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Abstract

Recently, a number of computer-aided paint systems have been developed to 
improve the colour painting process, traditionally one of the most time-consuming 
steps in two-dimensional cel animation production. However, much improvement 
remains to be made in the design of these new systems.

In this thesis, we describe a region-based cel painting design which uses the 
"paint-by-number" method and is based on a virtual frame buffer model. In this 
region-based design, the regions are recognizable, defined entities. This allows us to 
define functions for conceptually-based, interactive painting techniques, which can be 
easily implemented. Furtheimore, the availability of this additional region 
information introduces the possibility of automatic multi-frame colour tracking, which 
can be implemented by transforming this problem into the well-known maximum 
matching problem in graph theory. Thus, this new region-based design builds upon 
techniques used in earlier systems and paves the way for future improvements.
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1. Introduction

In recent years, with the introduction of digital colour image display hardware, 
researchers have made much progress in using computers to assist the production of 
cel * animation. Cel animation consists of producing sequences of cels that are 
painted so that when viewed in sequence an animated picture is seen. However, there 
are still areas in which improvements need to be made. One of these areas is the 
process of cel painting.

There are many digital paint systems that can be used to paint the cel, but these 
systems are still too limited to allow efficient interactive techniques for painting. To 
build a user interface, that is conceptually easy to use, demands a thorough 
understanding of the nature of the interface application. In this thesis, we discuss the 
problem of cel painting. Based on a new conceptual approach and a new painting 
system, a region-based virtual frame buffer model will be described. With this model, 
efficient techniques for cel painting can be implemented easily.

In the following sections, we briefly review the process of traditional cel 
animation and provide a survey of existing digital cel painting systems. These 
materials serve as a reference so that the problem of cel painting, addressed in the 
thesis, can be better understood.

1 The wont cel comes from celluloid, from which early plastic sheets were made. Nowa­
days, any transparent plastic sheet is called a cel regardless of its material.

1
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1.1. Traditional Cel Animation

Cel animation is a form of two-dimensional character animation that was 
invented to avoid redundant drawing. Often, the motion of a character in an animation 
sequence involves only parts of the character's body. By separating the moving parts 
and the static parts of the character and by drawing them on different cels, the 
animator need not redraw the static part of each frame. During the filming process, the 
relevant cels are composed to create the final image. By combining different moving 
parts with the same static part, an animation sequence can be produced.

Figure 1.1. — Traditional cel animation production
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Creating a cel animation film usually involves five major processes (Figure 1.1). 
Common to all motion picture production, the planning of script, characters, music, 
sound-track, scene, colour, etc. is carried out first. This results in the production of the 
storyboard. Secondly, animators draw rough paper sketches of the characters in 
pencil in order to preview the movements of the characters. Usually, a senior 
animator draws these key frames and the junior animators draw the frames in-between 
the key frames. This part of the process is known as in-betweening. Thirdly, the 
pencil drawings are copied onto a sheet of clear acetate by tracing the outline of the 
drawing using solid paint (usually black). This process is referred to as inking. 
Currendy, most production houses use photocopiers to copy line drawings onto the 
cels. Fourthly, colours are applied to the reverse side of the cel (Figure 1.2). This is 
the opaquing or painting process. Note that painting on the reverse side of the cel is 
more efficient than painting directly on the top of the cel, because the painter can 
ignore die interior lines of the objects (e.g. the horizontal line segments of the tree 
trunks in Figure 1.2) while paints are being applied. Finally, filming takes place by 
overlaying the background and opaqued cels together to make up the final image in a 
process known as compositing.

The aspect of cel animation that is the most tedious, takes the most time, and is 
the most expensive is the process of opaquing ([LAYB79] pp.142). Therefore 
speeding up this process is very desirable.

1.2. Digital Cel Painting Systems

In recent years, in order to speed up the opaquing process, researchers have 
replaced the traditional cel painting process with digital painting systems and have 
introduced many different painting system designs. Although each new design is 
meant to overcome the shortcomings of the previous designs, often useful 
characteristics of the former systems cannot be retained and a tradeoff is necessary. In 
the following section, two existing painting systems are described to demonstrate the 
evolution in digital cel painting technologies. The tradeoffs between the two systems 
are then discussed.
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Figure 1.2. — An opaqued cel

1.2.1. SoftCel — A Scan & Paint System

By 1978, a group of researchers at The New York Institute of Technology had 
laid a basis for simulating the traditional inking and opaquing process by using a 
computer painting system that had a raster scan graphics device with a frame buffer. 
The system is named SoftCel [STER79] because it replaced the traditional cel by a 
digital raster image referred to as a digital cel and substituted computer software for 
the operations performed by the human animator. The computer-simulated inking and 
opaquing process is commonly referred to as a scan and paint system because of the 
nature of this process.

SoftCel is one of the earliest scan & paint systems. It replaced the traditional 
inking and opaquing by scanning pencil drawings with a video camera, digitizing the 
video signal into a raster image, and painting it with video colour components. The 
system uses an 8-bit frame buffer for both temporary storage and the viewing of the
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image. The values of the three colour components (red, green, and blue) are 
determined from the 8-bit pixel values by looking up three 256-element tables, known 
collectively as the colour lookup tables (CLUT). Since the representation of the cel 
image does not include the visual colour components but an index to the CLUT 
instead, we refer to this type of painting system design as paint-by-number.

Initially, when a line drawing is digitized in the frame buffer, it may contain the 
full range of pixel values that represent 256 grey levels. As a result, all entries of the 
CLUT are required to represent the different levels of grey shades. In order to provide 
interactive painting of a drawing, it is necessary to reduce the number of pixel values 
used for the representation of lines so that some entries of the CLUT can be freed to 
represent colours. However, one cannot use too few pixel values to represent the lines 
because it may create visual aliasing2 artifacts. So there is a tradeoff between the 
quality of the lines and the availability of colours.

In the SoftCel system, the 8 bit-planes are divided into two halves to represent 
the lines and colours. The four least significant bits are used to represent the line 
drawings, and the four most significant bits are used to represent the 16 colours 
available for painting. The separation of the bit planes into two functional 
representations is particularly interesting. This helps in designing painting tools that 
focus on modifying the colour fields without altering the line representation. The 
techniques tint fill 3 and tint paint4 are used to colour the cel image. Furthermore, 
this design is consistent with the conceptual view of the painting process because the 
painter need only be concerned with the colour to be assigned to a region, and not be 
concerned whether the colour will blend into the boundary lines smoothly. Also, with 
this design, the smooth blending of the colour to the lines is automatically handled by

2 Lines appear to be staircases (not smooth).
3 Tint fill, developed by Smith [SMIT79], is a colour flooding operation that algorithmical­

ly searches all pixels within an area enclosed by a closed line boundary and individually as­
signs the colour to the colour field of each pixel it visits.

4 Tint paint is a brushing technique which alters only the colour field of the pixel it visits.
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a CLUT lookup.

In many cases, the colours chosen for the painting may be unsatisfactory and 
require modification. The paint by number design allows easy modification of the 
colour. Once an area is painted, the colour field of each pixel in the area has the same 
value. Since the actual visual colour of the pixel value is determined by the CLUT, a 
simple change of the corresponding CLUT entries is all that is required to change the 
colour of the area with the same colour values. This change is much faster than 
applying a fill operation once again. On the other hand, as noted in [STER79], the 
SoftCel system has a limited number of colours due to hardware constraints. As there 
are only 16 colours, the animators are forced to put more effort into the planning of 
the earlier drawings to ensure that no more than 16 colours are needed in the same cel.

1.2.2. Palette — A Virtual Frame Buffer System

The digital painting system described so far uses the video frame buffer to serve 
both as the viewing device and the temporary storage of the image. The coupling of 
these two functions in the same frame buffer is unnecessary. In [LEV082] and 
[TANN83], it has been pointed out that having the image information stored in the 
frame buffer slows down the performance of the painting process. The inefficiency is 
due to the slow I/O access and heavy data traffic between the host and the frame 
buffer.

To solve this contention problem, a virtual frame buffer model was introduced by 
Levoy [LEV082]. A virtual frame buffer is a data configuration that contains 
information about an image but resides outside the video frame buffer. Thus, it is an 
attempt to decouple the two functions, the storage and the viewing of an image, from 
the video frame buffer. With the virtual frame buffer, the traffic between the host and 
the video frame buffer is reduced significantly because the system no longer needs to 
read from the video frame buffer.
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Since the virtual frame buffer concept is independent of the video frame buffer, it 
also allows us to design abstract pixel representations which are free from the 
restrictive notion of red, green, and blue. This abstraction subsequently enables us to 
extend functionalities for the painting application. Palette is an example of a paint 
program that demonstrates the functional power of a virtual frame buffer [HIGG86].

The Palette paint system uses a RGBA virtual frame buffer design. The RGB 
fields are the three colour components (red, green, and blue) and the A field (alpha 
channel) provides a measure of colour opacity [PORT84]. The opacity feature allows 
the compositing of cel images because the unpainted portion of a cel can be 
represented by a totally transparent colour which permits any underlying cel images to 
show through. In addition, the specification of partial opacity provides for translucent 
coloured objects, such as fog and clouds, that are not normally found in traditional cel 
animation.

Since Palette is a virtual frame buffer based system, it is independent of the 
hardware specifications of the frame buffer. Therefore, the system can be 
implemented with any video frame buffer as long as it gives a visual feedback image. 
Portability is one of the major advantages of the system. In addition, the number of 
colour is less restricted because it does not depend on the hardware. Conceptually, 
there can be up to 16 million colours available if 8 bits of each RGB channel are used 
to represent a colour. Also, as mentioned above, the model is able to simulate the cel 
compositing process by introducing a measure of colour opacity; this has 
demonstrated the power of functional abstraction in a virtual frame buffer. However, 
this design does not allow the abstraction of the colour attributes from the image as 
the paint-by-number system does. Hence, modifying colours on a cel is not as 
efficient.
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1.3. A Region-Based Approach

Observing the trends in the design of painting systems, we find that there has 
been a departure from the paint-by-number (or paint-by-pseudo-colour) design 
towards the use of direct-colour (e.g. RGB components) in the cel painting process. 
However, when we examine the paint-by-number design closely, we observe that 
some of its characteristics are desirable in interactive cel painting. In particular, 
because of the separation of the colour attributes from the frame buffer representation 
using a colour index, the painter is able to modify the colour of a painted region 
easily. He can do so by changing the colour attributes of the corresponding CLUT 
entries which are associated with the colour index stored in the frame buffer. 
Moreover, by altering the CLUT entries, the corresponding area can be changed to the 
desired new colour in one video retrace cycle.

The ability to update the colour of a region in real-time is a desirable feature, but 
in existing paint-by-number designs, it cannot be applied to painting a region for the 
first time. The reason for this is that the unpainted region has not yet been assigned a 
colour index, which is necessary for real-time colour updating. Instead, the initial 
painting of a region requires a slower colour filling operation to assign a colour index 
to every pixel inside the region. It would be ideal if existing designs could be 
modified so that the initial painting can also be done in real-time. We can achieve this 
if distinct pseudo-colours can be assigned to different regions ahead of time, and this 
can be done algorithmically through the use of a region-labelling process (the details 
are explained in the next chapter). This modified paint-by-number design is referred 
to as a region-based design.

There may be some skepticism about the region-based design because it seems to 
be beneficial for painting interaction only if the specific hardware (i.e. the CLUT 
frame buffer) is available. However, in this thesis, we show that the region-based 
design is a better model for cel painting regardless of the availability of the specific 
hardware. We have done an analysis of the cel painting process and have discovered 
that the region-based design can be derived directly from the results of the analysis.
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Based on this analysis, we have isolated, functionally, the cel painting interaction as a 
region-colour assignment process, simply by constructing a mapping between a set of 
regions on the cel and a set of available colours. This assignment process requires that 
the region of a cel image be a defined entity which is made available to the paint 
system by the region-labelling process.

The additional region-labelling information enables us to define new techniques 
to improve the efficiency of the interaction. For instance, the time spent in waiting for 
the completion of a filling operation is significant; this is because all fillings are 
earned out serially. One possible way of improving filling is to provide parallel 
filling. The reason this method has not been put into practice previously is that two 
filling operations may be working in the same region simultaneously resulting in a 
colour collision. It is impossible to avoid this problem with existing system designs 
because the two operations are unable to determine if they are in the same region. 
However, with the extra region labelling information, the collision problem can be 
avoided by checking whether the region to be filled is being processed by another 
operation.

Because of the advantages mentioned above, the region-based model is 
preferable to other designs for cel painting.

1.4. Overview of the Thesis

In this thesis, we describe a region-based design for achieving efficient cel 
painting. This design is based on a combination of a paint-by-number concept and a 
virtual frame buffer construction.

In Chapter 2, we describe the specifications and the assumptions of a model for 
region-based design. In addition, we show how the proposed design can be derived 
based on the functional descriptions of a conceptual analysis of the cel p a in ting  

process. The region-based design model is a new digital cel animation production 
pipeline depicted in Figure 1.3.
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Figure 1.3. — Proposed digital cel animation production

Because the region-based model is compatible with the conceptual model for cel 
painting, useful conceptual painting techniques can be developed with the region­
labelling information. In Chapter 3, we describe a new set of painting techniques that 
can be defined with the region-based model. Some issues that are encountered in the 
development of such tools are discussed. The model assumes that all distinct regions 
are bounded by closed line boundaries. For, if this does not hold, the region labelling 
process is not able to identify the region correctly. However, in reality, an image may 
contain broken boundaries. There are at least two reasons for broken boundaries to
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occur. First, in the original drawing, a line may be so thin that when the cel is 
digitized the line disappears. Second, a perceived region may not have an explicit 
closed boundary; for example, the grass shown in Figure 1.4. In Chapter 4, we 
describe methods used to complete the missing boundaries, a process known as 
tracing, so that the region labelling information can be corrected.

Figure 1.4. — A cel from the film AMUSE-GUELULE [NFB87]

It has been noted that the positions of an animated object in a short animated 
sequence differ by only a little. It is desirable to take advantage of this frame 
coherence by automatically tracking the regions from one frame to another so that the 
corresponding colours can be copied correctly. With the region labelling information, 
the formulation of a region tracking problem becomes possible. In Chapter 5, we 
discuss issues encountered in tracking and introduce some ideas that may provide a 
source of future research directions.

y



2. A Region-Based Virtual Frame Buffer

The region-based design (a modified paint-by-number model) can be derived 
directly from the analysis of the cel painting process. In this chapter, we follow the 
conceptual approach to obtain a description of the region-based model. Furthermore, 
the construction of a region-based virtual frame buffer, which is an implementation of 
the region-based design, is described.

2.1. Conceptual Analysis

The traditional cel painting process can be divided into the following three 
procedures.

A. Colour Mixing — The painter prepares the paints required for a sequence of
cels according to the specifications given in the storyboard. These paints are 
usually arranged in a palette.

B. Region-Colour Assignment — The painter identifies a region on the cel. Then,
based on the colour specification, an appropriate colour is chosen from the 
palette and applied to the region.

C. Colour Filling — The painter continues to work on a single region until the
whole area is opaqued.

Functionally, Colour Mixing is a procedure for finding a mapping from the 
palette set, P, to the set of available colours, C. Similarly, the Region-Colour 
Assignment is the task of defining a functional mapping from the set, R , of cel regions 
to the palette set, P. In the Colour Filling process, we opaque a region with the paint

12
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with which it is indirectly associated through these two sets of mappings.

Some may think that the separation of procedures B and C is unusual because the 
traditional painter may not perceive them in such a disjoint way. However, in the 
context of digital cel painting, the introduction of the filling algorithm changes the 
painting interaction. Procedure C, colour filling, is exactly what a filling algorithm 
can do. Hence, painting a cel has been reduced to a simple region-colour assignment 
as described in procedure B.

Some may also argue that the set P , which serves to separate procedures A and B, 
is redundant because eventually we are only concerned with the mapping from the set 
R of regions to the set C of paints. This would be a valid argument if we were dealing 
with the traditional cel painting process. However, in digital cel painting, since it is 
possible to modify the colour of a painted region, we may also want to design the 
system in such a way that colour modification is simple. The introduction of the 
additional set P can be used to achieve this.

object 2 <«

object 1

red

Set R

Figure 2.1. — Direct mapping between regions and colours
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Consider the example depicted in Figure 2.1. Assume that there are some regions 
in the scene that belong to two separate objects which are all painted with the same 
colour (red, say). If we decide to change the colour of one object, the colour of all 
regions in that object must be modified. With the design shown in Figure 2.1, the 
only option is to re-assign the colour indices of all regions in that object. Although it 
is possible to modify the colour of all regions in the same object by simply changing 
the colour attributes to which these regions are mapped, this forces the colour of 
another object to change as well. However, with the use of the additional set P as an 
indirect5 colour reference, the region-colour assignment can be carefully planned so 
that these two regions map to two different colour indices, and the scenario in Figure 
2.1 can instead be represented by Figure 2.2. In such a way, changing the colour of an 
object can be achieved easily by re-assigning the corresponding colour index in P 
with a new colour in C.

Figure 2.2. — Mapping with the additional colour reference mediator

3 "All problems in computer science can be solved by one more level of indirection." — 
Roger Needham
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Since colour filling is a non-interactive procedure, and colour mixing is an 
interactive process that is performed prior to cel painting, we can regard cel painting 
as equivalent to the region-colour assignment task and focus on improving this 
procedure.

2.2. Specification of the Region-Based Model

In this section, we describe the data structure that is required to represent the 
region-based model. The model consists of four sets of data representations, which 
are derived from the conceptual analysis. They are the region-based image 
representation, the region labelling infoimation, the palette, and the colour attributes.

2.2.1. Region-Based Image Representation

In the region-colour assignment procedure, each colour assignment requires a 
colour selection from the palette and a region selection from the canvas. In digital cel 
painting, region selection is not possible without defining the set of regions. We need 
to preprocess the cel image, to determine how many regions there are and give each of 
them a distinct label. Furthermore, each pixel of the image buffer should indicate to 
which region it belongs so that region selection can be done easily. It is necessary to 
have the region labelling information available in the cel image in order to allow the 
region-colour assignment to proceed.

In addition to the labelling information, the image buffer should contain the 
grey-level representation of the digitized line drawings. The grey-level is important in 
the region labelling process because it is used to delimit regions. Also, similar to the 
SofrCel system described in the previous chapter, the grey levels are used to obtain 
smooth colour blending at the boundaries.

An optional field for recording the colour of a line may also be useful. Normally, 
black paint is used to draw the boundaries, occasionally, however, artists like to use 
other colours. To allow this, we need an additional field in the frame buffer to 
distinguish the line colour. In our model, we do not store the colour attributes for a
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line in the frame buffer because we have a separate data set for the colour attributes 
which is described later. Therefore, a pointer to an appropriate entry in the colour set 
is adequate to represent the line colour.

In order to avoid the memory constraint imposed by the video frame buffer, we 
will adapt the virtual frame buffer method to incorporate these three types of image 
infoimation: see Figure 2.3.

Figure 2.3. — General configuration o f a virtual frame buffer
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2.2.2. Region Labelling Information

For each label found in the image canvas, there should be a corresponding record 
which contains all information about that region. Each record should contain at least 
one pointer to an entry in the palette so that the mapping for the region-colour 
assignment can be obtained. Moreover, we add extra information to the region 
labelling data records. They are the area (number of pixels) and a seed point 
(positional information) of the region (Figure 2.3), which can be obtained, with little 
computing overhead, during the region labelling process. Although we may not need 
this additional information in the cel painting interaction, it is useful in the tracking 
process described in Chapter 5.

2.2.3. Palette

The palette is a set of colour references which serves as an indirect mapping from 
a region label to the corresponding colour attributes. The reason for this additional 
mediator between the region labelling set and the colour set was discussed earlier. 
The data structure for the palette is simply an array of colour indices.

2.2.4. Colours

To represent a solid colour, at least three components are required. There are 
many methods that can be used to describe a colour, among them, the RGB 
representation is currently the most popular in computer graphics. The alpha channel, 
which designates the colour opacity in the Palette cel painting system [HIGG86] has 
proved to be useful in the digital cel compositing process. Therefore, it is appropriate 
to incorporate opacity as an attribute of the colour.

Recently, Neely [NEEL88] has developed a filling interpreter that allows the user 
to define functionally how to colour an area of the frame buffer. This implies that the 
colour filling is restricted neither to solid colouring nor to specialised hardware 
configurations as in the case of tint filling. The colour used to paint a region can be 
considered in terms of a colour function instead of just colour attributes.
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For example, if we paint a region using the following colour function: 
if ( x+y is even)

colour at pixel (x,y) <— red 
else

colour at pixel (x,y) black,

the painted region will have a red-black checkerboard colour pattern. Therefore, by 
defining colour functionally, a wider range of colouring effects is possible in this 
model.

2.3. The Model's Assumptions

In the region-based virtual frame buffer just described, two assumptions must be 
satisfied at all times for the model to function correctly. Firstly, no two distinct 
regions in the image can share the same label. This is to ensure that there will be no 
confusion when assigning a colour to a particular region. Secondly, each pixel within 
the canvas must belong to a labelled region so that the whole canvas can be 
completely segmented into regions.

2.4. Region Segmentation

Until now, we have been assuming that the region labels are constructed 
magically from a black box called region labelling. In this section, we will briefly 
describe the procedure involved in the region labelling process.

The labelling algorithm is used to segment an image canvas into regions with 
distinct labels. Since the algorithm is entirely independent from any interaction, it can 
be applied in a batch mode prior to the interactive painting process. In fact, while a 
digital cel is undergoing the interactive painting process, the labelling process for the 
next frame can be initiated and will finish before the current image is painted. Hence, 
there is no penalty in the real-time performance of the painting process when 
generating this additional information.
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The algorithm is briefly described as follows.

/* Terminology */
NewJLabel = Currently used numeric label 
L(x,y) = the region label at pixel (x,y)
C = the set of all pixels in the canvas
F(x,y) = the set of pixels visited by the region fill operation initiated at pixel (x,y)

/* Algorithm */
NewLabel <—NIL 
V(x,y)eC,  do L(x,y)*-NIL 
VQc ,y)eC do 

ifL(x,y)=NIL

New_Label«— new region record pointer 
V (a ,b )e F(x ,y ),L (a ,b )<—New_Label 
)

As mentioned, the objective of the labelling process is to assign a region label to 
each pixel in the image frame. However, in order to allow the algorithm to segment 
the image into regions, it needs to know the region delimiter. Prior to the labelling 
process, the only information available is the grey-scale digitized line image. 
However, this information does not give a clear representation of the region delimiters 
required in the region labelling process because of the various line widths in the 
image. Therefore, we need a more uniform line representation for the region 
boundary. A solution is to use a line thinning algorithm to locate the skeleton of the 
boundaries in the image. A thinning algorithm by Zhang and Suen [ZHAN84] can be 
found in Appendix A. Some newer thinning algorithms can be found in [HALL89] 
and [GU089].
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■e---- grid

-----  pixel

Figure 2.4. — Grid lines

Although the thinned line gives a clear separation between regions, it is still 
unclear as to how to label the pixels that are lying along the thinned line. In order to 
satisfy the constraint imposed by the design, that is each pixel of the canvas must have 
a label, we need to further classify the line pixels into some existing region labels. 
Rather than using the thinned line boundary representation, we use the grid lines that 
lie between pixels (see Figure 2.4) to represent the region delimiters. With the grid 
lines as region boundaries, the classification problem is then solved because these grid 
lines do not occupy any pixels. In Appendix B, an algorithm is given for obtaining the 
grid line boundaries from a given thinned line boundary representation. Figure 2.5 
illustrates the grid boundaries found by the algorithm for the given thinned line image. 
The thinned lines are presented by the shaded boxes in Figure 2.5 (a).
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Figure 2.5. — Formation of grid boundary

The first step of the grid line algorithm is to set all the surrounding grid lines of 
each pixel representing the thinned lines as illustrated in Figure 2.5 (b). Note that the 
outermost grid of the image frame must always be set in order to define the image 
frame. Then we open up some grid lines so that the labelling algorithm can later fill in 
the thinned line pixels (see Figure 2.5 (c)). Using the grid line boundary, all pixels in 
the image can be segmented completely into distinct regions.



3. Region-Based Painting Techniques

In the previous chapter, we have shown that the cel painting process can be 
defined conceptually as a region-colour assignment procedure. In this procedure, two 
selection interactions are involved: a colour is selected from the palette and is 
assigned to some selected regions. Since the interaction for selecting an entry from 
the palette is trivial, we focus on techniques for region selection. In this chapter, we 
investigate some conceptual techniques that help to make region selection much 
easier. These techniques are developed functionally under the region-based virtual 
frame buffer model described in the previous chapter.

3.1. Region-Pointing Technique

Region-pointing is a single region selection technique achieved by positioning 
the on-screen graphics cursor to any point inside the chosen region of the image. The 
region label can be extracted from the virtual frame buffer at the cursor position. 
Then, a link is made between the corresponding labelling record and a selected 
colour.6

Functionally, we can define the region-pointing operation as

6 In this chapter, colour means a colour index stored in the palette defined in the previous 
chapter, unless otherwise specified.

21
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Map (colour, Region {cursor_x,cursor_y)),

where Region returns the labelling information for a specific pixel location and Map 
associates the region with a colour. A detailed discussion of the implementation of 
these functions is found in a later section.

3.2. Stroking Technique

The region-pointing technique has limited use. For example, in Figure 3.1, to 
paint the trunk of the tree, we need to apply laboriously one region-pointing 
interaction for each sub-region made by the trunk’s pattern lines. Ideally, all regions 
of the trunk should be selected in a single interaction. Observe that these sub-regions 
have a strong alignment, which implies that there is a connected path through the 
regions. Hence, a tool that allows the user to go through these regions, neglecting the 
inter-region boundaries (pattern lines), is desirable. For the palm tree of the example, 
a painting technique should allow us to go down the trunk by the means of a 
continuous stroke that travels through all the sub-regions. This interaction is called 
stroking and is good for painting a group of regions that are tightly connected, 
forming a continuous perceptual path.
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The functional description of stroking is

V(x,y)eS, Map(colour, Region(x,y))f

where S  is the set of pixels that are stroked.

3.3. Fencing Technique

We all know how hard it is to push a thread through the eye of a needle. This 
indicates that many people are not manually dextrous. Such a person may be unable to 
select a small region precisely by the region-pointing technique; they may miss some 
of the desired regions but include some undesirable ones while using the stroking 
technique. As a result, some regions may be selected mistakenly for painting; hence, 
a technique is required to prevent this.

Region selected 
for painting

Figure 3.2. — Demonstrating the stroking technique with a fence
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Note that the undesirable regions are usually some neighbouring regions of the 
painted regions. So, we introduce the concept of a fence to protect the neighbouring 
regions from being mistakenly selected for painting. A fence is a closed path defined 
interactively by the user. Unlike the stroking technique, none of the regions that are 
cut by the fence line are painted while either the region-pointing or the stroking 
technique is being applied (see Figure 3.2). With the addition of a fence, the 
functional descriptions of the two region selection techniques, the region-pointing 
technique and the stroking technique, are redefined. The region-pointing function is 
now defined as

Map (colour Region (cursor_x,cursor_y)), if Region (cursor_x,cursor_y)« F 

and the stroking function as

V(x,y)eS, Map (colour Region (x ,y)), if Region(x,y)iF,

where F  is the set of regions that are cut by the fence line.

This concept of masking out regions from image modification is similar to 
Higgins’ masking operation in his paint program, Palette [HIGG86]. The difference 
between the two techniques is that masking requires the user to define the masked 
region by hand, but the fencing technique does not. In the cel painting application, the 
fencing technique is better because of its simpler interaction. Because fencing is 
region-based rather than pixel-based, the frame buffer needs only the region label to 
know which pixels are to be masked out.

3.4. Radiating Technique

Although the fencing technique can prevent unwanted regions from being 
painted, it still does not help the user to select small regions easily. To select a small 
region for painting, the best the user can do is trial and error until the cursor falls 
directly within the region. Though the user does not have to suffer the penalty of 
miscolouring the regions, he must still put in time and effort to paint them. This
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shortcoming of the region-pointing technique usually causes user frustration. This 
problem occurs because the cursor is bound to exactly one pixel, making it harder to 
hit the target region. The analogy is similar to shooting a bullet into a small bull’s 
eye. If we use a short gun that can scatter many bullets, the chance of hitting the 
bull’s eye is much higher than when using a single ordinary bullet. Similarly, if we 
expand the area of influence of the cursor, it is easier to locate the desired region, thus 
reducing the precision required of the user. This technique of increasing the number 
of examined pixels for region painting is called radiating.

(a)

radiating
stroke

target
regions

Figure 3.3. — Examples o f applying the radiating technique

The problem of the radiating technique is that some unwanted neighbouring 
regions may become candidates for painting. However, if we apply the fencing 
technique again, the unwanted regions are not selected. Hence, radiating works best 
with the assistance of a fence. Examples of applying the radiating technique to 
region-pointing and stroking are illustrated in Figure 3.3.

Now, with the radiating capability, the two painting techniques can be described 
as follows.

V(xty)eField(cursor_x,cursor_y), Map{colour, Region(x,y)), if Region(x,y)&F

describes the region-pointing technique, where Field(x,y) is the set of pixels that are 
within the influence of radiation originating from the location Cr,y). The stroking 
technique is described as
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V(x,y)eS', Map {colour, Region(x,y)), if Region{x,y)eF,

where

5 =  Field{x,y)
V(x,y)eS

is the set of pixels traversed by the radiating stroke.

3.5. Bounding Scope Technique

So far, the techniques we have described assume that a region defined in the 
virtual frame buffer always coincides with a region defined perceptually. However, 
based on our observations described in the following paragraph, this assumption is 
incorrect. Hence, extended interaction techniques are required so that the region 
painting techniques become compatible with the human perceptual model.

The human brain can perceptually filter out insignificant information. Using 
Figure 3.4 as an example, we tend to ignore the pattern lines within the circle and 
perceive the whole as a single region. The pattern or texture lines inside the region are 
filtered out perceptually because they are insignificant in defining the region.

Figure 3.4. — Region with textural lines
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With the existing techniques described thus far, numerous region-pointing 
operations are required for painting all sub-regions created by the intersection of the 
textural lines in Figure 3.4. The stroking technique cannot be applied well here 
because the sub-regions do not constitute a strong alignment. Therefore, these 
region-based painting techniques do not always satisfy human perceptual 
expectations. On the other hand, humans prefer a single region painting operation that 
selects all sub-regions within the circle for painting because it is more consistent with 
their perception. To achieve this, we introduce the bounding scope technique.

Buxton, et al. [BUXT81] developed a demonstrative approach for specifying 
scopes in an interactive music score editor. The method requires a single gesture to 
define a circle of inclusion graphically on the score. The musical notes that are 
enclosed by the circle are then grouped together and retrieved from the data base for 
further processing.

For the texture problem presented in Figure 3.4, we adapt the demonstrative 
scoping method for grouping together regions that are to be painted by the boundary 
scope method. This allows the user to outline a closed boundary to enclose all the 
sub-regions belonging to the perceptual region. As a result, a single region-pointing 
interaction can be applied to colour all the enclosed sub-regions automatically. This 
interaction also provides a way to group together some isolated regions that are 
conceptually related (e.g. stars in the sky). Hence, the bounding scope technique is 
really a region classification tool. Some scoping examples are illustrated in Figure 
3.5.

Primarily, we want to know which regions are entirely enclosed in the bounding 
scope. However, to acquire that information seems non-trivial and time consuming. 
Fortunately, with the help of the region labels available in the virtual frame buffer, we 
can approach the problem in a different way. We find, instead, a dual solution by 
determining which regions are not entirely enclosed by the scope. In other words, to 
define the scope is to construct a list of exclusion regions. Therefore, the scope can be 
defined by the fencing technique.
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Figure 3.5. — Bounding scope

The second part of the interaction is the actual region painting. To be consistent 
with the other painting interactions, we would like to simulate a region-pointing 
technique for filling the enclosed region defined by the scope. Fortunately, we can 
simulate the interaction by applying a special radiating function with the normal 
region-pointing technique where the radiating field is exactly the area enclosed by the 
scope. This field can be algorithmically found by applying a fill operation with the 
scope line as the region’s delimiter.

Bounding scope interaction is actually a combination of fencing and a region­
pointing interaction with a special radiating function. Actually, with this special 
radiating function, the use of stroking and region-pointing are equivalent, because 
both of their radiating fields are identical.

Functionally, boundary scoping can be described as

if Region(x,y)*F then V(jc ,y )g B , Map (colour, Region(x,y)),

where B =Field{cursorjc,cursor_y ), and Field () is a set of connected pixels delimited 
by the fence.
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3.6. Functional Unification

If we look at the functional descriptions of the various painting tools we have 
described, they can be given a unified description as

if Region(x,y)ëF then V(x,y)€ U, Map{colour, Region(x,y)),

where F  is the set of regions cut by the fence and

U= Field {xty),
V(*o0 eP

where

P =
{{cursor_x,cursor_y)} if using region—pointing 
S, the set o f pixels traversed if using stroking

Of course, not all the tools are necessarily used simultaneously. As a result, some 
of the function variables are undefined if particular techniques are not used. 
Therefore, we need to assign default values for these conditions. The only conditions 
that need to be taken care of are F and Field{x,y). If there is no fence present, F  
should be the empty set and the default for Field{x,y) is {(x,y)}, because the cursor is 
bound to exactly one pixel when radiating is not used.

It is easy to verify that each of the functional descriptions mentioned for each tool 
is a special case of the general description. For example, a simple stroking technique 
with neither radiating nor fencing implies P=S and Field{x,y^{{x,y)}. This implies 
U=S. Since by default F={}, the "if' condition is always true. Hence, the general 
description of the stroking operation reduces to

V(x,y)eS, Map {colour, Region(x,y))

which is exactly the description mentioned earlier.
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3.7. Tool Development Issues

The functional description provides us with a good basis for the development of 
painting tools. In this section, we address various implementation issues that need to 
be considered in the process of transforming the functional description into an 
efficient algorithm.

3.7.1. Colour Mapping

In this subsection, the actions involved in the Map function are discussed. 
Primarily, Map is used to create a link between the corresponding region record and 
the selected colour. Furthermore, colour feedback, on the screen, is required to allow 
the user to evaluate and continue the painting process. Hence Map is basically a two- 
step procedure:

Map (colour, region)
• establish a mapping between the region and the colour
• colour feedback for the region

There are two general approaches that can be used for feedback. First, we can 
use a direct mapping of a region label to a physical hardware colour. If we want a 
smooth colour transition from the line colour to the region colour, we need even more 
hardware colours to map these intermediate intensities. For example, if we allow four 
colour intensities to represent the transition, we need at least four times as many 
hardware colours to achieve direct mapping. With this hardware colour 
implementation, the effect of region painting can be shown in real time because we 
can alter the attributes of the corresponding hardware colours and have the changes 
updated in the next video retrace cycle.

However, the problem with this approach is the limitation in the number of 
hardware colour indices supported by the system. The upper bound is unknown, 
because the number of regions is directly proportional to the complexity of the scene. 
In examining the traditional cels obtained from the National Film Board of Canada, 
we observed that at most 256 regions were found within an image. Hence, for a
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system that allows four levels of intensity for anti-aliasing, a system with 1024 
hardware colour indices is needed.

We realize that few systems provide so many hardware colour indices in their 
frame buffers. For a general graphics system, we need a second approach for the 
colour feedback. It is a slower approach in terms of visual feedback, but a reasonable 
compromise due to the hardware limitations. Basically, it is a colour-sharing 
approach, where some of the regions share a set of common hardware colours. 
Because the number of visually distinct colours required in a cel image is generally 
low (i.e. less than 64), sharing colours definitely reduces the number of hardware 
colours required. Using this approach, we can no longer bind a hardware colour to a 
distinct region. For this reason, all pixels within a painted region require pixel-by- 
pixel modification in the frame buffer and a fill algorithm is necessary to modify the 
contents of a region in the video frame buffer.

3.7.2. Redundant Painting

Based on the functional description, there may be more than one point in the set 
U having the same region label. In this case, some redundant painting operations may 
be applied to the same region. For the direct mapping approach, this might not pose a 
serious problem. However, for the colour-sharing approach, we cannot afford the 
time required for redundant painting of the same region because the fill algorithm for 
colour feedback is slow.

An easier solution is to allow each painting operation to keep a local record of the 
regions that have been painted. With this additional book-keeping, we can decide 
when it is unnecessary for the Map function to be invoked. This guarantees that all 
regions that are to be opaqued in each painting operation only painted once.

The algorithm based on the functional description now looks like the following.
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* * - 0  
V (x,y) e  U

if (Region(x,y) € F) and 
(Region(x,y) £ R)

[
R = R \U  {Region(x,y)}

Map (colour, Region (x,y))
),

where R is the set of regions that are already painted.

3.7.3. Fencing

The set F  of excluded regions is obtained during the process of fence 
construction but not during the painting operation (e.g. stroking, region-pointing). 
Hence, prior to any painting operation, the user must ensure that the appropriate 
fencing information is added or removed.

Because of the separation from the painting operation, the fencing set F  should 
be treated as external information that can be accessed at any time by any painting 
operation. Thus, all painting operations depend on the same storage set F. It is very 
important, therefore, to ensure that the contents of F  are not modified during a 
painting process.

If we only allow operations to be executed serially, the information set F  cannot 
changed during an execution of a painting operation. However, as we will discuss in a 
later section, we may want to execute these operations in a parallel manner. 
Accessing information from a common storage set F  directly from the painting 
algorithm may then yield different results at different times because this information 
can be accessed and modified by any operation at any time.
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fence

Figure 3.6. — Effect of changing the fence during painting

For example, in Figure 3.6, the painting operation should paint regions R1 and 
R2, and R3 and R4 should be unchanged. Now, if the fence is being changed to 
Figure 3.6(b) while the painting algorithm finishes painting R1 and starts painting R2, 
the fencing constraint has been changed. Although the change of the fencing 
constraint does not affect the painting of R2, it does affect R3. When the stroke 
comes to R3, since the fence constraint has been changed and the restriction to colour 
R3 has been removed, a filling operation will be initiated for R3. This will result in 
R l, R2, and R3 being painted, which will be confusing to the user. To avoid such 
confusion, each painting operation should acquire a copy of the external information 
F  at the beginning of its execution so that this constraint can be referred to locally.

A modified algorithm can be described by:
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L F < -F

* * - Q

V ( J C J ) €  U

if (Region(x,y) <£ LF) and 
(Region(x,y) € R)

{
R < r -R \j  {Region(x,y)}

Map (colour, Region {x ,y))

}

3.7.4. Error Handling
When an interactive system is designed, the issue of error handling should not be 

neglected. In our case, if some regions are mistakenly painted by a painting operation, 
we need to decide how to allow the user to recover from mistakes efficiently. In 
general, there are two approaches for recovery that are commonly used. These are the 
undo and abort operations.

In order to implement the undo operation, a history of the previous state is 
maintained so that the system can be restored to its previous condition. In our painting 
ta sk , this information is the previous colour that a region had. Therefore, an extra 
field for storing the previous colour record’s pointer will be required in the region 
record.

The algorithm for undo is simple. All we need is a mechanism that can interrupt 
the p a in tin g  algorithm. The information stored in the set R is all that is needed to 
recover the original state, i.e. prior to the painting operation. Since the set R contains 
the regions that are already painted by the current painting operation at the time of 
interruption, undoing the operation can be completed by simply re-painting the 
regions in R with their previous colours.
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An algorithm for undo is described in the following:

VreR,  Map(Old_Colour(r),r),

where Old_Colour{r) retains the previous colour information in the region record r.

The undo operation depends solely on the number of regions that are painted 
during a painting operation regardless of what technique is used. This algorithm is an 
optimal solution because only those regions that need to be recovered are included in 
the undo.

Since the undo uses Map to recover the colour, the performance of the operation 
depends on how efficiently Map is carried out. We mentioned that Map can be 
implemented via two approaches: direct mapping and colour-sharing. In the direct 
mapping approach, the performance of Map is in real-time because of the 
instantaneous colour feedback. The undo operation would be very efficient in this 
environment. However, in the colour-sharing approach where each Map procedure 
has to initiate a time-consuming colour filling algorithm for feedback, the undo is 
impractical.

To handle a painting error, we ultimately want to change the colour of the region 
to some desirable one, not just recover a previous state. Hence, the undo operation is 
only an intermediate step. But in the colour-sharing approach, having this time- 
consuming intermediate step seems undesirable since we can change the problem 
region to the desired colour direcdy. Therefore, the abort operation would be more 
desirable in this environment.

Abort is simply an interruption of the painting algorithm so that the operation can 
be stopped. Without the undo capability, the visual feedback of the regions will fall 
into one of the following three categories: totally painted, partially painted, and not 
painted by the painting operation.
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Conceptually, we would consider the totally painted and the partially painted 
regions as the ones that are affected by the painting operation but not the third type. 
Functionally, we also want the mapping of the region and the colour to be consistent 
with the user’s concept of these functions. Therefore, let us recall the two steps 
involved in the Map function: the function mapping and the feedback procedures. 
The abort interrupt should only be allowed during feedback but not during mapping. 
This ensures that while a function mapping has been made, the feedback shows at 
least some indication of which region is being painted. Conversely, if there is no 
visual colour feedback in a region, we can be confident that the region does not need 
to be handled.

The abort operation can be described functionally as:

VrzR,  Abort_Fill(r)

where we assume that each region Filling operation of the colour feedback can be 
interrupted.

Sometimes, we may not want to abort a painting function entirely if only a few 
errors occur during the operation. An abort tool that stops only one particular filled 
region would be more practical. For example in Figure 3.7, when the stroke comes to 
the region Rx, we know that it is a region that is not intended for painting. However, 
we do not want to abandon the operation because the other regions that are yet to be 
filled seem to be correct. If we could simply identify the particular region Rx for the 
abort function, it would save the user some effort in having to re-initiate a similar 
painting operation again later.
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target
regions

I
stroke

Figure 3.7. — An error in stroking

The region-based abort function can easily be developed. What it requires is a 
positioning interaction at a point within the region (similar to the region-pointing 
interaction). The function can be described as:

Abort Fitl (Region (cursor_x,cursor_y))

3.8. Parallelism
A painting operation consists of an interactive component (e.g. drawing a fence, 

locating a region, and defining a stroke) and an algorithmic component for a colour 
filling update. One important requirement of the interaction is that the user should not 
be blocked while interacting with the system. In this case, the user should not be 
waiting for the filling algorithm to finish before other painting interactions can be 
initiated. Otherwise, frustration may result because humans do not like to waste time. 
Therefore, one goal in designing the system is to avoid the blocking of the painting 
interaction.

In a colour-sharing system, all painted regions need to be visually updated by 
applying the fill algorithm, which is a very time-consuming process. In addition, if 
we allow the interaction to be continuously applied without being blocked, we would 
lilcft the feedback to appear as soon as the regions affected by the new interaction are 
visually updated. This means that all the regions to be painted should be visually
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updated in parallel.

For example, in Figure 3.8, if stroke 1 is immediately followed by stroke 2, we 
would like the regions painted by these two operations to be visually updated 
simultaneously. Otherwise, if the regions are updated one at a time, that is 
sequentially, the regions lying underneath the second stroke are not updated until all 
the regions in the first stroke are filled. This will cause the user to doubt whether the 
second stroke is doing anything at all. Therefore, a practical painting system should 
achieve two goals: unblocked interaction and parallel visual updates.

\  -*s—  stroke 1

\
\

\

Figure 3.8. — Unblocked interactions 

3.8.1. Multi-Tasking Approach

In a multi-tasking environment, the painting interaction can be implemented 
using a non-blocked server. Upon receiving a painting interaction, a new task can be 
created for executing the painting algorithm. Since each painting algorithm requires 
only some locally stored information (described in the last section), and the region 
information from the virtual frame buffer (which is in the shared space), a newly 
created task does not need any communication link to its parent or to other tasks. This 
allows the task to run asynchronously and independently. In fact, the task can even 
destroy itself upon completion without reporting this to other tasks, which makes for a 
simple implementation.
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Each task of a painting algorithm may create additional filling tasks for each 
individual region colour update. These filling tasks are asynchronous and independent 
of other tasks because the filling algorithm works locally with only its own fill stack 
and the shared virtual frame buffer. In this manner, the parallel visual feedback of the 
painted regions can be accomplished easily. However, we may have a situation where 
two painting operations try to colour the same region. We need to devise a 
mechanism so that only one painting operation can have access to a region for rilling. 
Otherwise, the issue of colour collision would have to be faced.

Figure 3.9. — Multi-tasking example

A solution to the problem is to implement a monitor for region access. Before 
each region is to be painted, it should check with the monitor whether the region is 
currently being painted. If not, the monitor grants access to this particular painting 
operation; otherwise, access is denied.
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3.8.2. Time-Slicing Approach

Painting
Operation

Figure 3.10. — Serialisation o f painting interaction

In a single processor without the multi-tasking programming capability, it is 
more difficult to achieve the two goals stipulated for the fill interaction. An 
interaction and a painting process have to be serialised as illustrated in Figure 3.10. 
To reduce the duration of the waiting period for successive interactions caused by the 
filling algorithm, we may poll the interaction event from time to time, which requires 
time-slicing the painting operation so that an interactive task can be interleaved with a 
filling algorithm.

The algorithm can be depicted as follows: 
loop {

Poll Event 
If (Event exists)

put the corresponding painting operation in queue 
Perform one segment of the painting operation 

}

The filling is still carried out sequentially, however, this does not matter because 
all that is required is that the interaction be allowed to continue without delay. The 
polling mechanism solves the problem beautifully, provided the segment of the
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painting operation is of short enough duration.

The issue of parallel visual feedback has to be addressed as well. Fortunately, 
this problem can be handled quite easily with a multi-stack implementation for the 
region filling algorithm. Since the filling of a whole region can be done with a single 
algorithm, we need only one copy of the algorithm. We have adopted a stack-based 
filling algorithm [FISH85] because it contains looping which can be used to time-slice 
the filling operations.

Basically, the fill algorithm acquires the run-length information of a group of 
horizontally connected pixels from the stack. Then, a selected colour is assigned to 
these pixels. A few more neighbouring run-length candidates are found and placed in 
the stack to be processed in future loops. Hence, a region filling operation depends 
entirely on the information in stack.

If there are many regions to be painted, one stack can be allocated for each region 
filling process. Then to achieve a parallel update, a simple cyclic scheduling scheme 
can be used to access the different stacks in some sequential order for each poll loop. 
For example, assume two regions A and B are being painted simultaneously. If the 
fill cycle has been used to update a run-length in region A, then the next cycle should 
process a run-length in region B in an alternating fashion, 

loop {
Poll Event 
If (Event exists)

put the corresponding painting operation in queue 
Perform one segment of the painting operation 

allocate stack for each new region painted 
Perform one loop in filling 
}

A further advantage of using the multi-stack implementation is that it allows an easy 
abort operation for any region; we just empty the corresponding stack.



4. Boundary Completion Techniques

In our region-based model, a region can be uniquely identified by the labelling 
process if it is entirely delimited by a closed boundary. We assume that every region 
identified by the labelling process is equivalent to a human perceptual region. 
However, in reality, some regions without closed line boundaries are still perceived as 
regions by the human visual system. This broken boundary violates our model’s 
assumptions and prevents our painting operations from functioning correctly. 
Therefore, it is necessary to complete the missing boundaries of perceptual regions so 
that they can be identified correctly by the labelling process. In this chapter, we 
describe two general approaches, using automatic and interactive techniques, that may 
solve the boundary completion problem.

4.1. The Nature of Broken Boundaries

In a line drawing, the broken boundaries that are most frequently found are those 
which are not easily detected visually, unless they are closely examined. Although the 
gaps may not be left intentionally in the image by the animator, their presence is still 
acceptable because the human brain can perceptually reconstruct the missing 
information. For example, examining Figure 4.1(a), we can mentally interpolate the 
missing line that is required to complete the square (depicted in Figure 4.2(a)).

Sometimes, the animator intentionally uses special arrangements of some broken 
line segments to create an illusory region. For example, in Figure 4.1(b), we perceive 
an imaginary circle which is circumscribed by the end points of the straight lines 
(Figure 4.2(b)). Although the circumference of the circle does not exist in the figure,

42
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our minds still regard the illusory circle as a region.

\
/

(a) (b) (c)

Figure 4.1. — Perceptual regions without closed boundaries

Sometimes, the contextual information of the image affects how we interpret the 
lines and regions. For instance, when we look at Figure 4.1(c), it is not clear whether 
the figure constitutes a region or not. However, if the figure appears in a scene with 
trees, we may conclude that this figure represents the grass, according to the 
contextual information provided. The boundary of this grass figure is then interpreted 
perceptually by the painter.

Figure 4.2. — Perceptual boundary completion

4.2. The Problem of Leaking

Although all these examples of "open" regions are commonly encountered in line 
drawing images, our region painting techniques, described in the last chapter, cannot 
handle them as effectively as humans can. This is because all regions that are 
recognized by the computer must be delimited by some boundary information, which 
in our case depends on the lines presented in the image. If a boundary gap exists, the



4. Boundary Completion Techniques 44

areas on both sides of the gap are treated as the same region because they are 
connected areas by definition. So, when a painting operation is applied to this "open" 
region, the area outside the gap is painted as well. We say that the region has a leak.

Therefore, we need to find ways of telling the system that the areas divided by the 
missing boundary are actually distinct regions so that our painting techniques can be 
applied correctly.

4.3. Automatic Boundary Completion

It is highly desirable to have an automatic boundary completing algorithm to take 
care of all the leaks that might appear in the image. If such an algorithm exists, it 
should be applied before the region labelling process is invoked so that each 
perceptual region can be uniquely identified. Various algorithms have been used in 
attempting to solve the problem of broken boundaries. Krishnan, in his PhD 
dissertation [KRIS88b], gives a thorough survey of existing boundary completion 
algorithms. In particular, there are three approaches that should be mentioned briefly.

Ullman’s algorithm [ULLM76] generates a line between two end-points of a 
broken curve according to the constraint of minimum curvature, to guarantee the 
smoothness of the new curve. However, with this smoothness constraint, it is 
impossible to fix any sharp broken comers that may occur in an image.

Grossberg and Mingolla [GROS87] noticed the problem of illusory contours and 
suggested a boundary completion method to handle it.

Krishnan and Walters’ [KRIS88a] p-space approach for boundary completion is 
by far the most successful one, in our opinion. This approach is motivated by the 
psychophysical experimental results of Walters [WALT87a] showing how humans 
perceive end-connection of lines. The algorithm is capable of constructing illusory 
contours. In addition, the gap linking mechanism is able to connect a broken curve as 
well as a broken comer within a local area.
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Although existing computer paint programs are able to provide tools for 
assigning colour to the original line drawing, Walters [WALT87b] mentions three 
problems that need to be handled in order to speed up this interactive process. Firstly, 
artists often indicate an image region in a manner that does not require a closed 
boundary, as the human visual system has the ability to perceptually link the gap. 
Secondly, regions are often subdivided, not only by the contours of occluded objects, 
but also by texture or pattern (see Figure 4.3). Assigning colour to an object such as 
this requires many fill operations for each sub-region. Thirdly, an illusory contour 
often needs to be considered as a distinct region to be filled with colour. However, no 
filling operation can achieve this because the contour does not exist in the image.

Figure 4.3. — A line drawing [from WALT87Ò]

The p-space algorithm described in [WALT87b], which uses the p-space 
representation, is claimed to solve 80% of the problems mentioned above. Although 
the p-space algorithm seems promising for solving the boundary completion problem, 
we have not yet incorporated this into our system because the algorithm requires much 
computation that is impractical without a parallel computing environment7.

t  The interested individual may refer to Krishnan’s PhD dissertation [KRIS88b] for a de­
tailed description of p-space implementation in parallel machinery.
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Moreover, for the grass region in Figure 4.1(c), the p-space approach fails to 
determine the boundaiy because this depends on a human contextual interpretation. In 
fact, we wonder if there will ever be an algorithm that can completely link all the gaps 
in the image. Therefore, no matter whether an automatic linking process is applied or 
not, we still need an interactive tool for the user to tell the system how to complete 
boundaries.

4.4. Interactive Boundary Completion

As we mentioned earlier, some boundary gaps are hard to detect visually. These 
gaps are only detected if colour leaking occurs when we try to paint a leaky region. 
Therefore, the boundary completion tools must be incoiporated in the cel painting 
process so that the boundary information of the image can be interactively modified.

4.4.1. Boundary Plane

In our cel painting design, the boundary information used to determine the 
delimiters of regions for labelling is only required during the labelling process and is 
not stored in the virtual frame buffer. In order to be able to modify the boundary 
information for region relabelling, it is necessary to keep the boundary information in 
the virtual frame buffer. Therefore, we have to extend our virtual frame buffer to 
include one more data slice called the boundary plane*.

As mentioned in Chapter 2, the boundary is represented by grid lines. Since 
these grids are algorithmically constructed based on the one pixel wide thin skeleton 
representation of the line drawing, we store the thin line skeleton in the boundary 
plane. Moreover, keeping the thin line skeleton in the virtual frame buffer makes 
designing of the completion tools simpler. 8

8 The boundary plane is simply a one-bit bit-plane where set bits represent the presence of 
the boundary.
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Observe that the boundary plane is separated from the grey scale line 
representation in the virtual frame buffer. So, if any modification is made to the 
boundary plane, the original drawing is not affected. This is indeed desirable because 
we do not want to add a visible boundary if the artist left out the boundaries 
deliberately.

4.4.2. Tools
The tools required to modify the content of the boundary plane are simple. All 

we need is line drawing interaction for adding lines to the boundary plane and an 
eraser brushing mechanism for deletion.

In solving the leakage problem caused by the discontinuity of a region boundary, 
we need a drawing technique that can give us a continuous boundary for our boundary 
completion interaction. There are numerous techniques that can be used to draw a 
continuous line. In our design, we adopt a line drawing interaction similar to the 
stroking interaction, where a line is defined with a pen-stroke gesture. In some cases, 
if stroking is too fast, the computer may not be able to sample the input rapidly 
enough to produce a continuous line (even though the stroking motion is continuous). 
In such a case, line interpolation between the sampling points from the input device is 
necessary to ensure the continuity of the line. The simplest approach is to use linear 
interpolation, like Bresenham’s fast raster line interpolation algorithm [FOLE82].

The second issue that we need to consider in the boundary completion operation 
is end-point continuity. In Figure 4.4(a), a constructed line is required to enclose the 
region by connecting points P and Q . Because of human limitation in the ability to 
draw precisely, we may instead obtain the line segments shown in Figure 4.4(b), with 
the region remaining open.
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Figure 4.4. — Example of boundary drawing

The problem can be solved by applying the concept of end-point gravity. Gravity 
is a field defined at the end points of a newly drawn boundary line. If another 
boundary line segment exists within the gravity field, the end-point of the newly 
drawn line is extended to touch that existing boundary line (Figure 4.5).

Figure 4.5. — Example o f end-point gravity

With the technique described above, the boundary linking P and Q in Figure 
4.4(b) may now look like the one in Figure 4.4(c). Notice that the resultant region is 
not the expected rectangle. If paint is applied to this region, colour will follow the 
wiggling boundary from P to Q instead of a straight line. However, to a human being, 
the colour appears in the correct position if the image is viewed at a "distance." 
Examples of this can be found in the Sunday comic strips where the colours applied to 
the regions seldom lie entirely inside the regions. They are still acceptable to the 
human visual system because when they are placed at a distance, we perceive that the
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colour falls correctly into the perceived regions. Therefore, we need not be too 
concerned as to whether the boundary drawn is exactly the same as the human 
perceptual boundary. On the other hand, we may sometimes mistakenly draw some 
undesirable boundary lines. These lines may be unacceptable because they define 
some additional undesired regions. An additional tool is required to wipe out these 
boundaries. A simple technique, like eraser brushing, can be used to accomplish this. 
An example of erasing is depicted in Figure 4.6.

4.4.3. Region Relabelling

The difficulty in designing operations for boundary completion is not how to 
design the interaction but how to preserve the assumptions required in the region- 
based model. The difficulty arises because when a boundary line is interactively 
added, it may separate an existing region into several sub-regions. These sub-regions 
then share the same region label because they originated from the same region. Also, 
when erasing is applied, regions may be merged to form a single region and, as a 
result, the resulting region contains the labels that belonged to the original regions. So 
in both cases, the assumptions are violated.

In the following two sections, we describe solutions which preserve the 
assumptions in region splitting and merging respectively.

4.4.3.I. Region Splitting

An additional boundary line usually splits an existing region into smaller regions. 
In order to preserve the assumption that no two distinct regions share the same label, 
we need to assign them new labels.



4. Boundary Completion Techniques 50

construction
line

motion
path

Figure 4.6. — Example o f erasing
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The simplest way to do this is by applying the region labelling process to the 
whole image again. However, this is not a good approach because the process is too 
slow to be used in this interactive environment. Instead, we need an adaptive 
relabelling mechanism that only changes the labels of the affected areas. For example, 
in Figure 4.7, the new boundary divides the two regions /?1 and R2 into four sub- 
regions. Ideally, only one of sub-regions a and b and one of c and d  need to be 
relabelled in order to distinguish all four sub-regions. Also, we would prefer to 
relabel the smaller regions for the sake of minimising the effort in the relabelling 

process.

We assume that we know how many new sub-regions there are and their seed 
points. Based on the labelling information at each seed point, we know which sub- 
regions originated from the same region. For example, in Figure 4.7, since any point 
in sub-regions a and b have the same label as in R 1, we know that a and b are from 
the same region and should be grouped together. Similarly, we can group sub-regions 

c and d  together.

For each group of N sub-regions, we only need to relabel N - 1 of them. As 
mentioned, we want to pick the smallest N - 1 sub-regions for relabelling. However, it 
is difficult to find the size of each sub-region prior to the labelling process. Therefore, 
an optimal method of efficiently identifying these N —1 sub-regions is impossible. 
Instead, we use the following less elegant solution.

We initiate the labelling process for all N  sub-regions one pixel at a time in a 
cyclic fashion. While each pixel is being relabelled, we keep track of the number of 
each label in the image. As soon as the second largest sub-region is entirely 
relabelled, we refer to the label count and find the number of pixels with the same 
original label from the unsplit region, X. Also, we can find how many pixels in the 
largest sub-region Y have been relabelled. If X>Y,  we undo the relabelling applied to 
the largest sub-region. Otherwise, the relabelling of the largest sub-region continues.
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Figure 4.7. — Region splitting

Compared with the ideal solution, the above method only involves an extra 
relabelling of either twice the number of pixels in the second largest region, or the 
number of pixels in the largest region, whichever is smaller. In most cases, the second 
largest region is much smaller than the largest region. This is commonly found to hold 
in the boundary completion of leaky regions that are connected to a generally large9 
background region (e.g. the base of the house in Figure 4.3). Therefore, this method 

generally performs well.

Since the method we have described assumes that the number of new sub-regions 
and each of their seed points are known, we have to show how this information can be 
obtained. To find these seed points, one only needs to examine the points on either 
side of one of the new boundary lines, since each new region always uses the new 
boundary as part of its delimiter. This means that all the points lying on both sides of 
the new boundary belong to the outermost pixels of the new sub-regions. If we can 
find how many traces of such regions’ outermost pixels pass through the points along 
both sides of the boundary, we will know how many regions are candidates for 
relabelling. For example, in Figure 4.8, 4 traces can be found along the new

9 In a cel drawing, since objects usually occupy only a small area of the image, the back­
ground region is usually very large.
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boundary.

Figure 4.8. — Boundary tracing

After the process of finding the traces10 , any point that belongs to the trace can 
be selected as a seed point of the corresponding region. When these seed points are 
found, the grouping of regions can proceed, and the relabelling can be carried out.

4.4.3.2. Region Merging

When regions are merged after erasing has removed part of a boundary line, a 
conflict may be created if more than one label refers to the same merged region. 
Although applying the relabelling operation to the merged region may solve the 
problem, a more efficient approach is used.

All that is required is to allow the labels of the original regions to refer to the 
same region labelling information. This can be implemented using a linked list. 
When two regions are merged, we choose one of the labels as the primary label, which 
is used to represent the merged region. The other label has a pointer to this primary 
label so that pixels containing this other label can refer to the primary labelling 
information as well.

10 The tracing algorithm can be found in Appendix C.
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For example, in Figure 4.9, the regions R 1 and R 2 are merged after the boundary 
line between these regions is broken. Let us assume that R 1 has the label 1 and R 2 
has the label 2. If we decide that label 1 is the primary label, there will be a pointer 
from label 2 to the primary label 1. Now, with this additional data structure, although 
there may be two or more different labels in the merged region, they all share the same 
primary label. So, whenever we want to know to what label a specific pixel belongs, 
we refer to the primary label.

Figure 4.9. — Region merging

We consider each region as consisting of a set of labels, with one label identified 
as the primary label. The merging of the regions is equivalent to the set union of two 
sets of labels. To find the primary label of each label, we need a function which 
returns the name of the set the element is in. For example, in Figure 4.9, before the 
two regions are merged, they are labelled set (1) and {2}, called label sets 1 and 2 
respectively. When the regions are merged, these label sets are removed and a new 
labelling set {1,2} is formed, and it is known as the region label set 1 if we choose 
label 1 as the primary label. When set finding is applied to either label 1 or label 2, 
we obtain the name of the region set, 1, which is the same as the primary label. 
Therefore, label merging can be achieved by applying the Union and Find set 
operations. An efficient algorithm for handling both operations, known as Union- 
Find, has been developed and can be found in [AH074].



5. Multi-Frame Region Tracking

An animated production usually requires 24 to 30 frames for each second of 
animation. Since the timespan between two consecutive frames is short, there is little 
movement of an object from one frame to the next. This frame coherence property 
leads us to ask whether an automated region tracking system could be developed to 
find the corresponding regions of two successive frames, so that the appropriate 
colours from one frame can be copied to the succeeding one. Such a system would 
reduce the effort required in some interactive painting tasks which in turn would lead 
to greater productivity. With our region-based design, the tracking process can be 
transformed into the well-known graph matching problem. In this chapter, we give a 
formal description of the tracking problem in terms of the graph matching problem.

5.1. Formal Description of Tracking

The objective of tracking is to establish a relationship between the set of regions 
of an already painted frame and the set of regions of the succeeding unpainted frame. 
This relationship may be based on the similarity of the regions’ shapes, sizes, 
positions, etc. (Figure 5.1). Using this relationship, the regions of the unpainted frame 
can be assigned the colours of the corresponding regions from the previous frame.

With our region-based model, this task can be formally described as finding a 
maximal set of functional mappings

55



5. Multi-Frame Region Tracking 56

f  :Rcur-^Rprev = {(a,b)I a andb are similar regions, V a e /? ^ , VbeRprev}.

Rprev is the set of regions of the previous painted frame and Rcur is the set of regions 

of the succeeding unpainted frame, i.e. the current frame.

regional correspondences

Frame 1 Frame 2

Figure 5.1. — Example o f region tracking

In order to compare the similarity of two regions, we introduce a region 
similarity measure which is a quantitative measurement of how similar two regions 
from two different frames are. The smaller the measure is, the greater the similarity of 
the two regions. To determine whether regions a and b are similar from their 
similarity measure, s(atb), we use a similarity threshold value, S. If s(a,b)<S, then a 
and b are considered similar regions. With this definition of region similarity, the 
function can be described as:

f-Jtcur-*Rpnv = {(<*,b)\ s(a,b)<S, V a e R ^ ,  VbeRprev}.
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Methods of defining the similarity of two regions is of extreme importance and 
needs further study. Later in this chapter, we present some suggestions for the 
definition of such a function.

The tracking problem stated above can be transformed into a well-known 
problem in graph theory, called the maximum bipartite graph matching problem. A 
bipartite graph is a graph in which the vertices of the graph are divided into two 
disjoint sets (X and Y), and no two vertices of the same set have an edge connecting 
them (Figure 5.2(a)).

Let us consider the two sets Rprev and Rcur to be two sets of vertices in a graph.

Also, if two regions, a and b, are found to be similar (i.e. s(a,b)<S), we assign an 
edge between the two corresponding vertices in the graph. Since the similarity 
measure only applies between two regions of the distinct sets Rprev and Rcur and not 

between regions within the same set, it is obvious that the resulting graph is a bipartite 
graph.

Figure 5.2. — Bipartite graph matching
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There are two approaches we can use to obtain a set of regional correspondences 
in a bipartite graph. If we treat all edges in the constructed bipartite graph as equally 
desirable for potential matches regardless of the differences in their similarity 
measures, finding the maximum matching of the graph will give us the maximum 
number of correspondences between two sets of regions (Figure 5.2(b)). On the other 
hand, if we associate a weight designating the significance of each edge according to 
its similarity measure (e.g. weight function: w(a,b) = S - s(a,b) ), then finding the 
maximum weight matching of the graph gives us the set of edges that gives the 
maximal sum of weights, thereby yielding better (or more significant) matches (Figure 

5.2(c)).

Note that these two approaches have their tradeoffs. While the maximum weight 
matching gives a better matching, the number of correspondences found may be fewer 
than in the other approach. Moreover, the algorithm for maximum weight matching is 
less efficient. Hence, further study is required to evaluate the practicality of the two 
approaches to region tracking.

5.2. Algorithmic Complexity
The tracking process, using the graph matching approach, consists of two stages. 

Firstly, for the given two sets of regions, we need to construct a bipartite graph by 
applying the similarity measure from one region of one set to every region of the other 
set. Thus, the time required to construct the graph is 0 (n 2), where n is the number 

of vertices in the graph.

Secondly, we need an algorithm which will find the maximum matching given by 
the bipartite graph. If the graph is unweighted11, there is an algorithm that runs in 
0(m V n) time, where n is the number of vertices and m is the number of edges. This 
algorithm is called Dime’s algorithm12 [DINI70], and its time complexity analysis can

11 An unweighted graph is one in which every edge is equally desirable as a match.
12 A brief description of Dime’s algorithm can be found in [YA082].
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be found in [TARJ83].

Originally, Dime’s algorithm was intended to solve the network max-flow 
problem, not the maximum matching problem. However, transforming a bipartite 
graph matching problem into a network max-flow problem can be done easily by 
adding two vertices s and t, edges (s,x), for every x e X ,  and edges (f, y), for every 
ye Y, (Figure 5.3) [TARJ83]. If we make the flow capacity of each edge equal to one 
unit, finding the routing for maximum flow from i  to t will yield the maximum 
matching from X  to Y.

Figure 5.3. — Network flow problem

Similarly, the maximum weight matching problem can be solved by the max- 
flow problem by viewing the weights as flow capacities. In [TARJ83], it has been 
shown that the time required to solve maximum weight matching is 0{nm\og(1+min)n )̂  

which is less efficient than the unweighted maximum matching case.

The tracking process as a whole requires 0(n^)+0(m^fn) time to complete the 
maximum matching of an unweighted graph and O (n z}+0 (mn logn) time in the case 
of maximum weight matching. Notice that m2n because of the additional edges 
required to connect s and t to the bipartite graph. Therefore, the complexity of the 
tracking process with the maximum weight matching approach is bounded by 
O(mnlogn).
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5.3. Measurement of Region Similarity

As we have mentioned, if we can construct a bipartite graph from the region 
information of two consecutive frames, an efficient algorithm can be applied to solve 
the tracking problem. However, the construction of the bipartite graph requires the 
measurement of region similarity, a function that is not clearly defined. In the 
following sections, we will examine the region similarity problem and suggest some 
possible methods for measuring region similarity.

5.3.1. Size Coherence

In most cases, the sizes and shapes of the regions do not vary drastically from 
frame to frame. A large region usually remains large in the next frame, and the same 
holds true for small regions. Hence, comparing region sizes is one way to evaluate 
region similarity.

The size of a region can be measured easily by counting the number of pixels 
contained in that region. Therefore, a simple form of similarity measure can be 
described in terms of the difference of the regions’ sizes:

s{a,b) = ASize = \ Size (a) -  Size(b)\

Of course, this method of measuring region similarity is very limited because 
usually there are many regions of similar size in the image. For instance, in Figure
5.1, the regions representing the sun and the head are the same size. With only this 
size similarity measure, we cannot prevent the matching algorithm from matching the 
sun of Frame 1 with the head of Frame 2. Thus, a more sophisticated method is 
required to further distinguish the similarity between regions of the same size.
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5.3.2. Positional Coherence

In an animation sequence, objects seldom move rapidly around the frame. If 
there is a position change, it is usually gradual; hence, the differences in positions of 
the regions from one frame to the next are usually small.

If we can represent a region’s position by a point p=(x,y), we can construct a 
position similarity measure:

AP = distance(pa<pb),

where pa are pb are the positional points of region a in set Rcur and of region b in 

Rprev respectively.

For example, in Figure 5.1, it is obvious that the position of the head in Frame 1 
is closer to the position of the head in Frame 2 than to the position of the sun. So, by 
using this second criterion, regions of the same size can be further distinguished by 
their positional similarity.

The position similarity measure assumes that a positional point is uniquely 
defined for each region. However, the problem of uniquely defining the position of a 
region requires further consideration.

If die region is a solid convex polygon, the centre of mass of the polygon, 
obtained by averaging the positions of all the pixels within the region, can be used to 
represent the position of the region. The centre of mass always lies within the region, 
thus, the region’s centre can be used to uniquely represent the region if all the regions 
are also convex in the frame.

However, if there is a region that is not solid and convex (i.e. non-convex or 
contains holes), the centre of mass calculated by averaging may not lie within the 
region. For example, in Figure 5.4, regions R 1 and R2 have the same centre of mass 
calculated as point p. In such a case, the centre of mass can no longer be used to 
represent the position of a region uniquely.
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R2
P

R1

Figure 5.4. — Centre of mass

An ad-hoc solution would be to use the same averaging calculation but with some 
modification. If the calculated centre of mass is within the region, it is used as the 
positional point, as before. Otherwise, we search for the point in the region which is 
the closest to the centre of mass, and use this instead as the positional point. This 
ensures that the positional points are always distinct from each other because each 
positional point is always inside the region it represents.

This ad-hoc solution is crude, and further refinements to achieve better positional 

representation are yet to be realized.

5.3.3. Image Transformation
The position similarity measure introduced in the last section only works well if 

all the regions undergo a simple spatial translation. However, motion in an animated 
sequence involves more than spatial translation. There may be rotation, scaling, 

zooming, spinning, etc.

In Figure 5.5, we have a rotation of an object consisting of three regions. If the 
simple positional measure is applied, it may result in an incorrect matching. On the 
other hand, if we can apply a rotation transformation on the positional points prior to 
the similarity measurement, a more accurate similarity measure can be obtained.
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Frame 1 Frame 2

Figure 5.5. — Incorrect matching o f rotated object

Since we know that any transformation can be expressed in terms of a 
transformation matrix, we can describe the modified position measure as

AP' = distance(pap b'),

where pb = Tmxpb, (Tm = the transformation matrix). For example, for rotation 

transformation, the transformation matrix is

sin6 cos0 
cos0 -sin0

where 0 is the the angle of rotation.

One may wonder, "How can we know what transformations the objects undergo 
between two consecutive frames?" In our opinion, the best way to approach this 
problem is to allow the user to interactively determine the transformation. This will, 
however, introduce additional human interaction overhead which seems to contradict 
the original objective of tracking which was to reduce human interaction. Therefore, 
further experimental study is required to test whether or not the additional tracking 
process actually increases efficiency in cel painting.

Furthermore, the transformation matrix is limited so far to a two-dimensional 
transformation because the regions exist in a two-dimensional world. However, in 
reality, animators usually think of the animated objects in three-dimension and then 
draw their projected two-dimensional images on paper. Hence, some objects in an 
animation sequence may appear to undergo some three-dimensional transformations.
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For instance, we may see a spinning object; in which case, some of its visible regions 
may be hidden, and vice versa. In our transformation model, this situation cannot be 
handled correctly due to the lack of the animators’ perceptual three-dimensional 
modeling information based on the two-dimensional images given. This is a difficult 
problem that needs to be solved.

5.4. Birth and Death of Regions

Until now, we have assumed that the regions between two frames always have a 
one-to-one correspondence. In other words, neither the birth of a new region nor the 
death of an existing region occurs from one frame to the next. However, the birth and 
death of regions frequently happens in an animation sequence. For instance, the 
spinning of an object may introduce some new regions (i.e. birth) and may hide some 
visible regions (i.e. death).

Figure 5.6. — Incorrect matching with the birth o f a region

This birth and death of regions may cause a serious problem in the region 
matching process because the one-to-one regional correspondence assumption no 
longer holds. The maximum matching algorithm, however, can still make a match, 
but the result would likely be incorrect (Figure 5.6). This is because the available 
regional information (i.e. size and position) in our system is insufficient for 
recognizing the birth or death of regions. The algorithm assumes that these regions 
correspond to some regions in the other frame. As a result, these regions are included 
as candidates for region matching and affect the outcome of the matching.
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Isolating these regions from consideration in matching seems to be a very 
difficult problem. Nevertheless, this is a problem of extreme interest in many 
disciplines and is worthy of exploration in future.

5.5. Future Research
The region-based model has allowed us to look at the tracking problem from a 

new perspective: graph matching. However, more studies are required before the 

tracking process can be made practical.

A better method for similarity measure must be designed so that the similarity of 
regions can be evaluated more accurately for the later matching process. Also, further 
experiments are required to determine what the similarity threshold should be in order 
for two regions to be candidates for a potential match.

Achieving automatic region tracking appears to be a very difficult problem due to 
the inadequacy of the information given by the two-dimensional cel images. 
Nevertheless, adding human interaction may aid in solving the problem by allowing 
manipulation of the individual images so that the correct spatial transformation can be 
applied to the regions for accurate matching. Since this kind of tracking involves 
human interaction, further experimental study is required to compare production 

efficiency with and without the tracking process.

At present, our approach in region tracking cannot handle the problem of birth 
and death of regions because the limited regional information available is not 
sufficient for detecting them. Thus, this problem remains unsolved and needs to be

explored.



6. Conclusions

In traditional cel animation production, most tasks involve tedious and repetitive 
operations. Painting of cels is the major bottleneck of this process because each cel is 
painted by hand. With the advancement of computer technology, the animation 
industry is changing to include computer aided production systems, in order to 
minimize the unpleasant and inefficient tasks that exist in traditional animation. 
Several computer paint systems have been developed over the years, but improvement 
can still be made, especially in painting the cels.

We have introduced a conceptual region-based painting model that is based on 
the human perception of the painting process. The model uses a virtual frame buffer 
that allows functional description of the painting task. With the region-based model, 
conceptual tools like region-pointing, stroking, fencing, radiating and bounding scope 
techniques can be described functionally. We have also shown that these techniques 
are all subsets of a general description of a unified painting operation. With the 
unification of these painting techniques, algorithms can be developed easily.

In order to develop painting tools that operate effectively, special attention must 
be paid to issues such as system limitations, redundant operation avoidance, error 
recovery, and parallelism in colour filling.

We have developed a prototype of the region-based painting model on a 
workstation consisting of a single processor, an 8-bit video frame buffer, and a tablet 
with a two button stylus as the input interaction interface. Among the painting 
techniques described, the region-pointing, stroking, and bounding scope techniques
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have been successfully implemented and tested. Furthermore, we use a time-slicing 
approach for scheduling the various painting processes so that the system supports 

parallel region colouring.

Region-based painting techniques do not operate well if the image contains 
broken boundaries. Techniques are required to overcome the resulting leakage 
problem. Generally, two approaches to the problem are available. First, some broken 
boundaries may be linked algorithmically using, for example, the p-space algorithm 
[KRIS88a]. In our system, we adopt the second approach to linking, which is to 
interactively define the missing boundaries. This uses the concept of a boundary 
plane which is basically an extended virtual bit-plane that can be easily incorporated 
into the existing virtual frame buffer model. In the interactive linking process, regions 
may be split or merged. As a result, the assumptions of the region-based model may 
not be met, but solutions are described to ensure that the assumptions of the model are 
met in the cases of region splitting and merging.

F in a lly , based on the assumption of the frame coherence property of two 
consecutive frames in an animation sequence, we feel that a region tracking process 
may be beneficial in speeding up the whole painting process. The region-based model 
provides us with a way to transform the tracking problem into the well-known 
maximum matching problem of a bipartite graph. Possibilities for future research in 
the tracking process have also been outlined.



Appendix A. Thinning Algorithm

In our region-based model, lines are used as region boundaries. However, in a 
video scanned line drawings, we often find great variation in line widths; with this 
variation, region boundaries cannot be defined easily. We prefer a more uniform line 
representation so that region delimiters can be better defined. One way to obtain a 
uniform line representation is to apply a thinning algorithm to find the skeleton of the 
lines.

Zhang and Suen [ZHAN84] developed a thinning algorithm that is able to find a 
one-pixel-wide 8-connected skeleton representation of each line. The resulting 
skeleton lies relatively close to the centre of its original thick line, and thus can 
represent the region boundary.

Since their thinning algorithm applies to a binary images only, we need to 
transform the grey-scale images to binary images by applying an image thresholding 
process to separate the image value into two classes: background and foreground. 
Then we can simply mark 0 for the background pixels and 1 otherwise to obtain the 
binary image.

The algorithm is a two-step iterative process. The first step flags a non­
background pixel p  for deletion (i.e. replacement by a zero value) if the following 
conditions COND A are satisfied:
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(a) 2<N(p{)<6,

(b) 5(Pi)= 1,

(C) P 2XP4XP 6=°. 

id) P4XP6XP8=0>

where N(px) is the number of nonzero neighbours of p x; that is,

N(pi)=p2+p3+ ■ ■ • +P8+P9

and 5(Pi) is the number of 0-1 transitions in the cyclic ordered sequence of 

P2^3»,"*P9fP2 (see Figure A.l for reference of p ’s). For example, N(pi)= 5 and 5(pj>=3 

in Figure A.2.

In the second step, the only differences in the conditions are (c) and (d). These 
COND_B are:

(O  p2Xp4XP8=0.
0 0  P2XP6XP8=0.

The iterative algorithm works as follows.
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continue <— TRUE, 
while ( continue)

I
I* Step 1 */
V p*0, flag p  for deletion if all COND_A are satisfied, 
if there is no flagged pixel,

else
{
replace all flagged pixels by zero.
/* Step 2 */
V p*0, flag p  for deletion if all COND B are satisfied, 
if there is no flagged pixel, 

continue <— FALSE 
else

replace all flagged pixels by zero.

}
}

p9 p2 p3

p8 Pi p4

P7 p6 p5

Figure A.l. — Neighbourhood arrangement used by the algorithm
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Notice that the flagged pixels are deleted only after the flagging mechanism is 
applied to the whole image. This is done to avoid changing the image structure.

0 1 1

1 1 0

1 0 1

Figure A.2. — Illustration of conditions (a) and (b) in COND_A

In [GONZ87], three standard constraints of a thinning algorithm are stated. 
These constraints require that if a pixel of the image is deleted, it (1) does not remove 
end points, (2) does not break connectedness, and (3) does not cause excessive erosion 
of the region. By examining both conditions of the Zhang’s and Suen’s thinning 
algorithm, we find that the algorithm has fulfilled these constraints.

Condition (a) is violated if the examined pixel has less than 2 adjacent pixels. 
This implies that the pixel is either a point element or an end point of a line. 
Therefore, this satisfies constraint (1) mentioned above. Condition (a) can also be 
violated if the examined pixel has 7 or 8 neighbours. Deletion of the pixel will cause 
erosion into the region. Hence constraint (3) is guaranteed by this. Condition (b) 
prevents disconnection of an existing line that is one pixel thick. A few examples are 
depicted in Figure A.3 that violate condition (b). Conditions (c) and (d ) delete east or 
south boundaries and the northwest comer. Conditions (c') and (d') delete north or 
west boundaries and the southeast comer. Therefore, the difference between the two 
steps is simply the direction of the thinning applied.
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Figure A.3. — Illustration o f violation o f condition (b)



Appendix B. Grid Transformation Algorithm

An assumption stated in our region-based model is that each pixel of the image 
canvas must belong to one of the regions. This implies that the region boundary 
representation must not include any pixels; otherwise, there will be pixels that do not 
belong to any region but to the line boundary. Therefore, we find that the thin line 
representation for region boundary is not ideal because it does occupy some pixels.

We need a better boundary representation that does not occupy any pixel. We 
adopt a grid line representation, which exists between two adjacent pixels, to be a new 
line boundary representation (Figure B.l). In order to obtain the grid line boundary, 
the thin line representation is still required. An algorithm is described here to give a 
grid line representation of the region boundary based on the given thin line boundary 
representation.

The following is an algorithm that determines the grid boundary:
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H_grid(x,y)
\\

\

\

V_grid(x,y)

Pixel Position

\\\\
« .

(x,y-l)
\

*
*

"V

'A
(x-i,y) (x,y) (x+l,y)

(x,y+l)

V_grid(x+l,y)

H_grid(x,y+1)

Figure B.l. — Definition o f grid lines 
V(jt,y)e T  where T= the set of pixels that belong to thin lines

I
Set V_grid(x,y) 
Set V_grid(x+l,y) 
Set H_grid(x,y) 
Set H _grid(x,y+l) 

}

/* left grid */
/* right grid */

/* top grid */
/* bottom grid */

V(jc ,y)eT
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Subroutine: Grid_Adjustment(x,y)

{
if (x+1 ,y)*T

Clear V_grid(x+l,y) /* open right grid */ 
else if (x,y+l)*T

Qear H_grid(x,y+l) /* open bottom grid */ 
else if (x—l,y)eT

Qear V_grid(x,y) /* open left grid */ 
else if (x ,y -l)i T

Qear H_grid(x,y) /* open top grid */ 
else /* the pixel (x,y) is at the intersection of two lines */

{
if (jc>0) /* if there is left neighbour */

Qear V_grid(x,y) /* open left grid */
else if (y>0) /* if there is top neighbour */

QearH_grid(x,y) /* open top grid */

}
}

Figure B.2 illustrates the grid boundaries found by the algorithm on a given 
thinned line image. The thinned lines are shown in the shaded pixels in Figure B.2(a).

Y

Y
Y
//

Y

3

Y. Y
Yvy

'À
(a) (b)

YY
A YYYy
YY
(c)

Figure B.2. — Formation o f grid boundary



Appendix C. Boundary Tracing Algorithm

In Chapter 4, when we refer to the two sides of the boundary line created by the 
boundary completion technique, we are referring to the pixels that are horizontally and 
vertically adjacent to the pixels of the boundary (Figure C.l). The reason for this is 
that the region delimiter in our model uses the grid line representation. So, only the 
horizontally or vertically adjacent pixels can be considered as the sides of a boundary 
segment.

Figure C.l. —: Neighbourhood o f a boundary line

We will now describe a tracing algorithm that can find all the traces that pass 
through the neighbourhoods of the boundary line. Any pixel lying on the trace can be 
used as the seed point because the trace lies entirely inside the region.
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V (x,y) e  C, where C = set of pixels of the new boundary line

{
if (x,y) not traced, Trace(x,y)
if (x ,y-l) not traced andL(x,y-l)=L(x,y), Trace(x,y-\) 
if (Jt-l,y) not traced andL(x-\,y)=L(x,y), Trace(x-l,y) 
if (x,y+l) not traced andL(x,y+l)=L(x,y), Trace(x,y+l) 
if (x+l,y) not traced andL (x+1 ,y)=L(x,y), Trace(x+l,y)

}
where L(x,y) is the label of the pixel (x,y).

o Q

P

o R

p Q

0 P

(a) (b) (c)

Figure C.2. — Decision path for tracing
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Subroutine: Trace(x,y)

[
Record (x,y) as the seed point 
mark (x j)  traced 
Initialise the direction for tracing 
Do 

{
if the grid line in the trace direction is ON

change direction to its RIGHT 
else

if case 1 (Figure C.2(a)) 
mark P traced 
O <r— pixel P

else if case 2 (Figure C.2(b)) 
mark P and Q traced 
change direction to its RIGHT 
O «— pixel P

else if case 3 (Figure C.2(c)) 
markP ,Q ,R  traced 
reverse direction 
O <— pixel P

)
Until O = (x,y)

After the trace routine, the seed point recorded for each trace can be used to 
initiate the relabelling algorithm for the region. During this process, an area count for 
each region must be updated so that the labels having a zero area count can be deleted 
from the region labelling set. This is to ensure that a null region does not exist in the 

image.
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