
U sing X I 1 to D em onstrate V isual Effects

by

Frankie Kim-Tak Sun

An essay
presented to the University of Waterloo

in fulfillment of the
essay requirement for the degree of

Master of Mathematics
in

Computer Science

Waterloo, Ontario, 1989

©Frankie Kim-Tak Sun 1989

A uthor’s D eclaration

I hereby declare that I am the sole author of this essay.
I authorize the University of Waterloo to lend this essay to other institutions or

individuals for the purpose of scholarly research.

I further authorize the University of Waterloo to reproduce this essay by photocopying
or by other means, in total or in part, at the request of other institutions or individuals
for the purpose of scholarly research.

n

Record o f U se

The University of Waterloo requires the signatures of all persons using or photocopy-
ing this essay; Please sign below, and give address and date.

in

Acknowledgem ents

My sincere thanks go to my supervisors, Kellogg S. Booth and William B. Cowan,
for their invaluable help and guidance in completing this essay, and to Scott Flinn,
who was kind enough to be the student reader for this essay. Last but not least, I
would like to take this opportunity to express my deep gratitude to my family and
friends for their constant encouragement, without which I would never have been able
to finish this essay.

Financial support for the research reported in this essay was provided by operat­
ing, strategic, and infrastructure grants from the Natural Sciences and Engineering
Research Council of Canada, and by Digital Equipment of Canada.

IV

Abstract
We describe six different variants of visual effects reported in the vision literature.
We begin with an introduction to the X Window System Version 11 (X ll), which
is the environment in which the demonstration of the visual effects takes place. For
each visual effect, we discuss how it appears to an observer and the program that is
used for its demonstration. The visual effects are then discussed in terms of what
they teach about the display of information within a windowed environment and
the tools that the visual effects themselves provide for improving that environment.
Next, specific implementation techniques used in the demonstration programs are
discussed. Finally, the performance of X ll is analyzed in terms of our implementation
experience and suggestions are made for future window system architectures based
on our experience.

C ontents

1 Introduction 1

1.1 Overview.. 1
1.2 X Window System Version 1 1 .. 2

1.2.1 Objectives of XI1 .. 3
1.2.2 X ll Structure.. 4
1.2.3 X ll Concepts.. 4
1.2.4 User Interface.. 11

1.3 Conclusion.. H

2 Visual Effects 12
2.1 Background.. 12
2.2 C o n trast.. 14

2.2.1 Black/White C o n tra s t.. 14
2.2.2 Yellow/Gray Contrast .. 16

2.3 Equiluminance ... 16
2.3.1 Nulling of Apparent M otion .. 16

vi

2.4 Growth and Decay of Sensation.. 23
2.4.1 Benham’s Disc ... 23

2.5 Gestalt Organization.. 26
2.5.1 Interwindow Interference.. 31

3 D em onstration Programs 33
3.1 Overview... 33

3.1.1 Windows... 33
3.1.2 User Interface.. 34

3.2 Black/White C o n tra s t... 34
3.2.1 Main Window ... 36
3.2.2 Control P a n e l.. 36
3.2.3 Results.. 36

3.3 Yellow/Gray Contrast ... 39
3.3.1 Main Window ... 39
3.3.2 Control P a n e l.. 39
3.3.3 Results.. 39

3.4 Nulling of Apparent M o tio n ... 42
3.4.1 Main Window... 42
3.4.2 Control P a n e l.. 42
3.4.3 Status W indow .. 43

2.3.2 Pinwheel .. 18

vii

3.4.4 Results 43
3.5 Pinwheel... 45

3.5.1 Main Window.. 46
3.5.2 Control P a n e l.. 46
3.5.3 Status W indow ... 46
3.5.4 Results.. 50

3.6 Benham’s Disc ... 51
3.6.1 Main Window.. 51
3.6.2 Control P a n e l.. 51
3.6.3 Status W indow ... 54
3.6.4 Results.. 54

3.7 Interwindow Interference.. 55
3.7.1 Window One and Main Window.. 55
3.7.2 Control P a n e l.. 55
3.7.3 Status W indow ... 57
3.7.4 Results.. 57

3.8 Significance of Visual Effects... 59

4 Im plem entation 62
4.1 Structure of P ro g ram s... 62
4.2 Lookup Table Animation.. 64
4.3 Compression of Lookup Table U p d a tes ... 65

viii

4.4 Use of Plural Graphics Primitives... 67
4.5 Window Border Manipulation... 68
4.6 Dragging... 68
4.7 Portability.. 71

5 Problem s and Solutions 72
5.1 Screen Refresh Synchronization.. 72
5.2 Drawing S p e e d ... 73
5.3 Number of Color Cells and Number of Planes 74
5.4 Interruption of A nim ation... 74
5.5 Processing for Lexical and Syntactic Events 76
5.6 Temporal Control over Animation... 76
5.7 Workstation Display A rtifacts... 77

A Location of Programs 80

IX

List o f Tables
2.1 How the Visual Effects Are Grouped 13

x

List o f Figures

1.1 Visual Effect vs. Non-Visual E ffe c t.. 2

2.1 Black/White Contrast ... 15
2.2 Yellow/Gray Contrast ... 17
2.3 Color Bar A ... 19
2.4 Color Bar B 20
2.5 Color Bar C ... 21
2.6 Color Bar D ... 22
2.7 Pinwheel... 24
2.8 Benham’s Disc ... 25
2.9 Small Closed R eg io n .. 27
2.10 Closeness ... 28
2.11 Closedness... 29
2.12 Sim plicity... 29
2.13 Sym m etry... 30
2.14 Good Continuation.. 30

XI

2.15 Interwindow Interference.. 32

3.1 Typical Screen Layout of Demonstration... 35
3.2 Main Window for Black/White C o n tra s t.. 37
3.3 Control Panel for Black/White C o n tra s t .. 38
3.4 Main Window for Yellow/Gray C o n tra s t.. 40
3.5 Control Panel for Yellow/Gray Contrast 41
3.6 Main Window for Nulling of Apparent M otion..................................... 43
3.7 Control Panel for Nulling of Apparent M otion 44
3.8 Status Window for Nulling of Apparent M o tio n 45
3.9 Main Window for Pinwheel ... 47
3.10 Sine Waves vs. Square W av es... 48
3.11 Control Panel for Pinwheel........................ 49
3.12 Status Window for Pinwheel... 50
3.13 Main Window for Benham’s D is c ... 52
3.14 Control Panel for Benham’s Disc .. 53
3.15 Status Window for Benham’s D isc... 54
3.16 Window One and Main Window for Interwindow Interference............. 56
3.17 Control Panel for Interwindow Interference.. 58
3.18 Status Window for Interwindow Interference 59

4.1 Relationship Between Physical and Logical Sectors 65
4.2 Compression of Changes to Benham’s Disc upon Rotation 66

xii

5.1 Movement of Lines in P inw heel... 78
5.2 Red Leakage... 79

xiii

C hapter 1

Introduction

1.1 O verview
In this essay, we discuss the results of using the X Window System Version 11 (X ll)
to display images which we call visual effects. We define visual effects as optical
illusions which are false images produced by our visual system and/or our mind. As
an example, two lines of equal length can be placed so that one appears longer than
the other (Figure 1.1 (a)), which is a visual effect. It is not a visual effect if the two
lines appear the way that they actually are (Figure 1.1 (b)). We believe that visual
effects influence the way that information is perceived on a computer display and that
an understanding of the parameters of reed-time human performance is necessary for
knowing how information is perceived on a computer display.

The visual effects described in this essay are displayed by programs which run
on workstations in the X ll environment. We refer to these programs as demonstra­
tion programs. By the same token, we refer to the execution of such programs as
demonstrations. The demonstration programs have been designed for two purposes.

1. To examine the suitability of Xll for supporting interactive applications un-
1

CHAPTER 1. INTRODUCTION 2

< ---> --

> ---< --

(a) (b)

In (a), the two lines are actually equal in length but the one on top appears shorter,
constituting a visual effect. In (b), the two lines which are equal in length .
actually do appear to be so.

Figure 1.1: Visual Effect vs. Non-Visual Effect

der the assumption that the visual effects being studied are related to display
tasks that occur in retd applications and the assumption that those tasks pose a
reasonable performance measure for X I1.

2. To test the hypothesis that common visual effects occur in windowed workstation
environments, to test the hypothesis that the visual effects influence the way that
information is perceived, and to provide a testbed for analyzing techniques that
ameliorate the consequences of those effects.

1.2 X W indow System Version 11

All of the visual effect demonstration programs described in this essay were devel­
oped at the Computer Graphics Laboratory at the University of Waterloo on Digital
Equipment Corporation (DEC) VAXstations (II/GPX, 3200, etc.) running the X
Window System Version 11 (X ll) [11, 15]. X ll is a descendent of the W Window
System [21] and the X Window System Version 10 (X10) [21]. Released in 1987, X ll

CHAPTER 1. INTRODUCTION 3

has quickly become a de facto standard on many workstations. In this chapter, we
present only enough XI1 fundamentals for the reader to understand the implementa­
tion of the demonstration programs. Further details on X ll can be obtained in the
X Window System Protocol, Version 11 [19] and other references [21].

1.2.1 O bjectives of X l l

X ll was developed which such goals as network-transparency and portability in mind.
Network-transparency allows an X ll application to run on a remote CPU which is
connected to a workstation and to use that workstation for input and output. This
allows for flexibility in choosing whichever CPU is most suitable for the application
while using the workstation for display. We tried this option out at the Computer
Graphics Laboratory, where we have a DEC VAX 8600 mainframe connected via
Ethernet to DEC VAXstations running X ll. The results obtained under this ar­
rangement are not as good as we can get by running the demonstrations locally on
a workstation, although the difference in performance is not great. Neither arrange­
ment is as good as what we had hoped for, especially for the programs which produce
animated sequences (discussed in Section 5.4).

Secondly, X ll provides portability. This allows an X ll application to run on
workstations of different makes and hardware architectures provided that they all
support the X l l network protocol. In fact, portability was one of the main reasons
behind the development of the X Window System at the Massachusetts Institute of
Technology (MIT) in 1984. The portability of the demonstration programs will be
discussed in Chapter 4.

CHAPTER 1. INTRODUCTION 4

1.2.2 X l l Structure

X ll has a layered architecture with the base window system at its foundation. Using
the X ll network protocol the base window system is able to interact with the low-
level programming interface called Xlib, which is a C language subroutine package.
We used Xlib to create the demonstration programs in this essay. Higher level X
Toolkits are available to hide some of the low-level intricacies of Xlib and to provide
a more uniform ‘look and feel’ for different applications for which a consistent style
is desired.

1.2.3 X l l Concepts

X ll is based on the client-server model. The X l l server is a program which resides
in a workstation. Clients are application programs. Communication between the
server and clients is in the form of messages which flow between them. The format
and interpretation of these messages are specified in the X ll network protocol, which
is the formal definition of the X ll window system.

In order for the client-server communication to take place, a client must first es­
tablish a display connection to the X ll server. The display connection is a logical
network circuit between the client and the server and hides from the user the intri­
cacies of the client-server connection, be it remote or local, thus accomplishing the
objective of being network-transparent. There are basically two types of messages
which pass through the display connection. First, we have requests, which are mes­
sages originating from the application destined for the X ll server. Requests can
be one-way or round-trip. One-way requests are buffered to reduce communication
overhead and are used by applications which want the X ll server to complete some
task, such as drawing a line on the screen. Round-trip requests are used to obtain
information from the server, such as getting the current cursor position on the screen.

CHAPTER 1. INTRODUCTION 5

The application blocks while it waits for the reply from the server. As we will see
later, round-trip requests can be quite detrimental to the performance of programs
which produce animated sequences.

The other type of message is the event. Events are of different types and are sent
by the X ll server to an application as a means of notifying the latter of user-induced
actions such as key presses, and application-induced changes to the workstation dis­
play. Application programs solicit the types of event that they want for a window
by setting the appropriate bits in the event mask for the window. Events are placed
in an event queue upon receipt by an application program in the order they arrive
and await processing by an application. The usual way of dealing with events is for
an application to read an event off the event queue (thereby removing it from the
queue) and, depending on the type of event it is, process it accordingly. The above
procedure is then repeated until the application encounters the event signaling the
termination of execution.

Another important idea in X ll is that of resources. They are useful entities that
an application manipulates, e.g. windows, graphics contexts (GC’s), fonts, color
maps, pixmaps and the cursor. Resources reside in the workstation. Some of them,
like graphics contexts, require little memory, with many of them being used by an
application at the same time. Other resources, like the color map, are very limited
in their nature, and have to be used accordingly. For the demonstration programs
to be described in this essay, the most widely used resources are windows, graphics
contexts and color maps.

W indow s

Windows are rectangular screen areas used for input and/or output operations. They
follow the desktop metaphor [12], which allows us to think of windows as pieces of

CHAPTER 1. INTRODUCTION 6

paper lying on a desk surface, subject to certain restrictions, while at the same offering
some flexibilities that objects on real desktops do not share.

Often an application program uses more than one window at the same time. To
keep track of this potentially large number of windows, X ll organizes the windows as
a hierarchy. At the top of this hierarchy is the root window, which covers the entire
screen area. The root window can have child windows, each of which can in turn
have its own child windows. There can be more than one window at the same level
except at the top level. So the root window may have two child windows, which are
considered siblings. An application must specify an existing parent window for every
window that it creates. Thus, all application windows are descendents of the root
window.

The first step in displaying a window on the screen is to create it. This is followed
by mapping, which actually puts the window on the screen. However, under the X ll
desktop metaphor, a mapped window may be obscured either fully or partially by
other windows ‘on top’ of it, in which case the application or the user might want
to move the window around to make it completely viewable. Note that the stacking
order is independent of the parent/child tree.

The characteristics of a window, specified at creation time, cannot be changed
during its lifetime and include its class (InputOutput or InputOnly), depth (number
of bits per pixel) and visual characteristics (how pixel values are turned into colors on
the screen). In addition, a window has a number of attributes, which can be changed
by the application after the initial specification. Attributes are of the following types:
input, appearance, gravity and backing store.

The origin of a window is its upper-right corner. Each window coordinate corre­
sponds to a pixel on the screen. Before an application can create a window, it must
specify the origin of the new window in terms of the coordinate system of its parent.

CHAPTER 1. INTRODUCTION 7

This information, along with the width, height and border width, make up the ge­
ometry of the new window. A window’s configuration refers to its geometry plus its
stacking order relative to its siblings.

X ll allows for a special client application, called a window manager, to organize
and rearrange windows of other applications. Usually, an application uses the appro­
priate Xlib calls to give the window manager hints on things like constraints on the
size of a window and a label for its icon. Also, the window manager usually allows an
application’s window to be moved and resized by the user, and an application should
be designed to accept such actions and respond suitably.

The demonstration programs make extensive use of windows. The main window
contains the actual images that make up a visual effect. Another window, which we
call the control panel, contains controls for manipulating the contents of the main
window. Some demonstration programs also display a status window which shows
the values for some parameters relevant to the visual effect.

G rap h ic s

The parameters for any graphics drawing into a window are set in a graphics con­
text (GC). A graphics context contains rendering attributes such as foreground and
background colors and a line width. It provides for a convenient way to specify the
drawing attributes for an image and reuse the same collection of attributes later for
another image without having to re-specify them.

X ll offers geometric graphics primitives for points, lines, rectangles, arcs and
shapes. An application specifies the screen coordinates of such images in terms of
pixels, and the X ll server computes which pixels to draw into along the way. Besides
windows, X ll allows drawing into pixmaps, which are invisible, off-screen raster areas.
All windows and pixmaps are regarded as drawables in X ll, and any drawing primitive

CHAPTER 1. INTRODUCTION 8

simply specifies the identifier for the drawable where the drawing should go.
Every demonstration program in this essay makes extensive use of the X I1 graphics

primitives for drawing into the main window images which, when manipulated, give
the visual effect that we are seeking. Drawing of the graphics primitives goes through
a five-stage graphics pipeline in XI1. The five stages are:

1. Pixel Selection — X ll computes which pixels must be altered in the window
in order to display the primitive object.

2. P a tte rn in g — X ll applies to the pixels selected in stage one foreground and
background colors as specified in the graphics context.

3. GC Clipping (Optional) — X ll optionally clips or discards all pixels outside
a region specified in the graphics context.

4. W indow Clipping — X ll clips all pixels which lie outside the boundaries of
the window or pixmap into which an application draws.

5. R aster O u tpu t — X ll combines, bitwise for every unclipped pixel, colors
generated by the graphics primitive with the colors already present. Usually the
new colors simply replace the old ones.

Color

X ll’s color capabilities are used extensively in the demonstration programs, although
we are more or less limited to the visual class offered by the workstations. Color is
specified in terms of a pixel value, which is an index to a color cell in a color map.
The actual contents of a color cell determine what color it gives. The number of
planes determines the size of the color map. For example, an 8-plane workstation has
8-bit pixel values and thus at most 256 color cells in a color map. The more planes a

CHAPTER 1. INTRODUCTION 9

workstation has, the more color cells are accessible. The X ll VAXstations that are
used for the development of the demonstration programs have at most 8 planes.

A visual class is a strategy for translating a pixel value into RGB triplets. There
are six visual classes under Xll:

• PseudoColor — Each pixel value is an index to a color cell in a color map. For
example, an 8-plane workstation can simultaneously display at most 28 = 256
colors from a gamut of 2563 (256 intensities each for R, G and B) possible colors.
PseudoColor requires a relatively small number of bits/planes while still allowing
a rich gamut. The demonstration programs in this essay run on workstations
which support this visual class.

• D irectC olor — Each pixel value is three separate indices to the R, G and B
channels of a color map. For example, a 24-plane (8 planes each for R, G and
B) workstation can display any color out of a gamut of 2563 possible color com­
binations at a time. DirectColor requires many more planes than PseudoColor
to be effective, and are thus expensive. Images which require a large number of
colors at a time, such as smoothly shaded colored objects, will find DirectColor
much more desirable than PseudoColor.

• GrayScale — Each pixel value is an index to a color cell, except that only one
of the R, G and B channels of the color cell is used. It is assumed that the R,
G, and B values are equal for the color cell. GrayScale is used on multiplane
workstations which have monochrome displays.

• S taticC olor — Like PseudoColor, except that the contents of a color cell cannot
be changed.

• TrueColor - Like DirectColor, except that the contents of a color cell cannot
be changed.

CHAPTER 1. INTRODUCTION 11

1.2.4 U ser Interface

Besides the keyboard, X ll workstations support a pointer device, usually a mouse.
The mouse is used to control the position of the tracking cursor on the screen. This,
along with the buttons that come with the mouse, allow the user to interact with an
application in a wide variety of ways, such as clicking, double-clicking and dragging of
an object on the screen. Although X ll provides an application with the mechanism
for this array of interaction techniques, it is the application’s responsibility to come
up with the appropriate interaction policy.

Input from the keyboard and the pointer device is in the form of events. An
application should solicit and interpret such events as necessary in order to provide
a good user interface.

1.3 C onclusion
We have presented some fundamental concepts of the X Window System Version 11.
This knowledge is helpful in understanding the implementation of the demonstration
programs that display the visual effects.

In the next chapter, we will discuss the different types of visual effects that the
demonstration programs are to produce.

CHAPTER 1. INTRODUCTION 10

• S taticG ray - Like GrayScale, except that the contents of a color cell cannot be
changed.

X I1 also provides three strategies for dealing with color maps. They are:

• Shared Color Map — XI1 returns pixel values for colors with symbolic names
or specific RGB values. Most of these color cells are preallocated and fixed with
their RGB values, allowing more than one application to display the same color
at the same time. However, an application can also specify the RGB values for
a color and have XI1 allocate a color cell for it as long as the color map is not
full. The shared color map strategy is thus a method for conserving limited color
resources.

• S tandard Color Map — XI1 provides a number of standard color maps which
contain color cells with preloaded R, G and B primary values. Associated with
each standard color map is a data structure containing information which an
application needs in order to compute a pixel value given an RGB triplet. This
strategy is useful for the display of smoothly shaded objects and is mostly im­
plemented under the DirectColor or TrueColor visual classes.

• P rivate Color Cells — An application sends requests to X I1 for the allocation
of color cells. The application can subsequently load RGB triplets into the color
cells and reference them for the display of colors. The contents of these color cells
can be changed any time by an application, with any such change reflected on the
screen immediately. By having different objects on the screen reference different
private color cells, and by carefully changing the contents of these color cells
dynamically, an application is able to achieve lookup table animation [18, 22, 23].
The demonstration programs in this essay which produce animated sequences are
made possible using this technique (discussed in Sections 4.2 and 4.3).

C hapter 2

V isual Effects

2.1 Background

X ll offers a wide variety of graphics primitives which are suitable for the reproduction
of two-dimensional images. Additionally, X ll allows for interaction techniques using
a mouse. We would like to challenge X ll with the reproduction and manipulation
of some visual effects that are representative of display tasks that occur in many
workstation-based applications.

Visual effects abound, in our everyday life. They range from those which are
routinely exploited in commercial advertising to ones of which nobody is yet aware.
In recent years, with the popularity of the television medium and computers, we
have gotten more and more exposure to the cathode ray tube (CRT) display, be it a
common television screen or a sophisticated computer workstation display. Moreover,
with the availability of color on many of these CRT’s, we are constantly in need of
more information on how to effectively make use of their capabilities in order to
convey ideas as clearly as possible. Careful study and understanding of visual effects
could help us determine which images to avoid and how.

12

CHAPTER 2. VISUAL EFFECTS 13

Static Dynamic
Contrast Black/White Contrast

Yellow/Gray Contrast
Equiluminance Nulling of Apparent Motion

Pinwheel
Growth and Decay
of Sensation

Benham’s Disc

Gestalt
Organization

Interwindow Interference

Table 2.1: How the Visual Effects Are Grouped

The visual effects that are reproduced in the demonstration programs are of four
types: contrast, equiluminance, growth and decay of sensation and Gestalt organiza­
tion. Each visual effect is either static or dynamic. A static visual effect is defined
as one which is produced by an image which does not change over time without user
control. If a visual effect is produced by an image which changes over time without
user control, then it is considered dynamic. The types of visual effects that we con­
centrate on in this essay cover a fairly range of display tasks, and we have chosen
from each type one or two typical examples. Table 2.1 shows what visual effects are
demonstrated and where they stand with respect to the two grouping schemes.

In this chapter, we will discuss each visual effect in its ideal form without im­
plementation details. For each visual effect, we will describe what an observer sees,
and how it works. Then in the next chapter, we will see how each visual effect is
implemented by a demonstration program.

CHAPTER 2. VISUAL EFFECTS 14

2.2 C ontrast
The contrast effects that areas of different colors have on one another are probably
some of the most common visual effects in our daily life [1, 7, 17]. We have chosen to
concentrate on one type of contrast, namely simultaneous contrast, meaning effects
stemming from areas contiguous in space and simultaneous in time, as opposed to
successive contrast, meaning effects from areas which have the same physical location
but are displayed one after another. Simultaneous contrast helps us to make out more
clearly areas of different luminance (brightness) and chromaticities (colors).

Simultaneous contrast is explained by lateral inhibition caused by center-surround
receptive field in the ganglion cells of the retina [8, 9, 14]. Simply put, lateral in­
hibition causes the retina regions illuminated by different patches of light to have
inhibitory effects on one another. Two other related causes of simultaneous contrast
include induction and adaptation [8]. Induction is the visual system’s way of en­
hancing our perception of edges. Adaptation, on the other hand, is the method by
which our visual system adjusts the gain of our vision in environments of different
brightness, for example, when we step out of a movie theater into bright sunshine.
The interaction between these two factors along with other lesser known factors give
rise to a wide variety of visual effects. In this essay, we will look at two of these, a
well-known black/white contrast effect and a yellow/gray contrast effect.

2.2.1 B lack /W hite Contrast

The effect [1] that we try to show here takes place when we have two patches of
the same gray, one of which is surrounded by a relatively large black area and the
other surrounded by a relatively large white area (Figure 2.1). Looking at both gray
patches, one notices that the gray patch surrounded by the black area appears quite
a bit brighter than the one surrounded by the white area.

CHAPTER 2. VISUAL EFFECTS

Figure 2.1: Black/White Contrast

CHAPTER 2. VISUAL EFFECTS 16

2.2.2 Y ellow /G ray Contrast

A color derivative of the black/white contrast is the yellow/gray contrast [1]. We have
two X-shaped areas connected to each other at the top by a strip of the same width.
The X on the left lies within a yellow area, while the X on the right lies within a gray
area. The two X’s, including their connecting strip, all have the same color, which
is an equal mixture of the surrounding yellow and gray (Figure 2.2). By adjusting
the relative luminance (but not the chromaticity) of the yellow and gray so that
they have the same brightness perceptually, we get a reversed ground effect, in which
each X takes on the color of the opposite surrounding. This effect demonstrates that
simultaneous contrast is not confined to luminance, but exists for purely chromatic
contrasts as well.

2.3 E quilum inance

We try to demonstrate two different visual effects which deal with the equiluminance
of two colors, in this case red and green. Equiluminance is defined as two or more
colors having the same perceived brightness. First, using the correct animation se­
quence, we can null the apparent motion of rectangles in a color bar sequence. In a
related visual effect, we see what a rotating pinwheel looks like when portions of it
are at equiluminance.

2.3.1 N ulling o f Apparent Motion

The apparent motion takes place in a color bar made up of rectangles [2, 6, 13]. Two
such rectangles of the same color adjacent to each other make up a square in the
color bar. The color bar has four frames which are displayed one after another at
the same physical spot. We will look at four different versions of the color bar, all

CHAPTER 2. VISUAL EFFECTS

Figure 2.2: Yellow/Giay Contrast

CHAPTER 2. VISUAL EFFECTS 18

of which have the same first and third frames. We start off with color bar A (Figure
2.3). If we display this color bar, we should clearly see an apparent motion toward
the left. Now consider color bar B (Figure 2.4). If we display this color bar, we should
see an apparent motion toward the right. Now consider color bar C (Figure 2.5) in
which the second and fourth frames are just gray. With this color bar, we have equal
evidence to support leftward and rightward motion. We therefore conclude that there
is only flickering — black squares becoming white squares and vice versa. Thus, the
apparent motion as seen in color bars A and B are nulled in color bar C. In fact, we
could get rid of the second and fourth frames of color bar C and still get the same
effect. Now consider the last scenario — color bar D, and suppose that for the second
and fourth frames the green is much darker than the red. We have essentially the
color equivalent of color bar A in this case. The result of this sequence is an apparent
motion toward the left. If, on the other hand, the green is much brighter than the
red for the second and fourth frames, we should perceive an apparent motion toward
the right. This is equivalent to color bar B. The nulling of apparent motion occurs in
color bar D when the red and green in the second and fourth frames are equiluminous,
thus equivalent to the gray in color bar C.

2.3.2 Pinwheel

A special case of the equiluminance effect discussed above is that exhibited by the
rotating pinwheel (Figure 2.7). When the red and green portions of the rotating
pinwheel are equiluminous, by looking at the center of the pinwheel, one should get the
distinct impression that the outer red/green portion of the pinwheel is slowing down or
is even not rotating at all relative to the inner white/bla,ck portion. The explanation
for this phenomenon is that looking at the center of the rotating pinwheel results in
the red/green portion being seen by our peripheral vision. While the periphery is
good at detecting motion that has a luminance component (different brightness), it

CHAPTER 2. VISUAL EFFECTS 19

Frame 1

Frame 2

Frame 3

Frame 4

Figure 2.3: Color Bar A

CHAPTER 2. VISUAL EFFECTS 2 0

Frame 1

Frame 2

Frame 3

Frame 4

Figure 2.4: Color Bar B

CHAPTER 2. VISUAL EFFECTS 2 1

Frame 1

Frame 2

Frame 3

Frame 4

Figure 2.5: Color Bar C

CHAPTER 2. VISUAL EFFECTS 2 2

Frame 1

Frame 2

Frame 3

Frame 4

Figure 2.6: Color Bar D

CHAPTER 2. VISUAL EFFECTS 23

is relatively poor at detecting the rotation of the red/green portion of the pinwheel
when the red and the green have the same perceived brightness. This means that
the perception of the outer rotation relies on the chromaticity difference between
the red and green. However, the perception of color is highly localized in the fovea,
with significantly less color acuity in the periphery. In contrast, rotation of the inner
white/black portion is easily detected by our foveal vision because of a luminance
component.

2.4 G row th and D ecay o f Sensation
This category of visual effects deals with illusions that arise as a result of after-images
[1], We see after-images after looking intently at bright objects. These after-images
are of the same size and form as the original object, but vary in color. This is related
to the persistence of vision, which begins when we first look at an object, at which
time our visual sensation of that object grows. This sensation gradually levels off and
begins to decline or decay when we take our vision off that object. One interesting
example of this type of visual effect is Benham’s Disc.

2.4.1 B enham ’s Disc

Benham’s disc [1, 14, 17] is a disc divided into two equal portions, one white and one
black, by a diameter. The white portion contains several groups of black concentric
arcs (Figure 2.8). Upon rotation, one is able to see the different groups of arcs
in different colors. The color of a group is dependent on the direction of rotation
and its position relative to the black portion of the disc. For example, in clockwise
rotation, group A will be reddish, while groups B and C will be bluish and greenish
respectively. When the direction of rotation is counterclockwise, the colors of A and
C will be reversed.

CHAPTER 2. VISUAL EFFECTS 24

Figure 2.7: Pinwlieel

CHAPTER 2. VISUAL EFFECTS 25

Figure 2.8: Benham’s Disc

CHAPTER 2. VISUAL EFFECTS 26

We still lack a detailed explanation for this visual effect, which takes place under
monochromatic light as well [14]. It was suggested early on that the differences in
the growth and decay rates of the various color sensations reflected from the white
stimulus plays a part in the formation of this visual effect [17]. Moreover, it is
believed that the time-varying activity produced in the optic nerves upon rotation of
the Benham’s disc is similar to that produced by the perception of real colored lights
[14]-

2.5 G esta lt O rganization
This class of visual effect is based on the Gestalt Laws of Organization [10, 20].
These laws tell us that the following properties of and between different objects are
conducive to our grouping them together:

• Small Closed Region (Figure 2.9)
• Closeness (Figure 2.10)
• Closedness (Figure 2.11)
• Simplicity (Figure 2.12)
• Symmetry (Figure 2.13)
• Good Continuation (Figure 2.14)
Gestalt organization visual effects are different from the other types of visual effects

that we have discussed thus far — they are formed in the human brain rather than
in the human visual system [10]. Because of their high-level nature, it is certainly
possible that the Gestalt Laws of Organization are not universal but are a product
of human experience, and as such, are subject to change over time and from person
to person, and should be treated accordingly.

CHAPTER 2. VISUAL EFFECTS 27

(a) <b)

In (a), we see a white cross on a black background In (b), we see a black cross on a
white background. We don't see a fat black cross on a white background in (a) and
we don't see a fat white cross on a blackground in (b). This is because a thin cross
forms a small closed region.

Figure 2.9: Small Closed Region

CHAPTER 2. VISUAL EFFECTS

o o o o o o o o o oo o o o o o o o o oo o o o o o o o o oo o o o o o o o o oo o o o o o o o o oo o V O o o o o o o oo o o o o o o o o oo o o
(a)

o o o o o o o
(b)

In (a), we tend to see the circles as separate rows or columns. In (b), we tend to
to see the circles as a rectangular entity. The reason is that in (b), the circles
are much closer together.

Figure 2.10: Closeness

CHAPTER 2. VISUAL EFFECTS 29

] □ □ □ □ (
(a)

(H H . n H)
(b)

In (a), we tend to see four television screens. In (b), we tend to
see four apple cotes.

Figure 2.11: Closedness

\ \

\ \
(a) (b)

Both (a) and (b) are equally accurate (or inaccurate) views of the same wireframe cube,
yet we are able to perceive (a) as a cube easier because it is simpler.

Figure 2.12: Simplicity

CHAPTER 2. VISUAL EFFECTS 30

(a) (b)

In (a), we tend to see black columns on a white background. In (b), we tend to see white columns on a
black background. The reason behind this is that the edges that make up a column are always
symmetrical.

Figure 2.13: Symmetry

We tend to think of (a) as two straight lines crossing
each other. However, it is equally possible that the
cross in (a) is made up of the two lines in (b), which
do not have good continuation.

Figure 2.14: Good Continuation

CHAPTER 2. VISUAL EFFECTS 31

2.5.1 Interwindow Interference

Suppose we have two windows side by side. If we have a line in each of these two
windows in such a way that they are more or less of the same slope, width and color,
and that they are aligned, there is a tendency for us to conclude incorrectly that it
is really one single line that we are seeing passing underneath the borders of the two
windows (Figure 2.15). This ideal Gestalt scenario meets all the influential properties
described above except closedness.

CHAPTER 2. VISUAL EFFECTS 32

Figure 2.15: Interwindow Interference

C hapter 3

D em onstration Program s

3.1 O verview
Every visual effect described in the last chapter is implemented by a demonstration
program. These demonstration programs run on X I1 workstations which support the
PseudoColor strategy. In addition, each program requires a certain number of private
color cells to be allocated by the X ll server. The programs are all written in C code
and they make use of X ll’s capabilities by issuing the appropriate Xlib calls.

In this chapter, we describe for each visual effect its demonstration program in
terms of the windows it puts on the screen and what the intended visual effect actually
looks like to the observer. To facilitate this discussion, we should take note of certain
shared features among the demonstration programs.

3.1.1 W indows

First, the images which make up the visual effect reside in the main window, which,
unless otherwise stated, is 820 pixels x 820 pixels (277 mm x 27i mm), and which

33

CHAPTER 3. DEMONSTRATION PROGRAMS 34

at a normal viewing distance of 60 cm, subtends a visual angle of 26 degrees. All
demonstration programs display a second window called the control panel, which is
165 pixels (56 mm) wide. The control panel is the user interface which allows the
user to manipulate the various parameters which are relevant to the reproduction of a
visual effect. Some of the demonstration programs also display a third window which
we refer to as the status window (165 pixels or 56 mm wide). The status window
allows the user to determine at a glance the state of some relevant parameters. A
typical layout of the screen with all three windows present is shown in Figure 3.1.

3.1.2 User Interface

All the demonstration programs are interactive. Once execution begins, the user
interacts with the program via the control panel using a mouse attached to the work­
station. All mouse buttons are treated equivalently. The controls in the control panel
are of three types: sliders, regular buttons, and extended buttons. The user manipu­
lates a slider by dragging its arrow pointer. Regular buttons provide only one option
at a time, and when clicked on, carry out the action as labeled. An extended button
is different from a regular button in that it offers more than one option at a time.
The current option, chosen by a mouse click, is indicated by an arrow pointer. The
extended button is used for the speed control.

3.2 B la ck /W h ite C ontrast
This static visual effect is implemented using a main window and a control panel.

CHAPTER 3. DEMONSTRATION PROGRAMS 35

Figure 3.1: Typical Screen Layout of Demonstration

CHAPTER 3. DEMONSTRATION PROGRAMS 36

3.2.1 M ain W indow

The main window is divided up into two equal portions, left and right. The left
portion is white in color (full RGB intensity), while the other is black (zero RGB
intensity). Each portion contains a considerably smaller square (100 pixels or 34 mm
wide, subtending a visual angle of 3.25 degrees) in the middle, the one on the left
being fixed with a gray color somewhere in the range between black and white, the
one on the right initially given a white color (Figure 3.2).

3.2.2 Control Panel

The control panel (Figure 3.3) consists of a slider for varying the gray intensity of the
small right square in the main window within the complete range of full black to full
white. The surround button allows the user to toggle the main window between a
default normal state and a comparison state. In the regular state, the main window
is as shown in Figure 3.2. In the comparison state, the surrounds are replaced by the
colors of the small squares. The quit button allows the user to terminate execution
of the program.

3.2.3 R esults

The objective here is to match the brightness of the square on the right with that of
the small square on the left under the influence of the black and white surrounds. The
surround button in the control panel allows the user to tell at once how different the
two colors really are even though they may look the same with the surrounds present.
Conversely, the user can match the two colors with the surrounds off, and see how
much they differ with the surrounds back on. And despite the fact that the visual
effect which is reproduced is quite widely known, people seem to be more convinced

CHAPTER 3. DEMONSTRATION PROGRAMS 37

Figure 3.2: Main Window for Black/W hite Contrast

CHAPTER 3. DEMONSTRATION PROGRAMS 38

CONTROL PANEL
•sSx-ss • .

MAX — - 4 - s\ ..sS * V \
. \ \
ss s s \ ss s sv vS>">s i *•
's.;>;ssv . îssv .«s^ s* v.;.s,. s «•■

S:-Sy!sx«>̂ :*̂ :ss'ŝ sjiss,.,.'ässsss,.sss>s>-
s' \

s S ^ ^ s * ^

* ' * ' ^
S S

s % S S
S ““ s s *• N

s s s ss s s s s s

s s s

' ' , '

MIN - Bill ^ s sv

' • s s s
\ N

SURROUND OFF

QUIT

5Ìì5S-::USì5$:S!ì-*S3

Figure 3.3: Control Panel for Black/Wliite Contrast

CHAPTER 3. DEMONSTRATION PROGRAMS 39

than ever of its presence after using the demonstration program and are genuinely
impressed with how it affects luminance judgement.

3.3 Y ellow /G ray Contrast
This static visual effect is implemented with a main window and a control panel.

3.3.1 M ain W indow
The main window (Figure 3.4) consists of two adjacent X’s connected by a strip of
the same width at the top. The X on the left sits in an area initially of a full yellow
intensity. The X on the right sits in an area initially of a middle gray intensity.
The X’s and their connector are of the same color, which is an equal mixture of the
surrounding yellow and gray.

3.3.2 Control Panel
Two sliders are provided in the control panel (Figure 3.5). One controls the yellow
intensity of the left half of the main window. The other controls the gray intensity of
the right half of the main window. Since the X’s and their connecting strip get their
color from the yellow and gray surrounds, any manipulation of the sliders is reflected
in the X’s and their connecting strip as well. The quit button allows the user to exit
the program.

3.3.3 R esults
The objective of this demonstration is to adjust the brightness of the yellow and gray
so that when they are of the same brightness perceptually (equiluminous), each of
the X’s will be the color of the background on the opposite side.

CHAPTER 3. DEMONSTRATION PROGRAMS

Figure 3.4: Main Window for Yellow/Gray Contrast

CHAPTER 3. DEMONSTRATION PROGRAMS 41

CONTROLPANEL_________
I

YELLOW ÖRAY.........................---------------------
max- 4 - 4 r

Mm

wot-
< ŝ .V S> \ s s*% <■ N • ,*sk **■* N - MS. , ■■ 'iplplipsPÉPPlàiplliPlÉÉi''Vsï\ Vii

<■ s¡ ü l f
MIN

p p w* s. s*
îA ¥ ^ A :5ÎS>>!i?S % <■ «y** v . ' -

wm viÊàÂ

< -

QUIT

Figure 3.5: Control Panel for Yellow/Gray Contrast

CHAPTER 3. DEMONSTRATION PROGRAMS 42

Not everyone can catch the desired visual effect. In most cases, the user needs to
view the main window for a while, typically 15 to 20 seconds, before he is able to see
the effect. Of course, the difficulty may be a result of the user’s looking at the control
panel while adjusting the yellow and gray intensities, which could easily cancel the
desired visual effect.

As an extension of this visual effect, we were able to get similar results by substi­
tuting other colors for yellow.

3.4 N u llin g o f A pparent M otion

The demonstration program for the nulling of apparent motion requires a main win­
dow, a control panel and a status window.

3.4.1 Main W indow

The color bar which demonstrates the nulling of apparent motion resides in a main
window (Figure 3.6) which is 1000 pixels x 280 pixels (338 mm x 95 mm, subtending
a visual angle of 31.5 degrees). The four frames that the color bar cycles through
are shown in Figure 2.6, each rectangle being 5 pixels x 10 pixels (1.7 mm x 3.4 mm,
subtending a visual angle of 0.3 degrees).

3.4.2 Control Panel

The control panel (Figure 3.7) allows the user to adjust the intensities of the red and
green rectangles of the second and fourth frames of the sequence using two sliders.
The speed control (an extended button) is used to control how fast the demonstration
program cycles through the four frames of the color bar. The step button is only active

CHAPTER 3. DEMONSTRATION PROGRAMS 43

Figure 3.6: Main Window for Nulling of Apparent Motion

at a speed of zero, and enables the user to advance one frame of the color bar. The
quit button allows the user to terminate execution of the program.

3.4.3 Status W indow

The status window (Figure 3.8) provides the following information: red intensity,
green intensity and the ratio between the two. Since we are interested in the correla­
tion between the perceived motion of the rectangles in the color bar and the levels of
the red and green intensities, the information displayed in the status window should
be useful in helping us determine when a certain perceived motion should occur.

3.4.4 R esults

During the demonstration, the user can detect the motion of the rectangles quite
easily. Choosing a higher cycling speed may well accentuate any perceived motion,
although how this parameter affects the determination of equiluminance is still under

CHAPTER 3. DEMONSTRATION PROGRAMS 44

Figure 3.7: Control Panel for Nulling of Apparent Motion

CHAPTER 3. DEMONSTRATION PROGRAMS 45

Figure 3.8: Status Window for Nulling of Apparent Motion

debate [2]. The actual R/G ratio for the successful nulling of apparent motion depends
on the calibration of individual workstation displays. But after running this program
on severed of the workstations available, we determined that the calibration of their
displays is close enough for us to conclude that at an R/G ratio of about 1.6, we are
able to null the apparent motion (i.e. achieve equiluminance for the red and green
rectangles). At this point, we only see some intense flickering from the color bar,
especially at the higher cycling speeds. At any R/G ratio below 1.6, a rightward
motion is detected. Similarly, a leftward motion is detected at any R/G ratio above
1.6 .

3.5 P in w h eel
The demonstration program which displays the pinwheel allows the user to specify the
number of sectors desired (an even number between 6 and 360 inclusive). If the user
does not enter a desired number on the command line prior to execution, then the
default number of 20 is used. A main window, a control panel and a status window
are displayed on the screen.

CHAPTER 3. DEMONSTRATION PROGRAMS 46

3.5.1 Main W indow

The pinwheel that is displayed in the main window (Figure 3.9) is generally the same
as the one described in the last chapter. One noticeable difference in our implemen­
tation is that the pinwheel is painted in sine waves rather than the more conventional
square waves (Figure 3.10), as experience shows that the former is more effective for
this task. One interesting result of this is that the white/black inner portion of the
pinwheel actually resembles a three-dimensional rendering of shaded white cones sus­
pended in dark space, because of the similarity between the sinusoidal color intensities
and those used in a shading model.

3.5.2 Control Panel

At the top of the control panel (Figure 3.11) are two sliders for controlling the inten­
sities of the red and green of the outer portion of the pinwheel. The speed control
allows the user to choose a desirable rotation speed, given in degrees of rotation per
frame. The next button allows the user to toggle between clockwise and counterclock­
wise rotation. Another button allows the user to stop or resume rotation. Finally,
there is the quit button.

3.5.3 Status W indow

The status window (Figure 3.12) shows the following information: number of sectors,
number of rotations per second, maximum red intensity, maximum green intensity
and the ratio between the two.

CHAPTER 3. DEMONSTRATION PROGRAMS 47

Figure 3.9: Main Window for Pinwheel

CHAPTER 3. DEMONSTRATION PROGRAMS 48

Suppose die pinwheel is divided up into 20 alternating red/white and green/black sectors.
Each logical sector therefore covers 18 degrees of the pinwheel The following graphs
depict the differences in the color intensities between sine waves and square waves in two
adjacent logical sectors.

Sine W aves
Intensity

Gray.Intensity

Square Waves
Intensity

Figure 3.10: Sine Waves vs. Square. Waves

CHAPTER 3. DEMONSTRATION PROGRAMS 49

Figure 3.11: Control Panel for Pinwlieel

CHAPTER 3. DEMONSTRATION PROGRAMS 50

STATUSWINDOW
mOF$BCJTO^

S V Ä ^ 4“

m DBBMBUis s v-ra
CSCSBKUEVBUV
Ä /G RA H Ö iU "

< *> '-iSl i i p p pfc v |v v ;p
«

PÄ Ä V ’si

Figure 3.12: Status Window for Pinwheel

3.5.4 R esults
Although the user is able to specify the number of sectors for the pinwheel, the
default number of 20 is quite satisfactory for our purposes. However, whether any
user of this demonstration actually sees the desired apparent cessation of rotation is
not clear. Still, at a speed of around 0.5 rotations per second and by setting the red
and green intensities so that they give a R/G ratio of about 1.6, most users are able
to see an apparent slowing down of rotation of the red/green portion of the pinwheel
relative to its white/black inner portion. Some users of this demonstration program
thought they saw no rotation of the red/green portion relative to the white. The
direction of rotation seems to have little or no effect on a user’s ability to see this
visual phenomenon. On the other hand, any user of this demonstration program will
notice the actual sporadic slowing-down or even stopping of the rotating pinwheel,
which is a phenomenon attributable to the irregular update rate for frames (discussed
in Section 5.4). This problem causes distraction for the user of this demonstration
program, and certainly adds to the difficulty in seeing this subtle visual effect.

CHAPTER 3. DEMONSTRATION PROGRAMS 51

3.6 B en h am ’s D isc
The Benham’s Disc demonstration program uses a main window, a control panel and
a status window.

3 .0 . 1 M ain W indow
Our version of Benham’s Disc which resides in the main window (Figure 3.13) is
implemented using 60 physical sectors, which means any change has to be in multiples
of 6 degrees. This is a result of the irregular pattern of the disc and of the limitation
of the specific implementation of X ll. This problem is discussed in more detail in
Chapter 5.

3 .0 . 2 Control Panel
It is an aim of this demonstration program to see what happens when we slide the
middle group of arcs left or right, and what happens if we vary its length. The control
panel (Figure 3.14) allows the user to apply these and other changes to Benham’s Disc.
At the top of the control panel is a display which shows the position as well as the
length of the middle group of arcs. Below this display are buttons for sliding the
middle group of arcs left and right, and buttons for increasing and decreasing the
length of the arcs within. The speed control is an extended button for setting the
speed in multiples of 6 degrees of rotation per frame. One button each is also provided
for controlling the direction of rotation, and for stopping/resuming rotation. The last
button in the control panel is the quit button.

CHAPTER 3. DEMONSTRATION PROGRAMS 52

Figure 3.13: Main Window for Benham’s Disc

CHAPTER 3. DEMONSTRATION PROGRAMS 53

Figure 3.14: Control Panel for Benliam’s Disc

CHAPTER 3. DEMONSTRATION PROGRAMS 54

STATUS WINDOW
* v *?x. s S i

, f ** **'"1 îV ' s a ' VW W ^ Ä ¥ Ä < * i S 5 * ^ a i } i S s i K « W ^ < ^ ^ ^ ^ s «DnugcTiô aœcwisE-
gfrstrr— - .

Figure 3.15: Status Window for Benham’s Disc

3.0.3 Status W indow
The status window (Figure 3.15) shows the direction of rotation and the number of
rotations per second.

3.6.4 R esults
All the colors for this visual effect are seen as expected: red outermost, blue in the
middle and green innermost upon clockwise rotation. Changing the speed of rotation
has little effect, except that at least 4 rotations per second are required before the
colors are seen. The colors tend to become more vivid as the rotation speed goes
up. Sliding the middle group right will gradually change its color from blue to green,
while sliding it left will result in a gradual shift toward red. A longer middle group
gives a darker color, while shortening the group gives a brighter color. Reversing the
direction of rotation reverses the colors of the left and right groups, while the color
change of the middle group depends on its position. It can be concluded that the
color a particular group assumes depends on its length and its position relative to the
border between the black and white semi-circles. The radius of the concentric circle
on which a group lies is irrelevant. As in the pinwheel demonstration, the problem
of the irregular frame update rate once again results in the non-uniform rotation of

CHAPTER 3. DEMONSTRATION PROGRAMS 55

Benham’s Disc in this demonstration. This problem will be discussed in Section 5.4.

3.7 Interw indow Interference
The demonstration program for this visual effect puts up a window one, a main
window, a control panel and a status window.

3.7.1 W indow One and Main Window

Since this visual effect takes place across two windows, merely having a main window
is not sufficient to display the effect. Therefore, the demonstration program puts up
another window called window one, which is the main window s partner in this visual
effect (Figure 3.16). Window one is 400 pixels x 700 pixels (135 mm x 237 mm), while
the main window is 1000 pixels x 1000 pixels (338 mm x 338 mm). Initially, both
windows have the same gray background, a one-pixel wide black border, and each has
a line with the same slope and of the same red color within. The two windows are
initially positioned in such a way that the two red lines are aligned. Finally, a title
bar comes with the main window only, thus allowing the user to move it around the
screen by dragging.

3.7.2 Control Panel
Note that the control panel (Figure 3.16) only controls the main window and not
window one, which is fixed in position as well as in color and border width. At
the top of the control panel are two sliders for controlling the intensity of the gray
background and the intensity of the red foreground respectively, both of the main
window. A third slider is also provided to vary the border width of the main window
between 0 and 160 pixels. The restore button restores the main window to its initial

CHAPTER 3. DEMONSTRATION PROGRAMS 56

Figure 3.16: Window One and Main Window for Interwindow Interference

CHAPTER 3. DEMONSTRATION PROGRAMS 57

appearance and position. As always, the control panel would not be complete without
the quit button.

3.7.3 Status W indow
The status window (Figure 3.18) shows the border width of the main window. In
addition, it shows two quantities labeled X and Y. X refers to the horizontal distance
between the left border of the main window and window one. Y refers to the vertical
distance by which the main window should be moved in order for the lines in the two
windows to be colinear. Both values are expressed in number of pixels.

3.7.4 R esults
The objective of this demonstration is to show that by changing the position of the
main window and/or its appearance, we can correct the erroneous impression that
the two lines are one line passing underneath the borders of window one and the main
window. Based on informal comparisons conducted for this demonstration, we have
come up with the following conclusions. Of all the methods provided to achieve this
goal, repositioning the main window seems the most effective. To be really useful,
the repositioning should be two-fold: distance the main window from window one,
and break the colinearity of the two lines. These two aims are represented by the
values of X and Y respectively in thé status window. Of course, manipulating the
background and foreground colors of the main window and its border width helps to
resolve the ambiguity between the two lines, but their roles seem supplementary to
the repositioning option. A detailed experiment could be carried out to determine
the real effectiveness of each resolving method.

CHAPTER 3. DEMONSTRATION PROGRAMS

Figure 3.17: Control Panel for Interwindow Interference

CHAPTER 3. DEMONSTRATION PROGRAMS <r̂ 59

STATUS WINDOW
BQRDEft.
%*V a s f '>

Figure 3.18: Status Window for Inter window Interference

3.8 S ignificance o f V isual Effects
While it is true that the various demonstration programs allow us to test the capabili­
ties of X I1, the visual effects that are produced in the demonstrations are noteworthy
in their own right. Through the reproduction of these visual effects, we have gained
insight into their mechanisms and their implications for computer graphics.

From the two contrast visual effects , we learn that our perception of a color is
strongly influenced by the color of its surrounding. Using the right combinations of
colors, we can accentuate color differences of different areas, which helps us distin­
guish among these areas more easily. Conversely, under the influence of contrast,
it is possible to equate erroneously one color with another. One application on the
computer display in which both scenarios could take place is a weather radar map
which depicts precipitation levels in a fixed area, with the various precipitation ranges
indicated by different colors or even shades of the same color. Thus, while it may
be easy for the observer of such a map to make out an area of uniform precipitation
level with a contrasting background color, it can however be extremely difficult to
determine the identities of the colors used when the precipitation levels are mixed

CHAPTER 3. DEMONSTRATION PROGRAMS 60

and are close to one another.
The equiluminance demonstration programs show us that it is difficult to tell be­

tween different colors when they have the same brightness, especially in the periphery.
For instance, the trick of moving the mouse around to help in visually locating the
cursor fails when the colors of the cursor and of the screen are at equiluminance.

The demonstration for the nulling of apparent motion in the color bar suggests
other potential problems as well. Suppose there is on the screen a control panel which
consists of various buttons arranged horizontally. Now if the buttons are designed to
blink when they are active, one problem that could arise is the perception of apparent
motion as seen in the color bar demonstration. Certainly, if this were to actually occur
in this fictitious control panel, the user would be quite distracted from his principal
task.

On the other hand, nulling of apparent motion is a highly effective technique for
calibrating workstation displays, as equiluminance can usually be determined with
an error of about one percent [2]. Calibration is important because many common
techniques for improving image quality, such as antialiasing, dithering and elimination
of Mach bands, depend on the calibration of the display system [3, 5]. Asa calibration
technique, nulling of apparent motion is particularly attractive over radiometry in two
situations: when a display that is equiluminous for a specific observer is desired; and
when radiometry is unavailable or too inconvenient to apply.

The pinwheel demonstration tells us how to induce the perception of motion in the
periphery by making sure that there is a luminance change when displayed objects
move and how to inhibit it by eliminating any luminance contrast when moving
objects are not intended to draw attention to themselves. Thus if we want motion
to be detected wherever it appears on the screen, there must always be a significant
luminance change as a result of the motion, but if we want to restrict the perception

CHAPTER 3. DEMONSTRATION PROGRAMS 6 1

of motion to the current focal point, motion should result in only chromatic changes
that do not affect the luminance.

Benham’s disc is an interesting example of the growth and decay of sensation. This
particular visual effect has little direct applicability in computer graphics, but it may
provide clues for improving perception of continuous motion in animated computer
graphics. Unintended derivatives of this effect can arise in animated graphics, for
example, a rotating wheel with a hubcap which has complicated patterns.

It is also interesting to note how visual effects interact. Reducing one effect may
increase another. There is an interaction between spatial and chromatic changes with
time. An example of this is the inverse relationship between Benham’s disc and the
nulling of apparent motion: the former shows chromatic changes induced by spatial
changes while the latter shows spatial changes induced by chromatic changes.

The interwindow interference demonstration illustrates another example of inter­
action among visual effects. In attempting to break the illusion a single line crossing
underneath the boundary between the two windows, the foreground and background
colors might be adjusted. Yet we know from our study of contrast phenomena that
adjusting the foreground affects our perception of the background and that increasing
the distance between the windows can make it more difficult to detect color differ­
ences and hence decrease the effectiveness of such differences in breaking the illusion
of a single line.

Perhaps the interwindow interference demonstration can be extended to windows
of text. Undoubtedly if we have two windows of text side by side, there is a possibility
of intermixing the text from both windows while reading. Solutions such as the
repositioning of either window, changing the foreground and background colors and
border widths should work in this case also, and there are also other options such as
using different spacing, fonts, styles, etc. for the text in two such windows.

C hapter 4

Im plem entation
From the development of the demonstration programs for the visual effects, we have
identified various common techniques that should be useful to other X I1 graphics
programs as well. These techniques are as follows: structure of programs, lookup table
animation, compression of lookup table updates, use of plural graphics primitives,
window border manipulation, dragging and portability. We will now discuss each of
these techniques in detail.

4.1 S tru ctu re o f Program s
The demonstration programs all have the same basic two-part structure, i.e. an
initialization part and an event loop.

Inside the initialization part, we establish the specifications of all windows used,
allocate and set up private color cells and graphics contexts, solicit events for windows
and have the windows mapped. This part is only executed once when a demonstration
program is run, so the fact that it sometimes takes a while to complete for more
complicated images, such as Benham’s disc, is of little concern.

62

CHAPTER 4. IMPLEMENTATION 63

One interesting note about the initialization of X ll programs, both in real appli­
cations such as ours and in textbook examples, is that the code almost always resides
in the main body of a program and does not exist as a subroutine. The likely reason
is that the code usually requires the manipulation of so many X ll resources that it
is too cumbersome to have it as an initialization subroutine by its own.

The other part of this program structure is the event loop. This is a loop which
reads an event returned by the X ll server and deals with the event depending on its
type. Of course, an event sufch as a ButtonPress (indicating a press of any mouse
button) has to be further analyzed by an application program in order to determine
what action it really stands for. In all cases, one such action is the quit option, which
allows a user to exit the program. The types of event that are inserted in the event
queue to be read subsequently and processed are stated in the initialization part of
the program and are subject to the requirements of the visual effect being reproduced.
It is essential that all programs which display windows solicit XExpose events. This
is the type of event which the X ll server sends whenever parts of an application
window are exposed, as a result, of its being mapped, moved, deiconified or resized.
Upon reading an XExpose event, the application redraws the newly exposed part of
the window.

This basic event loop structure is modified to include a mini-loop at the top for
the demonstration programs that produce the dynamic visual effects. The mini­
loop checks for events waiting to be processed in the event queue and advances the
animation by one frame when the event queue is empty. When the event queue
is non-empty, the mini-loop is exited and execution of the program resumes at the
event-identification stage of the outer event loop. The advantage of the mini-loop is
that the outer loop does not block to wait for events to arrive and frame updates
continue when there are no events to be processed.

CHAPTER 4. IMPLEMENTATION 64

4.2 Lookup Table A nim ation
The demonstration programs which produce animated sequences use lookup table ani­
mation [18, 22, 23]. The lookup table contains the colors of the image. By dynamically
changing the entries (colors) in the lookup table, we can animate the image. In X ll,
the lookup table is a collection of private color cells which an application program
requests the X ll server to allocate as part of initialization. These private color cells
are given their initial colors by the application. Graphics contexts then determine
which color cell indices to write into the frame buffer when the objects are drawn.
With an object referencing a private color cell, we can change its color by changing
the contents of the private color cell. The new color appears immediately upon the
next screen refresh. We are thus able to achieve animation for the demonstration pro­
grams using this method by uniformly dividing up the images and have the different
parts reference different private color cells.

Using this method, for the pinwheel and Benham’s disc demonstration programs,
we divide the circles into physical sectors of equal size and have each reference a
different collection of private color cells (Figure 4.1). By knowing for the next frame
which physical sector should acquire the colors of the previous physical sector, we are
therefore able to achieve rotation of the circles. For the color bar sequence program,
the color bar is divided up into rectangles, instead of sectors, each referencing a
different lookup table entry (private color cell). Apparent motion is. achieved by
modifying the lookup table entries according to the predefined frame sequence.

Lookup table animation has some limitations, as we will discuss in the next chapter.

CHAPTER 4. IMPLEMENTATION 65

Figure 4.1: Relationship Between Physical and Logical Sectors

4.3 C om pression o f Lookup Table U p d ates

Benham’s disc in the demonstration program is divided up into sixty six-degree phys­
ical sectors, each referencing its own collection of private color cells. Suppose we
would like to rotate the disc clockwise by the smallest increment, i.e. six degrees.
The straight-forward way to do this is to simply shift the colors of every physical
sector on to the next, requiring lookup table updates for sixty sectors. A closer look
at the pattern of Benham’s disc reveals that many of the updates are superfluous.
For example, for the black semi-circle on the disc, we only need to change the colors
of the two physical sectors which border on the white semi-circle (Figure 4.2). The
same idea applies to the three groups of concentric arcs. The savings offered as a
result is essential, because the rotation of Benham’s disc in another implementation
which does not compress lookup table updates is found to be too slow for any colors
to be seen.

CHAPTER 4. IMPLEMENTATION 6 6

Figure 4.2: Compression of Changes to Benham’s Disc upon Rotation

CHAPTER 4. IMPLEMENTATION 67

The above technique is not used in the pinwheel demonstration program, since it
requires a lot less lookup table updates to achieve rotation. Recall that the pinwheel
consists of alternating logical sectors of red/white and green/black. All the private
color cells that we need are those for the physical sectors that make up two such
logical sectors. The trick is to make sure that all logical sectors of the same color
combination reference the same graphics contexts and thus the same private color
cells.

4.4 U se o f P lural Graphics P rim itives
By plural graphics primitives in X ll, we mean those primitives which carry out
multiple instances of its basic action. Usually the multiple instances are in the form
of a list of objects, such as a collection of private color cells, which is passed as an
array parameter to the primitive along with the array size. Such primitives speed
up execution considerably due to the reduced communication overhead compared to
using their singular counterparts multiple times. For example, X ll makes available
a primitive called XStoreColor which is used for changing the RGB components of a
single private color cell. Its plural version, XStoreColors, can be used for changing
the contents of a non-contiguous collection of private color cells. XStoreColors is used
extensively in the demonstration programs for updating a frame within an animated
sequence. The same idea applies to many of the graphics drawing primitives as well,
such as those for lines and rectangles. It is an objective of the demonstration programs
to make use of X ll’s plural primitives as frequently as is warranted.

CHAPTER 4. IMPLEMENTATION 68

4.5 W ind ow Border M anipulation

In X I1, the way a window appears and how it is manipulated depends on the window
manager used. The demonstration programs run under Tom’s Window Manager
(TWM). The policies imposed by TWM are fairly representative of window managers
that operate under X ll [21].

Under TWM, second-level windows (the root window being the only top-level
window) come automatically with a title bar. This is convenient because the title bar
allows us to use the window manager to move, resize and iconify the window. However,
at this level, all X ll primitives that are supposed to operate on the window border
have no effect. Thus, while second-level windows are fine for all other demonstration
programs, we have to come up with something else for the interwindow interference
demonstration program. The solution in this case is to create a second-level window
that covers the whole screen. The regular windows (two side-by-side windows, the
control panel and the status window) are created as children of this window and are
thus on the third level of the window hierarchy. While this solves the window border
manipulation problem, we have lost the useful title bars which come automatically
with second-level windows. Therefore, in order to implement the move main window
option in this demonstration, we have to create another third-level window and use
it as the title bar of the main window.

4.6 D ragging
Dragging an object on the screen requires that one position the cursor at the object
using the mouse and move the mouse with any button pressed. Visual feedback show­
ing the object moving along with the cursor should be present during the dragging.
Dragging terminates when the mouse button is released. This is the technique used

CHAPTER 4. IMPLEMENTATION 69

in the demonstration programs for manipulating sliders in the control panel and for
moving the main window around in the interwindow interference demonstration.

To implement this technique in X ll, an application program needs to set the
ButtonMotionMask bit in the event mask for the window where dragging is to take
place. This set bit ensures that whenever the mouse moves in that window with any
button pressed, the X ll server will notify the program by sending it a MotionNotify
event. In response, the program finds out the new position of the cursor by looking up
the x and y fields in the MotionNotify event structure and draws the dragged object
at this location. One problem of this naive approach to implementing dragging in
X ll is that the rate at which MotionNotify events are sent may inundate the program
to such a degree that performance suffers. Fortunately, there are two solutions to this
problem in X ll.

The first solution controls the rate of delivery of MotionNotify events by setting
the PointerMotionHintMa.sk bit in addition to the ButtonMotionMask bit m the
event mask for the window in which an object is to be dragged. As a result of these
two set bits, the X ll server still returns MotionNotify events during the dragging,
although the x and y fields in the event structure are no longer up-to-date. To get
the new position of the cursor so that we can update the screen, we use the primitive
XQueryPointer. This is where the delivery rate of MotionNotify events is controlled,
because the X ll server will not send a new MotionNotify event before the primitive
XQueryPointer is called. The number of MotionNotify events received and processed
by a program is thus greatly reduced using this technique. However, even though this
technique works on the workstations that we have used, there is no guarantee that
the X ll server on all workstations will stop sending out MotionNotify events before
a call to XQueryPointer [11].

Instead of controlling the rate of delivery of MotionNotify events, the second solu-
tion aims at processing only a fraction of all regular MotionNotify events received by

a program. Whenever a MotionNotify event has been read from the event queue, we
use the primitive XPeekEvent to look at the next event in the queue, if any. If the
next event happens to be another MotionNotify event, we just read it off the queue.
The process is then repeated until the next event is of a different type or until the
event queue is empty. This technique saves us the work of actually processing all but
the last of a whole series of MotionNotify events. Note that this technique is possible
only because the z and y fields in a MotionNotify event make an absolute coordinate
rather than a relative one.

Even though it is suggested that the first solution is the more effective of the two
[11], our tests indicate the opposite, probably because XQueryPointer is a two-way
request, which blocks the program for an excessive amount of time, preventing frame
updates from taking place. Hence, we have elected to adopt the second solution in
the demonstration programs. We have also implemented dragging without either of
the two techniques discussed above. The results that we obtained were, as expected,
much worse than those obtained using either technique.

Dragging as implemented on the Macintosh is somewhat different. Once an object
has been ‘grabbed’ by the mouse, the standard technique is to monopolize the CPU
(on the Macintosh) while the mouse button is depressed, continuously updating the
display with the new position of the object. This has the side effect of eliminating
any animation the program might be performing at the time, unless the program is
carefully crafted to multiplex the mouse polling with the animation. Our implemen­
tation of dragging in X ll is different in the sense that during dragging, animation is
performed whenever the mouse is not in motion, because there are no MotionNotify
events to process at that time.

CHAPTER 4. IMPLEMENTATION

CHAPTER 4. IMPLEMENTATION 71

4.7 P ortab ility
The only issues that arise from the demonstration programs as far as their portability
among X I1 workstations is concerned are those dealing with color (discussed in Sec­
tion 1.2.3). First, the demonstration programs are designed for use on workstations
which support the PseudoColor visual class. As such, the two demonstration pro­
grams which display gray scale images only, namely the ones for black/white contrast
and Benham’s disc, will work on X ll workstations which run under the GrayScale
visual class also.

The other issue has to do with the color map strategy used by the demonstration
programs, namely the private color cells strategy. Under this strategy, the successful
execution of the demonstration programs requires that the private color cells needed to
draw the image be allocated by the X ll server. The problem occurs if the workstation
runs out of private color cells for allocation, in which case the demonstration programs
displays a diagnostic message on the screen and exits normally.

C hapter 5

Problem s and Solutions
The demonstration programs which display various types of visual effects all face
some common problems, especially when animation is involved. Not all the problems
are associated with X I1; some can more appropriately be attributed to its specific
implementation.

5.1 Screen R efresh Synchronization
A problem with graphics systems occurs when we try to change the contents of a
lookup table entry (private color cell in X ll) in the middle of a screen refresh. One
possible result is that part of the image will bear the old color, while the other part will
display its new color. The demonstrations of the dynamic visual effects suggest that
X ll synchronizes the vertical retrace with a lookup table change, thereby eliminating
this potential problem. This suggestion is corroborated by a test program in which
the whole screen gets its color from one lookup table entry, the contents of which are
constantly switched between black and white. What we observe during the execution
of this program is that the screen always displays one solid color — black or white.

72

CHAPTER 5. PROBLEMS AND SOLUTIONS 73

Note that the screen would have appeared solid gray at a sufficiently high update
speed, even with no synchronization. However, since the update rate from running
this program is slow enough that only black or white, and not gray, is seen at a time,
we conclude that this problem, which may weU exist in other graphics systems, is not
present in X I1.

This is a mixed blessing, however, because we do not know how this is synchronized
with the event loop, which means that an X ll client is unlikely to be able to guarantee
that lookup table entries are in fact being changed in a precise temporal pattern.

We suggest that all window systems should provide, at least optionally, a method
for updating lookup tables in synchronization with the vertical retrace and for delay­
ing further processing of output requests until a specified number of vertical retraces
have been performed. Early high performance line drawing systems had provisions
for this type of synchronization to avoid burning out the CRT as the length of the
display list changed. The same effect happens for raster displays (double-buffered
display algorithms such as z-buffer [4] have this problem unless the update rate is
oblivious to the contents of the image).

5.2 D raw ing Speed
It is impossible to do effective real-time animated graphics by redrawing under X ll
simply because the graphics primitives are not fast enough. The only way that sat­
isfactory animation can be accomplished in X ll is by lookup table animation. This
works for our animated demonstration programs to a certain degree. However, this
method is only applicable to relatively simple images. Thus, anyone wishing to cre­
ate complex animation sequences in real time should instead make use of dedicated
graphics workstations such as the Silicon Graphics Iris workstation.

CHAPTER 5. PROBLEMS AND SOLUTIONS 74

5.3 N u m b er o f Color Cells and N um ber o f P lanes

As described before, lookup table animation is made possible by the extensive use
of private color cells. The number of private color cells available limits the size of
the lookup table. As an 8-bit index, this number ranges from 254 to 14 on the X I1
workstations at the Computer Graphics Laboratory. Even the maximum number
of private color cells available in this environment is barely enough for some of our
animated visual effect reproductions. For example, our implementation of Benham’s
disc has three groups of arcs. With the disc being divided up into 60 physical sectors,
we need for each sector a private color cell for each group of arcs, and a fourth private
color cell for the background, giving us a total requirement of 240 private color cells.
It is thus impossible for our version of Benham’s disc to add another group of arc,
desirable as this may be.

Note that this problem does not lie with X I1 itself. Rather, the problem can be
traced to the number of planes a workstation has. For example, on a workstation with
12 planes, which as a consequence has 12-bit lookup table indices, we can expect to
have access to at most 212 lookup table entries.

5.4 In terru p tion o f A nim ation

As pointed out earlier for the pinwheel and Benham’s disc, both demonstration pro­
grams are plagued by the irregular frame update rate. Since the rotation of the
circle in both images relies on the successive update of frames from the animation
sequence, this problem makes itself quite visible as erratic rotation — slowing down
or even stopping every now and then. There are two factors to consider for this
problem: user-induced events and interference from system processes.

Recall that the basic structure of the demonstration programs which produce an­

CHAPTER 5 . PROBLEMS AND SOLUTIONS 75

imated sequences is that whenever an event is being processed, no frame updates
take place. Such interruptions are relatively transient for mouse clicks, but the same
cannot be said for dragging. Even with the compression of MotionNotify events in
use, the interruption imposed by dragging on animated sequences is still quite dam­
aging indeed. However, the problem caused by this factor is relatively minor when
compared to that caused by the second factor.

Concerning system processes, our experience is that our lookup table animations
had unpredictable performance even on an isolated workstation because of system
processes pre-empting the XI1 server. Multiprocessors may be the solution to this,
since many workstations now have dedicated processors (e.g. the Ikonas) where the
user/client may be able to specify actions that cannot be pre-empted by demands
of the operating system. But most window systems do not provide a mechanism for
specifying this type of behavior. A window server architecture that does support this
behavior has been discussed elsewhere [15].

We have also tried running the demonstration programs remotely on the main­
frame, which presents problems of its own. Interruption to frame updates on the
mainframe is caused by time-sharing among different processes. And since the re­
mote configuration still requires the Xll server for display on the workstation (which
is interrupted by system processes locally), the results are, as expected, somewhat
worse than what we get from running the programs locally.

The interruption of animation caused by the irregular frame update rate is very
damaging, and makes the perception of some of the more subtle dynamic visual effects
almost impossible.

CHAPTER 5. PROBLEMS AND SOLUTIONS 76

5.5 P rocessin g for Lexical and Syntactic E vents

A problem that is related to the uneven performance of lookup table updates that
was caused by interference from system processes and a lack of synchronization with
the refresh cycle is the difficulty in providing simple lexical feedback in X ll. Sliders
require a significant amount of computation by the client. In X ll it appears to be
necessary for a client to ‘latch on’ to the mouse for effective dragging of sliders. This
seems inefficient.

NeWS provides a mechanism whereby actions can be performed locally on the
server as a result of mouse actions. The same technique existed in the E&S PS 300
through function networks, whereby a dial or mouse could control the position of
a visual slider. In many applications, satisfactory animation can be achieved by
directly connecting a lookup table entry to mouse just as for a slider. Older displays
featured a hardware cursor, precisely because the turnaround time to interact with
an application program was too long for effective interaction. Similar requirements
exist for rapid lexical and syntactic feedback where the necessity of invoking actions
within the client is a bottleneck on the real-time performance of the window system.

5.6 T em poral C ontrol over A nim ation
Demonstrations such as Benham’s disc exist at the limits of practical animation tasks
and thus provide a good measure of the performance of X ll and of the workstation
displays themselves. The 60-cycle refresh rate is the limiting factor for this effect.
Colors are just beginning to appear at the fastest we can rotate the disc. 60 Hz is
the limit of the human visual system for temporal information, but to achieve this
on a computer display, a 120Hz refresh rate is required for animated images to avoid
aliasing artifacts. (With 60 Hz display, it is necessary to filter everything above 30

CHAPTER 5. PROBLEMS AND SOLUTIONS 77

Hz to avoid aliasing. With a 120 Hz display, filtering only has to be performed above
60 Hz which is close to the cutoff of the human visual system).

Display processors such as the Adage/Ikonas and the Sun TAAC are capable of
refresh rates higher than 60 Hz. They have been used successfully for animated
images where the elimination or precise control of visual effects is important [16]. If we
believe that animated images will be commonplace in future workstation applications,
then some provision should be made for higher refresh rates. This is perhaps more
important than the current efforts to increase the spatial resolution of workstation
displays.

5.7 W orkstation D isplay A rtifacts
On the DEC VAXstations which we use to display the visual effects from our demon­
strations, we are able to detect some undesirable artifacts on their displays. Two such
examples are the movement of lines seen inside the gray circle at the center of the
pinwheel under rotation (Figure 5.1) and the ‘leakage’ of redness from the line in the
main window into a light background in the interwindow interference demonstration
(Figure 5.2). All these artifacts that have been noticed suggest that there could well
be others that exist but which have yet to be discovered. Thus, it may be that our
reproduction of visual effects are affected adversely by such artifacts.

CHAPTER 5. PROBLEMS AND SOLUTIONS

Gray circle in middle of pinwheel

Under clockwise rotation of the pinwheel, the lines move
upwards. Under counterclockwise rotation, the lines move
downwards.

Figure 5.1: Movement of Lines in Pinwheel

CHAPTER 5. PROBLEMS AND SOLUTIONS 79

Figure 5.2: Red Leakage

A p p en d ix A

L ocation o f Program s
All files pertaining to the demonstration programs that are discussed in this essay
reside in ‘watcgl’.

The file /u/demos/cue_card/visual-effects contains explanation on what each demon­
stration program illustrates. This file can be displayed by executing the shell script
/u/demos /visual .effects.

The file /u /d e m o s /R E A D M E /visual-effects contains explanation on how to run
the demonstration programs.

The executables of the demonstration programs are contained in /u/demos/Visual .effects.
The following names are used:

1. Black/White Contrast — bw
2. Yellow/Gray Contrast — yg
3. Nulling of Apparent Motion — cb
4. Pinwheel — pw
5. Benham’s Disc — bd

80

APPENDIX A. LOCATION OF PROGRAMS

6. Interwindow Interference — lines
7. Test Program — test

Bibliography
[1] Albers, Josef. Interaction of Color. New Haven, CT: Yale University Press, 1963.
[2] Antis, Stuart M., and Cavanagh, Patrick. A Minimum Motion Technique for Judg­

ing Equiluminance. Color Vision. New York, NY: Academic Press, 1983, pp. 155-
166.

[3] Barros, J. and Fuchs, H. Generating Smooth 2-D Monocolor Line Drawings on
Video Displays. Computer Graphics, 13(2), pp. 260-269, August 1979.

[4] Booth, K. S., Forsey, D. R. and Paeth, A. W. Hardware Assistance for Z-Buffer
Visible Surface Algorithms. IEEE Computer Graphics and Applications, 6(11),
pp. 31-39, November 1986.

[5] Catmull, E. A Tutorial on Compensation Tables. Computer Graphics, 13(2), pp.
1-7.

[6] Cavanagh, Patrick, MacLeod Donald I. A., and Antis, Stuart M. Equiluminance:
Spatial an Temporal Factors and the Contribution of Blue-sensitive Cones. Journal
of the Optical Society of America A, 4(8), pp. 1428-1438, August 198/.

[7] Cowan, William B. Computer Science 788 Courses Notes. University of Waterloo,
1989.

[8] Frisby, John P. Seeing. Oxford, UK: Oxford University Press, 1980.

82

BIBLIOGRAPHY 83

[9] Goetz, Susan M. and Beatty, J. C. Color Principles and Experience for Computer
Graphics. Graphics Interface ’82, pp. 313-322, May 1982.

[10] Hochberg, Julian E. Perception. Englewood Cliffs, NJ: Prentice-Hall, 1978.
[11] Jones, Oliver. Introduction to the X Window System. Englewood Cliffs, NJ:

Prentice-Hall, 1989.
[12] Kaehler, C., Horn, B., Capps, S. Macintosh. Cupertino, CA: Apple Computer

Inc., 1984.
[13] Kaiser, Peter A., Vimal, Ram L. P., Cowan, William B., and Hibino, Haruo.

Nulling of Apparent Motion as a Method for Assessing Sensation Luminance: An
Additivity test. Color Research and Application, 14(4), pp. 187-191, August 1989.

[14] Kaufman, Lloyd. Sight and Mind. New York, NY: Oxford University Press, 1974.
[15] Kelley, Jeffrey V., Booth, K. S. and Wein, M. Design Experience with a Multi­

processor Window System Architecture. Graphics Interface ’89, pp. 62-69, June
1989.

[16] Klassen, R. V. PhD Thesis, University of Waterloo, 1989.
[17] Luckiesh, M. Visual Illusions: Their Causes, Characteristics and Applications.

New York, NY: Dover Publications, 1965.
[18] MacKay S. A. and Booth, K. S. Techniques for Frame Buffer Animation. Graphics

Interface ’82, pp. 213-220, May 1982.
[19] Massachusetts Institute of Technology. X Window System Protocol, Version 11.

September 1987.
[20] Rock, Irvin. An Introduction to Perception. New York, NY: Macmillan Publish­

ing, 1975.

[21] Scheifler, Robert W., Gettys, James, and Newman, Ron. X Window System.
Bedford, MA: Digital Press, 1988.

[22] Shoup, Richard G. Color Table Animation. Computer Graphics (Siggraph ’79
Conference Proceedings), 13(2), pp. 8—13, August 1979.

[23] Sloan, K. R. Jr., and Brown, C. M. Color Map Techniques Computer Graphics
and Image Processing, pp. 297-317, August 1979.

84

