation might affect the results of the study.

A  number of experimental parameters were considered in the production of the slides. 
These included projector distance, subject distance, projection width, viewport width, and 
object radius. The projector distance is the distance, measured in inches, from the lens of 
the projector to the viewing screen. The subject distance is the distance, in inches, from the 
subject to the viewing screen. The projection width is the width, in inches, of the image 
displayed on the screen when it is projected from the projection distance. The viewport 
width is the width of each of the viewports measured in virtual coordinates. The object 
radius is the radius of the largest test object measured in block widths. All of these 
parameters, except for the object radius, are used to ensure that the displayed objects appear 
to be the proper size for the viewing distance. The object radius is used to make sure that 
clipping of the test stimuli does not occur, regardless of the rotations employed. The values 
these parameters had for this experiment are given in Table 10.

Table 10 — Rendering Parameters

Parameter Value

Projection distance 114.0 inches

Projection width 25.5 inches

Subject distance 90.0 inches

Viewport width 13720 virtual units

Object radius 3.75 block units
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It is important to know the relationship between the block size and the screen width. 
Using this information the displayed objects can be appropriately scaled so that each of the 
test objects will fit within the viewport. The blocks used in creating the experimental objects 
were scaled so that the screen width is 17.2 when measured in block widths. This ratio 
means that each of the viewports is 7.6 block units wide. Therefore, any object with a 
radius of less than 3.8 block units can be displayed without dipping. This block size along 
with the object radius guarantees that the two objects depicted on each slide will be separated 
by at least 2.1 block units.

The final consideration in the creation of die stimuli was the inter-block spacing. A 
unit block is deemed to have 100% spacing. A block that has 80% spacing is one that is 
composed of edges that are 80% of the linear of size of a unit block. Thus 100% sparing 
would correspond to no inter-block spacing. As the volume of each block decreases the 
inter-block sparing increases. For the slides, 90% sparing was chosen.

Each slide has an identification code plotted in the lower right hand corner. This code 
is used to tell which orientations are represented on a given slide. The identification code 
consists of two groups of alphanumeric characters. The first group of characters is used to 
designate the set that a given slide belongs to. The second group consists of a three digit 
number in the range 001-104, which indicates the particular orientations that are depicted on 
the slide. An adhesive label with this identification number is also produced. This label is 
attached to the slide frame to make identification easier.

When a slide is produced, its identification number and descriptive information are 
automatically written to a file. This descriptive information uniquely identifies each slide. 
These files are used to create reference sheets for each slide set. A reference entry for a 
particular slide contains the following information.

slide identification code 
class of the object depicted 
orientation of die left object 
type of the left object 
orientation of the right object 
type of the right object 
y-rotadon 
z-rotation

As mentioned before the slide identification code is the series of alpha-numeric 
characters that appears in the lower right hand comer of each slide, and on the adhesive label 
for that slide. The class of the object tells which object is being displayed. For example, 
7(3) refers to the object composed of seven blocks, which has three right angle twists. The 
type of the object tells whether the depicted object is a standard or mirror image. The 
orientation is a number from 1-24  that gives the angular displacement of the object as
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described in Table 9. The y-rotation gives the amount of the corrective rotation, in degrees, 
about the y-axis. The z-rotation gives the amount of corrective rotation about the z-axis. In 
each case the amount of corrective rotation about the y-axis is zero, since it was found that 
rotation about the z-axis was sufficient to eliminate all anomalies.

The production of all of the slide sets was done in the following manner. Images were 
first rendered on an Adage/Dconas RDS-3000 framebuffer. These images were then 
photographed using a Dunn 631 color film recorder. Kodak 64 ASA bulk loaded film was 
used for all of the slides.
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At this time the experiment using the preliminary slide set (the four-block object) has 
been completed and analyzed. The experiment using the set of seven-block objects with 
three twists has also been conducted, but data analysis is not yet complete.

5.1. Results

The following is a brief summary of the results obtained from this preliminary 
experiment. Subjects* responses were sorted primarily according to the angular displacement 
between the two depicted objects. Secondary sorting was done according to same/different 
pairs, and correct/incorrect answers. Only correct responses were analyzed. Accuracy was 
found to be quite high, about 90%. This compares favorably with Shepard’s study where 
accuracy was approximately 96%.

The response times for same pairs ranged from about one second for identical objects to 
between four and rive seconds for same pairs that differed by 180°. The response times for 
isomorphic pairs were found to be uniformly fast, falling in the four to rive second range. 
The rate of mental rotation measured in these initial tests is very similar to the figure 
measured by Shepard in his original study.

When the response times for each subject for the same objects were plotted it was found 
that the slopes were primarily linear. For nine of the twelve subjects used in the experiment 
the slopes were exclusively linear. The other three subjects displayed some quadratic 
behavior. At approximately 120° the response times leveled off, and in some cases 
decreased slightly.

The results from the four-block experiment tend to confirm the results of Shepard’s 
original study. There were, however, some differences. The largest discrepancy between 
the current results and the original results occurs in the time required to recognize that two 
images do not depict the same object. In Shepard’s study it was found that the time needed 
to recognize that two pairs were different was about a second longer than the time required 
to recognize the cooresponding same pair. Initial results from the current study indicate that 
subjects take a uniform amount of time to recognize isomorphic objects, and that this time is 
about the same as the time required to recognize two orientations that differ by 180°.

Bryden has conjectured that this result might be due to the fact that a subject tries to do 
more to prove that two objects are the same, Bryden(1985). For example, if two identically 
oriented same objects are displayed, it is clearly evident that they are the same. However, if 
two identically oriented different objects are displayed it is not readily apparent that they are 
not the same. Thus the subject will mentally rotate the object until they have aligned some 
corresponding part of both objects. At this point it will become apparent that the remainder 
of the object does not match, therefore the objects must be different.

5. Conclusion
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The other difference between Shepard’s results and the current results was the presence 
of a quadratic component in some of the subjects’ responses. As mentioned earlier these 
results were obtained using a four-block object as the stimuli. This object was not 
asymmetric, so there existed two possible rotations that would bring one orientation into 
congruence with another orientation. This led Bryden to speculate that some of the subjects 
were using the second rotation when the angular displacement of the first rotation became 
large. If subjects were actually using this second rotation it may account for the quadratic 
component present in their behavior.

Although analysis of the data from the first of the seven-block objects is not yet 
complete, some preliminary results have been obtained. Before the experiment was 
conducted it was speculated that larger objects would take longer to mentally rotate. This 
hypothesis was based on the belief that the larger objects would require the encoding and 
processing of more information. However, the results showed that the response times for 
the seven-block object were faster than the response times for the four-block object. This 
result, at first, seems counterintuitive. It now seems that the additional information 
provided by a larger object makes the mental rotation process easier.

Despite the differences mentioned above, the majority of the results support Shepard’s 
original conjectures about the nature of mental rotation.

5 . 2 . Farther Work

The results of Shepard’s original mental rotation experiment were first published in 
1971. In the time since then this experiment has been performed using a variety of media. 
The original study was done using cards. The stimuli for this study were generated by A. 
M. Noll using a Stromberg-Carlson 4020 microfilm recorder. Bryden’s 1977 study was done 
using wooden blocks. The current study is being done using photographic slides. A natural 
progression in this work would be to perform the experiment on line using interactive 
computer graphics displays.

Using the equipment and software presently available in the Computer Graphics 
Laboratory this new experiment could be readily performed. The main concern would be the 
time required to display the stimuli. The least amount of time between the presentation of 
two stimuli is one second. This will occur when two identical objects are displayed. This is 
not enough time for the images to be computed while the subject’s decision is being made, 
since the average time needed to render a pair of these objects is about 30 seconds. 
However, if the objects are precomputed and run-length encoded, there is enough time to 
display them.

The Adage/Ikonas RDS-3000 has 32 bits of colour information, and a crossbar switch 
which enables one to select specific bit planes or groups of bit planes for display. Using this 
capability it is possible to display one image while another is being read in. Once the subject
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has responded, the image that has just been read in can be flashed onto the monitor by 
changing the crossbar setting to display the bit planes that hold this new image. The process 
then repeats itself, as another image is read into another set of bit planes while the subject is 
responding to the stimulus that is currently being displayed.

This experiment would require the development of real-time data acquisition software, 
to measure and record the subject’s replies. This software would relieve the experimenter of 
this duty, and would thus be more reliable. The final component of this experiment would 
be a user interface. This software allows the subject to respond to or interact with the 
stimulus. User interfaces are an area of active research within the Computer Graphics 
Laboratory. An experiment in human colour perception has already been performed by a 
member of the laboratory, Schwarz (1985), and as a result much of the data acquisition and 
interaction software is already available.

By moving to interactive computer graphics equipment a number of improvements can 
be made to the experiment. The study performed by die Psychology department used only 
right handed subjects. This constraint was necessary because of limitations in the data 
acquisition equipment. The subject uses the second and third fingers of their right hand to 
respond to the stimuli. Left handed subjects could be tested if the meaning of these buttons 
could be reversed. The use of interactive computer graphics equipment would allow the 
meaning of responses to be altered depending on the individual subject’s characteristics. The 
meaning of a particular response can easily be changed under software control by specifying 
subject traits before the experiment. These traits can then be examined by the data 
acquisition software to determine what the meaning of particular responses should be. By 
doing this any right handed or left handed biases can be eliminated. By using graphics 
equipment a greater variety of stimuli can be used, for example, in the probe 
expected/unexpected trials a greater number of angles could be tested (rather than only 
multiples of 30°). Another advantage provided by the flexibility of this equipment is the 
ability to dynamically order the stimuli. In the probe expected/unexpected trials this would 
allow the investigator to vary the the times around the subject’s expected time.

A long range goal of the Computer Graphics Laboratory is to create a number of tools 
that will allow experimenters to describe and run their own experiments. Such tools would 
include the ability to describe suitable user interfaces, the type of data to be recorded, and 
the type of stimuli to be used. By performing Shepard’s mental rotation experiment on 
computer graphics equipment a number of lessons may be learned that will help to guide the 
development of these longer-term projects. Of more immediate significance would be 
information indicating how well graphics equipment compares with the other media used for 
this experiment. The first step in this direction is to reliably duplicate earlier results.
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The main purpose of this project was to try to find novel applications for computer 
graphics. Towards this end a large set of stimuli was provided for one set of experiments. 
The success of this endevour has already spawned further interest in the use of computer 
graphics for psychology experiments. Current work is being done to create stimuli which 
will be used to test the fidelity with which features of a physical stimulus are retained when 
mentally rotated. Further work may be done on a variation of the single-stimulus 
experiment described in Chapter Two. Hopefully, the cumulative result of these 
collaborative efforts with the Psychology Department will be a complete experiment 
specification system that runs entirely on interactive computer graphics equipment.
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7. Appendix 1

Slide 1
1 -  (shaded) reg 10(3) 
r — (shaded) reg 10(3)

Slide 2
1 -  (shaded) reg 10(3) 
r -  (shaded) mir 10(3)

Slide 3
1 -  (z-buffer) reg 10(3) 
r — (z-buffer) reg 10(3)

Slide 4
1 -  (shaded) reg 4(2) 
r -  (shaded) mir 4(2)

Slide 5
1 -  (shaded) reg 7(2) 
r -  (shaded) mir 7(2)

Slide 6
1 -  (outline) reg 7(2) 
r — (outline) mir 7(2)

Slide 7
1 -  (shaded) reg 7(3) 
r — (shaded) mir 7(3)

Slide 8
1 -  (outlined) reg 7(3) 
r -  (outlined) mir 7(3)

Slide 9
1 -  (shaded) reg 10(2) 
r -  (shaded) mir 10(2)

Slide 10
1 — (outlined) reg 10(2) 
r — (outlined) mir 10(2)

Slide 11
1 -  (shaded) reg 10(3) 
r -  (shaded) mir 10(3)

Slide 12
1 — (outlined) reg 10(3) 
r -  (outlined) mir 10(3)


