
KtlU

IMPLEMENTING A LINEAR-TIME TEST FOR GRAPH PLANARITY

by
Dolores M. Panek

An essay submitted in partial fulfillment of the
requirements for the degree of

Master of Mathematics

University of Waterloo
Department of Computer Science

1978

The writer is grateful to Kelly Booth for patience far
beyond any expectation.

1. INTRODUCTION

Several algorithms exist for testing graph planarity,
but two stand out as efficient tests. One is a method,
presented by Hopcroft and Tarjan [5], which uses depth-first
search and achieves a linear running time. The other is an
improved, linear time version of a test originally published
by Lempel, Even, and Cederbaum [6]. Their method centres
around the generation and manipulation of formulas, where
each formula represents a particular graph. By introducing
an appropriate data structure called a PQ-tree, Booth and
Lueker [2] have improved the time bound of the original al­
gorithm. Operations are now performed on PQ-trees rather
than on formulas, thus speeding up the algorithm to run in
linear time. For both the new version and the original al­
gorithm, the input graph must be biconnected. We know from
graph theory that a graph is planar iff each of its bicon­
nected components is planar. Also, the vertices of the in­
put graph must be selected in a particular order. This
order can be determined by computing a special numbering of
the vertices of a biconnected graph G.

1

2

LEMMA 1 (Lempel-Even-Cederbaum). G is a biconnected graph
with n vertices iff the vertices can be numbered such
that 1 and n are adjacent and for any vertex numbered 1
< j < n, there exist vertices numbered i and k such
that i < j < k and both i and k are adjacent to j.

Such a numbering is called an s-t numbering for a bicon­
nected graph G. A proof of the lemma can be found in [6].

A method for computing an s-t numbering has been
published by Even and Tarjan [3]. It requires 0(n+e) steps
for a graph with n vertices and e edges. Part of their
method employs a depth-first search technique for exploring
a graph and gathering information about its vertices. In
particular, a depth-first search algorithm exists for
finding biconnected components in 0(n+e) steps [1].

This paper presents an implementation of the depth-
first search, the s-t numbering, and the PQ-tree algorithms
which combine to provide a linear-time planarity test. Sec­
tion 2 presents some graph-theoretic definitions. Section 3
discusses the three algorithms used in the computation of an
s-t numbering: BICONNECT, PATHFINDER, and STNUMBER. Sec­
tion 4 proves correctness and linearity for these three al­
gorithms. Section 5 describes how the st-numbering al­
gorithm and an implementation by Young[7] of the PQ-tree al­
gorithms are combined into a single planarity test. Section
6 presents conclusions drawn from running these programs.

3

2. DEFINITIONS

We now introduce the terms that will be used throughout
the discussion of the algorithms. The definitions are
similar to those found in most texts on graph theory [4].

A graph G = (V,E) consists of a nonempty set of
vertices V (IV1 = n) and a nonempty set of edges E (|E| =
e) . G is undirected, hence its edges are unordered pairs of
distinct vertices represented as (v,w). Thus we consider
(v,w) = (w,v). We say w is adjacent to v if (v,w) is in E.
A graph G' = (V',E') is a subgraph of a graph G = (VfE)
if V' _ V and E' _ E. If V' = V then G is a spanning
subgraph.

We define a path in G from v-̂ to vn to be a sequence of
edges e ^ 1 < i < n, where e^ = (vj[,Vi+i). A path can be
represented by the sequence v^, v2 vn of vertices on
the path. If the vertices v^, v2 , vn are distinct, the
path is simple. A path is a cycle if v^ = vn is the only
duplicated vertex on the path. There is a path of no edges
from any vertex to itself. This null path is not considered
a cycle.

An undirected graph G is connected if there is a path
between any pair of vertices. The maximal connected sub­
graphs of G are vertex-disjoint and are called its connected
components. Given any three distinct vertices u, v, w in
some connected component of G, if every path from v to w
contains u then u is an articulation point. Removing u from

4

G splits the graph into two or more disconnected parts. If
G has no articulation points, then G is biconnected. The
maximal biconnected subgraphs of G are edge-disjoint and are
called its biconnected components.

A tree T is a connected, directed graph which contains
no cycles. A rooted tree (T,r) is a tree with a
distinguished vertex r, called the root. Given any vertices
v and w, v -*■> w denotes that v is an ancestor of w, w is a
descendant of v, and that v is contained in the unique tree
path from r to w. Furthermore, if v ^ w, then v is a
proper ancestor of w and w is a proper descendant of v. If
v -*•> w and (v,w) is an edge of T, v is the parent of w and
w is the child of v, denoted by v — > w.

A depth-first search of an undirected graph G imposes a
direction on the edges of G depending on the direction in
which the edges are traversed. The search also partitions
the edges of G into two groups: a set of tree edges, T,
defining a depth-first spanning tree of G, and a set of back

/
edges, B, which satisfy v --> w or w --> v in the spanning
tree. Back edges are denoted by v — w. A depth-first
spanning forest is a collection of trees rooted at the ver­
tex at which the depth-first search of each tree is begun.
If G is connected, the forest is actually a tree.

An adjacency list for a vertex v is a list of all ver­
tices w adjacent to v. Thus a graph can be represented by n
adjacency lists, one for each vertex.

5

3. THE ST-NUMBERING
Three steps must be performed to compute an

st-numbering. Each step is described by a particular al­
gorithm which is presented in this section. The algorithms
BICONNECT, PATHFINDER, and STNUMBER appear in pseudo Algol.

3.1 Step 1 : BICONNECT
Graph algorithms need a systematic method of exploring

a graph. Depth-first search is a valuable technique for
visiting vertices of an undirected graph. We start at some
vertex v of G and select any edge (v,w) incident upon v.
Traversing the edge leads us to a new vertex w. We continue
the search by selecting and traversing unexplored edges in­
cident upon the most recently reached vertex which still has
unexplored edges. If depth-first search is applied to a
connected graph G, each edge will be traversed exactly once.
If the graph is not connected, a connected component will be
searched. A new vertex is then chosen as a starting point
for continuing the search.

Figure 3.1 illustrates the application of depth-first
search to a graph G. The subgraph (V,T) in Fig 3.1(b) is
the depth-first spanning tree generated by the search. A
tree will be drawn with its root at the bottom and with the
children of each vertex drawn from left to right in the
order in which their edges were added to the set T. Tree
edges are drawn as solid lines. These are edges which lead

6

Fig. 3.1 (a) A graph and (b) its depth-first spanning tree.

to a new vertex when traversed during the depth-first
search. We have included back edges in the diagram. These
are edges in G, but not in T, which connect ancestors to

i

descendants in the tree. They are represented as dashed
lines. Thus for a back edge (v,w), w is an ancestor of v or
v is an ancestor of w.

As well as identifying tree and back edges, the search
labels the vertices in the order they are first visited. We
will treat these labels as names for the vertices. For ex­
ample, we can say v < w where v is an ancestor of w in the
depth-first spanning tree.

7

The depth-first spanning tree for G is not unique. It
represents only one possible search of the graph from a
starting vertex s. Despite the number of spanning trees for
one graph, applying the planarity test to each tree will al­
ways produce the same result.

We now look at how the BICONNECT algorithm applies a
depth-first search along the edges of a graph G to divide G
into its biconnected components. During the search, DFNUM
and LOWPT values are assigned to the vertices. We will
refer to vertices by their DFNUM values. The LOWPT value
for a vertex v is the minimum of the following three values:
1) v itself, 2) u, where u = min{LOWPT(x) I x a child of v},
3) y, where y = min{w I (v,w) a back edge}. The following
lemma provides a basis for finding biconnected components.

LEMMA 2 (Tarjan). If G is biconnected and v — > w in
the depth-first search spanning tree, then a) if v
is not the root, LOWPT(w) < v and b) if v is the •
root, LOWPT(w) = v = 1 and v has only one child.

PROOF. Suppose LOWPT(w) > v in part a. This implies that
there is no back edge between any descendant of w, including
w itself, and a proper ancestor of v. Let u be the parent
of v and x a descendant of w. Any back edge from x goes to
an ancestor of x. Thus it goes either to v or to a descen­
dant of w, including w. It can never go to a proper
ancestor of v according to our hypothesis. Hence every path

8

from w to u contains v, making v an articulation point.
Since G is biconnected and has no articulation points, we
have a contradiction. We conclude that LOWPT(w) < v.

For part b, suppose LOWPT(w) ^ v. Then either LOWPT(w)
< v or LOWPT(w) > v. We have already shown that when
LOWPT(w) > v, v is an articulation point. This is a con­
tradiction since G is biconnected and has no articulation
points. Suppose LOWPT(w) < v. It is clearly seen that if v
is the root of the depth-first search spanning tree, its
LOWPT value is 1. Thus the LOWPT(w) can never be less than
1 since 1 is the minimum value. This is a contradiction,
hence LOWPT(w) = v = 1. The root has only one child because
having more than one child means every path from one child
to another contains v. Thus v is an articulation point.
This is a contradiction since G is biconnected and has no
articulation points.

Once LOWPT values are found for each vertex, articulation
points and biconnected components can be determined during
one search of a connected component.

The tree of Fig 3.1(b) is reproduced as Fig 3.2(b) with
indicated LOWPT values and articulation points. The
biconnected components are shown in Fig 3.2(c). A list is
also given of the order in which the edges were traversed in
(d) .

9

(a)

(d-tnuKM j lowptl

(b)

B)--- ©
® — ©

B,C 1» H

C,D l,G

D,F G,C

D,G G,E

G,H E,C

H,J C, A

A, B

(c) (d)

Fig. 3.2 Depth-first search of a graph: (a) graph; (b)
spanning tree with LOWPT values; (c) biconnected components;
(d) edge traversal.

10

The BICONNECT algorithm finds the biconnected compo­
nents of a graph. The pseudo code is given below. Before
entering BICONNECT, all vertices are marked as "new" and
counters are properly initialized. An arbitrary vertex v is
selected and a call, BICONNECT(v), is made. Vertex v is
marked "old" and a record is kept of its depth-first search
number and low point value. As edges are traversed for the
first time, they are placed on a stack. This occurs at line
f of BICONNECT. If an edge leads us to a vertex marked as
"new," we call BICONNECT of that vertex. At some point in
the program, suppose we call BICONNECT(p) and find that each
of the vertices adjacent to p is now "old." We then fall
back one level in the recursion and return to line j. If
this tests fails, an articulation point has been found. The
edges down to and including (v,w) are popped from the stack.
They form a biconnected component.

When the stack is empty, a complete search of a con­
nected component has been made. If G is connected, the
process ends. Otherwise a new node is selected and the
BICONNECT algorithm is repeated.

11

procedure BICONNECT(v) ;
beg in

a mark v "old";
b DFNUM(v) <— COUNT;
c COUNT <— COUNT + 1;
d LOWPT(v) <— DFNUM(v);
e for each w on ADJLIST(v) do

begin
f add (v,w) to stack of edges if traversed

the first time;
for

g if w is "new" then
beg in

h add (v,w) to list of tree edges T;
i BICONNECT(w);
j if LOWPT(w) < v then
k LOWPT(v) <— MIN (LOWPT(v), LOWPT(w))

else
1 pop stack down to and including (v,w)

end
else

m if w is not the parent of v then
begin

n add (v,w) to list of back edges B;
o LOWPT(v) <— MIN (LOWPT(v), DFNUM(w))

end
end

end

12

3.2 Step 2 : PATHFINDER
We assume at this point that G is a biconnected graph

which has been explored using depth-first search. We have
acquired information about the nodes and have generated the
tree T.

This algorithm is used to partition a graph into simple
paths such that the paths exhaust the edges of the graph.
Before the initial call to the routine, vertices s, t, and
the edge (s,t) are marked "old." All other vertices and
edges in the graph G are marked "new."

Each call to PATHFINDER(v), with v as "old," produces a
simple path of "new" edges before the call. The call con­
nects the starting point v with some vertex w which was
"old" before the call. Thus the initial call,
PATHFINDER(s), returns a simple path from s to t not con­
taining (s,t). The vertices and edges along the returned
path are then marked as "old." If no "new" edges can be
found when searching for a simple path, the procedure
returns the null path.

13

procedure PATHFINDER(v) ;
begin

if there is a "new" back edge (v,w) with w --> v then
beg in

let path be (v,w);
mark edge "old"

end
else if there is a "new" tree edge v --> w then

beg in
initialize path as (v,w);
while w is "new" do
begin

if there is a "new" back edge with
x = LOWPT(w) then

add (w,x) to path
else
beg in

find a "new" tree edge (w,x) with
LOWPT(x) = LOWPT(w);

add (w,x) to path
end 7
mark w "old";
mark edges added to path "old"

end
end

14

c else if there is a "new" back edge (v,w)
with v --> w then
begin

initialize path as (vfw);
while w is "new" do
begin

find the "new" tree edge (w,x)
with x — > w;

add to path;
mark w "old";
mark edge as "old";
w <— x

end
end
else

d let path be the null path
end

3.3 Step 3 : STNUMBER
The last step in computing the s-t numbering is the ac­

tual numbering of the vertices. As well as using informa­
tion provided by BICONNECT, the procedure utilizes the se­
quence of vertices returned by the call to PATHFINDER.

The STNUMBER procedure keeps a stack of "old" vertices.
The "old" nodes are those that were visited by PATHFINDER.

15

Initially the stack contains s on top of t. The top
vertex v on the stack is deleted and PATHFINDER(v) is
called. If the path returned by PATHFINDER is (v^,v2),

vl are pushed onto the stack, in that order.
If PATHFINDER(v) returns the null path, v is assigned

the next available s-t number and not put back on the stack.
The process is repeated until the stack is empty. At that
time, all vertices of G have been s-t numbered.

f • • • 9 (vn-i,vn), then the nodes vn_i, vn_2 /• • • 9

procedure STNUMBER;

b
a

begin
mark s, t, and (s,t) "old";
mark all other edges and vertices "new";

c push s on top of t in stack;
d i <— 0;
e while stack is not empty do

h
9
f

beg in
let v be top vertex on stack;
pop v from stack;
PATHFINDER(v) and let path

j
l if path is not null then

push vn-1 ,..., onto the stack

16

else
begin

k i <— i + 1;
1 stnumber(v) <— i

end
end

end

_3 ._4 Finale
Performing the above three steps results in finding the

biconnected components of a graph and generating an
st-numbering for each. This alone obviously does not deter­
mine planarity, but rather, is a preliminary step toward
finding the answer. If each biconnected component of G can
be shown to be planar, then we know from graph theory that
the graph is planar. The Booth and Lueker PQ-tree algorithm
does just this. The algorithm tests graphs in; linear time
given that the graphs are biconnected and st-numbered.
Proofs of the linearity of the steps presented here can be
found in the next section. A discussion of the linearity of
Young's implementation of the PQ-tree algorithm can be found
in [7]. A full description of the implementation is also
presented in [7] .

17

4. CORRECTNESS and LINEARITY

We provide proofs of correctness for BICONNECT,
PATHFINDER, and STNUMBER. Time bounds are also presented
for the algorithms.

THEOREM 1. The BICONNECT algorithm correctly finds the
biconnected components of a graph G.

PROOF. Part of the BICONNECT algorithm contains the al­
gorithm for finding connected components. Since the connec­
tivity algorithm is well-known and correct, we will prove
only that the biconnectivity algorithm works correctly on
connected graphs G.

We want to prove that if the test LOWPT(w) < v fails on
line j, then all the edges above and including (v,w) on the
stack are exactly those edges that form a biconnected compo­
nent. The proof is by induction on the number of bicon­
nected components, b, of G. The basis b = 1 implies G is
biconnected. By LEMMA 2, we see that LOWPT(w) < v fails
when v is the root. Though the root is not an articulation
point, it can be treated as one in this case. BICONNECT(w)
is completed and all edges of G are on the stack. Clearly
this is the correct output since the entire graph is a
single biconnected component. Thus the algorithm works cor­
rectly in this case.

Suppose the induction hypothesis is true for all graphs
with b biconnected components. Let G be a graph with b+1

18

biconnected components. Suppose LOWPT(y) < x is the first
time that the test fails. BICONNECT(y) has been completed
and no edges have been removed from the stack. Thus the
edges above (x,y) are exactly those edges incident upon
descendants of y. These are precisely the edges that make
up the biconnected component containing (x,y). We are never
short an edge because BICONNECT(y) has been completed. We
do not store an extra edge because an additional edge would
arise from a descendant of y to a proper ancestor of x, but
this would alter LOWPT(y) such that LOWPT(y) < x would not
fail. Thus the first biconnected component is successfully
found.

Let G' be the graph that is obtained from G by deleting
those edges that form this first biconnected component.
After the removal of edges from the stack, the algorithm
behaves exactly as it would on the graph G' except for a
(trival) compression in the numbering of vertices. G' now
has b biconnected components and the induction follows.

THEOREM 2. The BICONNECT algorithm requires 0(n+e)
steps if the graph has n vertices and e edges.

PROOF. The time requir
"new" is O(n). The
not counting recursive
of vertices adjacent
called only once for a

ed to ini
amount of
calls, is
to w.

given w.

tially mark all vertices
time spent in BICONNECT(w),
proportional to the number
Notice that BICONNECT(w) is
During the algorithm, each

19

edge is placed on the stack once and removed once. These
operations and the calculation of LOWPT values require time
proportional to e. The search for "new" start vertices upon
completion of the searches of connected components takes
0(n) steps. Thus BICONNECT requires time linear in n and e.

LEMMA 3. The PATHFINDER algorithm correctly finds a
simple path of "new" edges from an "old" vertex y
to some other "old" vertex z such that after each
call to PATHFINDER(y), 1) all "old" vertices have
all their ancestors "old" and 2) all tree edges on
the returned path are marked "old." If there is
no "new" edge (y,x) before the call to
PATHFINDER(y), a null path is returned.

PROOF. Before the call to PATHFINDER, the root v, its child
w, and the tree edge (v,w) are marked "old." Each call to
PATHFINDER executes one of the statements a through d.

When the first call to PATHFINDER(w) is made, statement
ifa is not chosen because there is no back edge v --> w.

Hence choice b is examined. If the biconnected graph G does
not consist of only two vertices and an edge, statement b
will be chosen. This choice traverses a path (w-^y^),
ŵ2'w3) #•••» (wn-l'wn) where w^ --> w^+i for 1 < i < n-1.
Edge (Wn-1 /Wn) is a back edge where wn — > wn_^ and wn =
LOWPT(W2) < w^. All vertices and edges on the path are
marked "old." Thus all "old" vertices have their ancestors

marked "old" and the tree edges on the path are "old." The
path is simple and hence the algorithm is correct for this
choice.

Choice c is selected when all nodes x, where w — > x,
are "old." It traverses a path (wi,W2), (W2 ,W3) ,...,
(wn-l'Wn) where w^+j — > w^ for 2 £ i < n in the spanning
tree. Edge (wi,W2) is a back edge such that wi “ > W2.
Node wn is some descendant of w^, but not W3 itself. All
vertices and edges on this simple path are marked "old."
Thus the tree edges are "old" on the path and "old" vertices
have all their ancestors "old." The ancestors are "old"
from the current call to PATHFINDER and earlier calls during
which choice b or c was selected. Hence the algorithm per­
forms correctly for choice c.

In statement a, the path traverses a back edge from
some "old" node y to some other "old" node x such that x -->
y in the spanning tree. The edge (x,y) is marked "old."
This choice works correctly since tree edges and ancestors
of "old" nodes are "old" from previous executions of state­
ments b and c.

Finally, if there is no "new" edge (w,x), choices a, b,
and c fail. The null path is chosen and the algorithm ob­
viously works correctly in this last case. Hence PATHFINDER
performs as stated in the lemma.

LEMMA 4. The running time for PATHFINDER is 0(n+e) for
a graph with n vertices and e edges.

2 0

21

PROOF. The time spent in each call to PATHFINDER depends on
the number of edges that are in the path. So after one
call, the running time is 0(1 + length of the path). Since
PATHFINDER is called once for each vertex and each edge of
the graph is in a path only once, the total time for all
calls is 0 (n + e).

LEMMA 5. The STNUMBER algorithm correctly computes an
s-t numbering of a biconnected graph G.

PROOF. Since G is biconnected, each vertex is reachable
from a vertex s by a path not containing a vertex t. Each
call to PATHFINDER returns a simple path. The call also
ends at some "old" vertex which already occurred in some
other path. Thus the last point vn in the path is not
placed on the stack. No vertex is ever on the stack more
than once at any one time. When PATHFINDER returns a null
path, the top point on the stack is deleted and numbered.
It follows that all the vertices in G are placed on stack,
deleted, and numbered before t is deleted. The first
deleted point, s, receives the number 1 and t, the last
point, receives the number n. Any time a vertex x / s or t
is added to the stack, it is placed on top of an adjacent
vertex y and has another adjacent vertex w placed on top of
it. Thus STNUM(w) < STNUM(x) < STNUM(y) is satisfied for
any x f s or t in the stack.

22

LEMMA 6. The STNUMBER algorithm requires 0(n+e) steps
for a graph with n vertices and e edges.

PROOF. The total amount of time to delete the vertices and
assign an STNUM is 0(n). The rest of the time in the al­
gorithm is spent in PATHFINDER, which requires 0(n+e) steps.
Thus STNUMBER also has a time bound linear in n and e.

23

5. IMPLEMENTATION
This section describes some changes that have been made

to Young's original implementation of the Booth and Lueker
algorithm. Following this is a description of the data
structures, global variables, and some local variables.
Finally, input and output formats are discussed. We do not
discuss Young's implementation, but use it as a "black box."

f>. 1̂ Modifications
The program for determining graph planarity incor­

porates the st-numbering routine and Young^s implementation
of the algorithm of Booth and Lueker. Pascal was used as
the programming language. The entire program of Young is
utilized in the planarity program as one major procedure,
procedure PLTEST. Thus all the procedures which comprised
the original implementation are presently local to PLTEST.
All other procedures in the planarity program determine the
st-numbering. In particular, procedure STNUMBER calls
PLTEST after a biconnected component has been found and
st-numbered. It is the job of PLTEST to determine whether
the special-numbered, biconnected component is planar or is
not planar.

Other changes have been made to Young's program. Four
output procedures have been deleted: REPRODUCEINPUT,
PRINTCHILDREN, PRINTSTRUCTURE, and PRINTSET. The input
procedure, READINPUT, has been replaced with a similar
procedure called FORMAT.

24

READINPUT required the input graphs to be biconnected
and their adjacency lists to be directed from the lower
numbered vertex to the higher. The vertices were assumed to
be st-numbered. Instead, FORMAT builds the adjacency lists
in the above manner. The vertices are already st-numbered
from a previous procedure. While the adjacency lists are
built, or read in as in READINPUT, the vertices are placed
in either of two lists, ADJLIST or THESET. We have chosen
to initialize these lists in the main body of PLTEST instead
of in FORMAT.

The type declaration statements in Young's program do
not appear in PLTEST. Rather, they appear at the beginning
of the planarity program.

The local variable M in PLTEST has been deleted. Its
occurrence in function PLANAR has been replaced by the
global variable STCOUNT. STFIRST is the only argument in
the parameter list for PLTEST. Its value is assigned in
procedure STNUMBER. A variable J has been added to the
variable list for PLTEST. It subscripts the two lists
ADJLIST and THESET.

Finally, a value of 1 or 0 is assigned to the global
variable RESULT in PLTEST. During the final output of
results, this value is interpreted in WRITEOUT as either "is
planar" or "is not planar."

5.2 Data Structures
Each node in the graph is represented by a record

25

called VERTEX. The following fields, which are described
below, make up this structure.

ID. The number which identifies the node.

DFNUM. The number assigned to a node as its position
in the order of inspection during the depth-first search.

LOWPT. This number is assigned to a vertex during the
depth-first search. It is the minimum of the following
three values: 1) DFNUM(v), 2) u, where u = min{LOWPT(x) I x
a child of v} , 3) y, where y = min{w I (v,w) a back edge}.
LOWPT is used to identify articulation points.

STNEXT. This indicates which vertex is next in the
st-numbering order.

ADJLIST. A pointer to the adjacency list for the
node.

FLAG. An indication of whether the vertex is
"available," "used," or "old." All vertices are "available"
at the start. If the node has been visited during the
depth-first search, it is labeled as "used." The node
becomes "old" when it is placed on a path in procedure
PATHFINDER. In procedure FORMAT, the nodes are marked
"used" again. This allows the node to be used in another
biconnected component.

26

The structure GRAPH is an array of records of type
VERTEX.

Another record, ADJPOINT, represents an edge of the
graph. Put together, these records form the adjacency lists
for the graph. The following records are common to this
record.

NODE. This is an array of two locations. The loca­
tions hold the vertices which make up an edge of the graph.
During procedure BICONNECT, the nodes are ordered so that
location one contains the ancestor/parent and location two
contains the descendant/child.

NEXT. This is an array of two pointers. The pointer
locations are in one-to-one correspondence with the node
locations. NEXT(i) points to the location of the next node
on the adjacency for NODE(i).

EDGETYPE. An indication of whether the edge is a
"tree" edge, "back" edge, or "neither". Initially, all
edges are "neither." The procedure BICONNECT determines
edge types.

MARK. This indicates whether the edge has been placed
in a path. If it has, it is marked "old." Otherwise, this
field is "new."

ELINK. This is a pointer to another edge. It links
the edges together as they are traversed in the BICONNECT

27

routine. This is used instead of pushing edges onto a
stack.

Three record types comprise the data constructs for
procedure PLTEST. They are PQNODE, DNODE, and LINKER.

PQNODE is the most complex of the three structures. It
handles three types of tree nodes: PNODE, QNODE, and LEAF.
The following record fields are common to PQNODE.

NODETYPE. An indication of whether the node is a
PNODE, QNODE, or a LEAF.

PARENT. This points to the immediate ancestor of the
node. The field is never nil for children of P-nodes and
endmost children of Q-nodes. The field is set to nil for
the interior children of a Q-node. They can find their
parent through their endmost siblings.

BROTHER, SISTER. These point to immediate siblings of
the node. The pointers are not associated with a left or
right ordering.

GROUP. Points to a sequence of full children in a
Q-node. The pointer of the end node of this sequence points
to the node at the other end of the sequence and vice versa.
Full nodes in the interior of the sequence have this field
set to nil. The nil field is also set for all other nonfull
child ren.

28

LISTPLACE. This points to a node's position in the
partial list.

PARTIAL. This Boolean flag indicates whether a node is
partial. It is set to true when a node is placed on the
queue during the partial phase. The field is never used for
a LEAF node.

As mentioned above, a PQNODE can be either a PNODE,
QNODE, or a LEAF. Each of these types has some additional
fields. Three fields are unique to a PNODE.

EMPTYCHILDREN. This points to a child which is cur­
rently known to be empty in a marked tree. In an unmarked
tree, it points to the children of the node.

FULLCHILDREN. This points to a child which is cur­
rently known to be full in a marked tree. It is set to nil
in an unmarked tree.

FIRSTPARTIAL, SECONDPARTIAL. These point to the first
and second children known to be partial in a marked tree.
The pointers are nil in an unmarked tree.

The following two fields can be found in a Q-node.

ENDSONl, ENDS0N2. These point to the two endmost chil­
dren of a Q-node.

Finally, LEAF contains one unique field.

29

INDEX. Each LEAF is mapped to an element in the set
under investigation. LEAF is an integer which is the index
of the element.

In contrast to PQNODE, the structure DNODE is quite
simple. DNODE represents a directed node which points to
the ends of a chain of siblings. The chain is characterized
by all full nodes at one end and all empty nodes at the
other. The two fields of this record follow.

FULLEND. This points to the endmost full node.

EMPTYEND. This points to the endmost empty node.

The last structure to be discussed is LINKER. It is
used to link various lists and queues. Its three fields
follow.

FLINK. This points to forward LINKER records.

BLINK. This points to back LINKER records. It is used
for insertions and deletions.

NODE. This points to a PQNODE.

5_.2 Global Variables
A list of global variables used by the planarity

program is explained. Following this is another list of
variables significant to PLTEST. Though they are local to

30

PLTEST, they are global to the many nested procedures in
PLTEST.

MAX. This represents the maximum number of vertices in
the input graph. It must be changed to allow graphs with
more than 30 vertices to be tested.

MAXPLUS1. This is a constant with a value of one more
than MAX.

GPH. A reference to the array of vertices GRAPH.

APTR. A pointer to ADJPOINT. It is used for scanning
adjacency lists of vertices.

TOP. This always points to the top of the list which
stores edges as they are traversed during the depth-first
search.

TOTAL. The number of vertices in the graph.

SINGLEPTS. The number of vertices with no incident
edges.

COUNT. A counter incremented with each call to
BICONNECT. Its value is used as the DFNUM of a vertex.

COMP. The number of the component under investigation.

BCOMP. The number of the biconnected component under
investigation.

31

STN. A value incremented with each node popped from
the stack in STNUMBER. Its value is used as the STNUM of a
node.

STAR. A reference to the vector STACK. Both STNUMBER
and PATHFINDER use STAR for storing vertices.

DFLIST. A reference to the vector DFARRAY. The DFNUM
of a node is the index of the vector. DFLIST is used for
printing the table of nodes in depth-first search order.

SUBROOT. A pointer to the root of the pertinent sub­
tree. If the subroot is a Q-nodef SUBROOT points to the
pseudoroot. A tree is rejected if more than one node can be
a subroot.

PSEUDOROOT. A pointer to the endmost pertinent chil­
dren.

POTENTIALROOT. Pointer to a node that may become the
SUBROOT at a later time or that has SUBROOT as one of its
descendants.

BLOCKEDCOUNT. The number of times that upward movement
in the tree is blocked.

BOTHENDCOUNT. The number of times a Q-node has both
end children marked as full while at least one of its in­
terior children is not a full node. The value is

32

decremented when all interior children are full and the
Q-node becomes a full node.

ADJLIST. The set of adjacency lists for the graph.
The ith list contains the leaves representing the edges from
vertex i to a higher numbered vertex.

THESET. The set of lists in which the ith list
contains the leaves representing the edges from vertex i to
a lower numbered vertex.

5.4 Input and Output
The input for the planarity program is any graph except

the null graph and the graph with n vertices, n ^ 1, and 0
edges. These graphs are obviously nonplanar. The graph is
represented as a set of adjacency lists. In this implemen­
tation, vertex labels are expected to be integer.

The first datum read is TOTAL, the number of vertices
in the graph. The vertex number and its adjacency list, en­
closed by parentheses, follow. The adjacency,list is writ­
ten so that vertex i is less than all members in its
adjacency list. Thus for a connected graph with n vertices
and e edges, the nth vertex and its adjacency list can be
eliminated because no adjacent vertices are greater than n.
Nodes with no incident edges are also absent. The first in­
teger of the list immediately follows the left parenthesis
and the last integer is immediately followed by the right
parenthesis. The end of input for a graph is designated by

33

a period immediately after the right parenthesis of the
final adjacency list. Since the program can handle more
than one graph as input, the period can be replaced by a
semicolon which separates the graphs. A graph and its input
format are shown in Fig. 5.1.

8
1 (2 3 4 5 6)
2(3 6)
3(4)
4(5)
5(6).

Fig. 5.1 Input format for a graph.

Note that the vertices are written in increasing order both
across and down. This is not required, but makes things
easier to read for humans. The first read statement occurs
in the main body of the planarity program. TOTAL is as­
signed a value. Procedure CREATEVERTICES assigns the ID
field of GPH [i] to the value i, where 1 _< i <, TOTAL. The
procedure also initializes the other fields appropriately.
The procedures involved in building adjacency lists are
READANDBUILD and MAKELINK. As the former reads the input,
it passes the values of the vertex v under examination and
one of its adjacent nodes w to MAKELINK. This procedure al­
locates a record to represent the edge (v,w). The field
NODE[1] is assigned v and NODE[2] is assigned w. NEXT[1]

34

and NEXT[2] are assigned the values of the ADJLIST fields of
GPH[v] and GPH[w], respectively. Then GPH[v] and GPH[w]
record the current address of the record representing (v,w).
Records are allocated and pointers are repositioned until
the reading is complete. Fig. 5.2 shows the data structure
at this stage for a sample graph. After building the data
structure for the graph, the program can start its search
for biconnected components.

All output from the program is handled by procedure
WRITEOUT. At the start of each search of a connected compo­
nent, a call to WRITEOUT displays the heading, "Component
x," where x is the number of the component. When a bicon­
nected component has been found, its vertices st-numbered,
and the component tested for planarity, another call to
WRITEOUT is made. Another heading, including the results of
the planarity test, is printed. The vertices in the bicon­
nected component are listed in depth-first search order
below this heading. The LOWPT value and STNUM for each node
is also listed. When each biconnected component is found,
the heading and vertex list is printed. At the end of the
search of the entire graph, the number of nodes with no ad­
jacent vertices is printed. Program results for the graphs
of Figs. 3.1 and 5.1 are given in Appendix 1. Additional
sample output can also be found in Appendix 1.

35

S

1(2 3 4)

2 (3)
3 (4) .

(a) (b)

Fig. 5.2 Data structure after reading input: (a) graph;
(b) input data; (c) data structure.

36

6. CONCLUSION

This paper has presented an implementation of the
depth-first search, st-numbering, and Booth and Lueker
PQ-tree algorithms which combine to provide a linear-time
planarity test. The test is a speeded-up version of an al­
gorithm published by Lempel, Even, and Cederbaum. The
information provided by the BICONNECT algorithm and Lemma 2
is utilized by PATHFINDER for partitioning a biconnected
graph into simple paths. STNUMBER uses the paths to
generate the st-numbering. Young's implementation of the
Booth and Lueker PQ-tree algorithm determines whether or not
the st-numbered, biconnected component is planar.

The entire listing of the planarity program appears in
Appendix 2. Appendix 1 shows some sample output* Timings
of results were not possible at the time of this writing.

A Honeywell 66/60 was used to run the programs. The
Honeywell Pascal differs slightly from Standard Pascal. An
attempt was made to keep the program standard. Two points
need mentioning. Honeywell Pascal does not recognize the
program statement. The "main program" of a Pascal job is a
procedure named "main." The textfiles input and output are
predeclared. Also, the final end statement of the program
is not followed by a period.

Since machines and implementations greatly differ, it
is difficult to compare the Hopcroft and Tarjan [5] al­
gorithm with the one presented here. Possible research

would be a comparison of implementations, using the
language and computer facilities, to determine storage
quirements and analyze the average behavior.

same
re-

37

38

REFERENCES

1. Aho A.V., J.E. Hopcroft, and J.D. Ullman, The Design and
Analysis of Computer Algorithms, Addison-Wesley, Reading,
Mass. , 1974.

2. Booth K.S. and G.S. Lueker, "Testing for the consecutive
ones property, interval graphs, and graph planarity using
PQ-tree algorithms," Journal of Computer and System
Sciences, Vol. 13, No. 3 (December 1976), 335-379.

3. Even S. and R.E. Tarjan, "Computing an st-numbering,
Theoretical Computer Sciences, Vol. 2, (1976), 339-344.

4. Harary F., Graph Theory, Addison-Wesley, Reading, Mass.,
1969.

5. Hopcroft J.E. and R.E.
testing," Journal of the ACM,

Tarjan,
Vol. 21,

"Efficient planarity
(1974), 549-568.

6. Lempel A., S. Even, and I. Cederbaum, "An algorithm for
planarity testing of graphs," Theory of Graphs,
International Symposium, Rome, July 1966, (P. Rosentiehl,
Ed.), Gordon and Breach, New York, 1967, 215-232.

7. Young S. , "Implementation of PQ-tree algorithms,"
Master1 2 3 4s Thesis, Department of Computer Science, University
of Washington, Seattle, Wash., 1977.

39

APPENDIX 1
Sample Output

©
The graph consists of

Component 1
Biconnected component 1

DFNUM VERTEX STNUM
1 1 6
2 6 13 5 5
4 4 4
5 3 3
6 2 2

LOWPT
1
1
1
1
1
1

There were 2 lonely points in the graph.

The graph consists of
Component 1

Biconnected component 1 is not planar
DFNUM

1
2
3
4
5
6

VERTEX
1
6
5
4
3
2

STNUM
6
1
5
4
3
2

LOWPT
1
1
1
1
1
1

There were no lonely points in the graph.

40

10
1(2 3)
2(3)
3(5 7 4)
4(7 6)
5(7)
7(9 8)
8(9 10)
9(10) .

The graph consists of
Component 1

Biconnected component 1 is planar
DFNUM VERTEX STNUM

3 4 2
4 6 1

LOWPT
3
4

Biconnected component 2 is planar
UM VERTEX STNUM LOWPT
5 7 4 5
6 8 1 5
7 10 2 5
8 9 3 5

Biconnected component 3 is planar
DFNUM

2
3
5
9

VERTEX
3
4
7
5

STNUM
4
1
2
3

LOWPT
2
2
2
2

Biconnected component 4
DFNUM VERTEX STNUM

1 1 32 3 1
10 2 2

is planar
LOWPT

1
1
1

There were no lonely points in the graph.

41

The graph consists of
Component 1

Biconnected component 1 is planar
DFNUM VERTEX STNUM LOWPT

1 1 4 1
2 4 1 1
3 3 3 1
4 2 2 1

Component 2
Biconnected component 1 is planar

DFNUM VERTEX STNUM LOWPT
1 6 7 5
2 10 1 5
3 12 2 5
4 11 5 5
5 7 6 5
6 8 4 5
7 9 3 5

There were 1 lonely points in the graph.

The graph consists of
Component 1

Biconnected component 1
DFNUM VERTEX STNUM LOWPT

1 1 28 1
2 7 1 1
3 11 4 1
4 16 7 1
5 20 8 1
6 21 9 1
7 27 10 1
8 28 11 1
9 26 12 1

10 25 13 1
11 23 14 1
12 24 15 1
13 22 16 1
14 19 17 1
15 18 18 1
16 13 19 1
17 14 20 1
18 9 21 1
19 15 3 2
20 10 2 2
21 8 22 1
22 12 5 3
23 17 6 4
24 6 25 1
25 5 26 1
26 3 27 1
27 4 24 1
28 2 23 1

There were no lonely points in the graph

43

APPENDIX 2

Program Listing of Linear-Time Planarity Test

(**
This program presents a linear running test for determining
graph planarity. It combines the implementation of the
st-numbering algorithm and Young's implementation of the
Booth and Lueker algorithm. The latter is used as one
procedure, PLTEST, in the planarity program.
The global variables are as follows:
max represents the maximum number of vertices in the input

graph. It must be changed to allow graphs with more
than 30 vertices to be tested.

maxplusl is a constant which is assigned a value of max + 1.
gph refers to the array of vertices GRAPH.
aptr points to ADJPOINT. It is used for scanning adjacency

lists of vertices.
top points to the top of the list which stores edges as

they are traversed during the depth-first search.
total is the number of vertices in the input graph.
singlepts is the number of vertices with no adjacent nodes.
count is incremented with each call to BICONNECT. Its value

is used as the DFNUM of a vertex.
comp is the number of the connected component under search.
bcomp is the number of the biconnected component under

investigation.
stn is incremented with each node popped from the stack in

STNUMBER. Its value is used as the STNUM of a node.
It is also used to indicate the total number of nodes
in a biconnected component.

d acts as an index variable.
stak is an identifier which denotes the vector STACK. Both

STNUMBER and PATHFINDER use STAK for storing vertices.
dflist is an identifier which denotes the vector DFARRAY. The

44
DFNUM of a node i s the index o f th e v e c t o r . . D F L I^ T i s
used f o r p r i n t i n g the t a b l e o f nodes i n d e p t h - f i r s t
s e a r c h o r d e r .

c h r i s a c h a r a c t e r v a r i a b l e .

result is the value, 0 or 1, a s s i g n e d i n PLTEST... A value
of 1 denotes the graph " i s p l a n a r and a v a l u e of
0 s a y s the graph " i s not p l a n a r . "

********************** **

p r o c e d u r e m a in ; »

c o n s t max = .30; .
m a x p l u s l = 3 1 ;

t y p e p t r = “a d j p o i n t ;

v e r t e x — r e c o r d id ; i n t e g e r ;
dfnum, l o w p t , stnum, s t n e x t ; i n t e g e r ;
a d j l i s t ; p t r ;
f l a g : char

end;

a d i p o i n t = re c o r d node : a r r a y [1 . . 2 .] . of in t e g e r . ;
next : a r r a y [1 . . 2] of p t r ;
edgetype,m ark : c h a r ;
e l i n k : p t r

e n d ;

g r a p h = a r r a y [1 . .max] of v e r t e x ;

d f a r r a y = a r r a y [1 . . max] of i n t e g e r ;

s t a c k = a r r a y [1 . .m a x p lu s l] of i n t e g e r ;

p q t y p e ** (pnode ,q node , l e a f) ;

p q p t r = “pqnode;

p o s i t i o n t y p e = (r o o t o f t r e e , c h i l d o f p n o d e , e n d s o n o f q n o d e ,
i n t e r i o r c h i l d o f q n o d e) ;

g r o u p t y p e = (n o g r o u p ,e n d g r o u p , in n e r g r o u p ,t w o e n d g r o u p s ,
tw o o t h e r g r o u p s) ;

l i s t p t r ^ = <‘ l i n k e r ;
d p t r = '‘dnode;
l i n k e r = r e c o r d node : p q p t r ;

b l i n k , f l i n k : l i s t p t r
end;

ip d e = re-cord p a r e n t , b r o t h e r , s i s t e r ¿group. : p q p t r ;

45
listplace : listptr; partial : boolean;
case nodetype : pqtype of

leaf : (index : integer);pnode : (fullchildren,emptychildren,firstpartial,
secondpartial : pqptr);

qnode : (endsonl,endson2 : pqptr)
end;

dnode = record fullend,emptyend : pqptr
end;

var gph : graph; aptr,top : ptr;total,singlepts,count,comp,bcomp,d,stn,result : integer;
stak : stack; dflist : dfarray; chr : char;

procedure pltest(stfirst : integer);
(* This procedure tests a biconnected component for planarity.

The entire procedure is a modified version of Young's program. Parameter STFIRST, used by procedure FORMAT, identifies
the vertex whose st-number is one. Succeeding nodes to be
st-numbered can be identified by their preceeding ones *)

var root,subroot,potentialroot,pseudoroot,p : pqptr;
partiallist,listrear,qfront,qrear : listptr;
blockedcount,bothendcount,n,fd,i,j : integer;
u : listptr; theset : array[1..max] of listptr;
reject : boolean; adjlist : array[1..max] of listptr;
directednode : dptr; pertinentfullnode : pqptr;
t : pqptr;

basic procedures**)

procedure insert(p:pqptr;var headilistptr);
(* inserts a node p into some list named head *)
var l:listptr;
begin

new(l);if head ~= nil then head''.blink := 1;
with 1~ do beginnode := p;flink := head; blink:= nil;

end;
head := 1;

end; (*insert*)
procedure delete(1:listptr;var head:listptr);
(* deletes a 1 ink pointed to by 1 from list head
beg in with r do begin

if blink = nil
then head := flinkelse bl ink'“.flink :=flink;if flink ~= ni1 then flink''.blink := blink;

46
end; end; (* delete*)

:= nil; sister := nil;
listplace := nil; partial

= nil;

function makenew(newtype:pqtype)rpqptr;(* creates and initializes and new pqnode of type newtype
var p:pqptr; begin case newtype of

pnode: new(p);
qnode: new(p);
leaf: new(p)
end;

with p" do beginnodetype := newtype; brother
parent := nil; group := nil;
if nodetype = pnodethen begin fullchildren := nil; firstpartial

secondpartial := nil end;
end;

makenew := p;
end; (* makenew *)
function createuniversaltree(u:1istptr):pqptr;
(* creates the universal tree with the children on the list u

and returns the root of this tree *)
var p:pqptr;
begin

if u = nilthen createuniversaltree := nil
else if u".flink = nil

then createuniversaltree := u".node
else beginp := makenew(pnode) ; p".emptychildren := u .node;

createuniversaltree := p; u".node ,parent:= p;
u := u".flink;while u ~= nil do with u" do begin node''.sister : = blink".node;

node".parent:= p; blink".node".brother:= node;
u := flink;

;= false;

end;
end

end(* createuniversaltree *)
procedure format;(* Procedure represents the biconnected component as a set

of adjacency lists. The vertices are directed from the
lower numbered node to the higher numbered node. The
vertices are identified by their st-numbers.
vertices are read, they are placed in either
ADJLIST or THESET. Local variable SS is the
vertex name. N is the location (either 1 or
the array NODE. MM is the STNUM of M. VNUM
index variable *)varss,n,mfmm,vnum : integer; p : pqptr;

beg in

As theof two lists:
current
2) of SS in is used as an

47
vnum : = 0;ss := stfirst; (* ss is the node with STNUM of 1 *)
while gph [ss] .stnext ~= 0 do(* while not the last st-nurabered vertex *)
begin

vnum := vnum +1;aptr := gph[ss].adjlist; (* get an adjacent node *)
while aptr ~= nil do
beg inif aptr".node[1] = ss then

beginn := 1; (* ss is in location one *)
m := aptr''.node [2]

end
else
beg in

n : = 2 ;
m := aptr".node[1]

end;
if (aptr".mark = ’o') and(gph[m].stnum > gph[ss].stnum) then
begin

mm := gph[m].stnum;
p := makenew(leaf);
p".index := mm;
insert(p,theset[mm]) ; insert(p,adjlist[vnum])

end;

(* ss is in location two *)

aptr := aptr".next[n]
end;

(* look at the next
adjacent point *)

ss := gph[ss].stnext (* get the next st-numbered node *)
end

end; (* format *)
procedure replacepseudoroot(p:pqptr);
var siblingl,sibling2 : pqptr;
begin with pseudoroot" do begin

siblingl := endsonl".brother ;
if endsonl = endson2:= endson2"

:= endson2"
p".brother
p" . sisterif

if
if

sister
brother ;
:= siblingl;
= sibling2;

then sibling2
else sibling2
p ~= nil then
p ~= nil then
siblingl = nil then begin

if p ~= nil thenp".parent := endsonl".parent;
case endsonl".parent".nodetype ofif endsonl".parent".emptychildren=siblingl then endsonl".parent".emptychildren := p;

if endsonl".parent".endsonl = endsonl
then endsonl".parent".endsonl := p else endsonl".parent".endson2 := p

pnode
qnode:

48
end;

endelse if siblingl".brother = endsonl
then siblingl".brother := p
else siblingl".sister := p;

if sibling2 = nil
then begin

if p “= nil thenp".parent := endson2".parent;
case endson2".parent".nodetype ofpnode: if endson2".parent".emptychildren=endson2 then endson2".parent".emptychildren := p;

qnode: if endson2".parent".endsonl = endson2
then endson2".parent".endsonl := p else endson2".parent".endson2 := p

end

end
end

else if
then
else

end; (*

sibling2".brother
sibling2".brother
sibling2".sister
replacepseudoroot

= endson2
:= p
= p;*)

{**
procedures used in full and partial node phase********* * * ***)

procedure initialize(s:1istptr) ;(* initializes all the variables for the reduce pass *)
begin(* initialize *) subroot := nil; potentialroot := nil;

bothendcount ;= 0; blockedcount := 0;
partiallist := nil;
listrear := nil;pseudoroot ;= makenew(qnode); new(directednode);
with directednode" do begin fullend := nil;emptyend := nil; end;
qfront := s;
if s “= nil ^then while s".flink ~= nil do s := s .flink;
qrear := s; end; (* initialize*)

procedure queue (prpqptr) ;
(* puts a node p on the queue *)
var lrlistptr;begin new(l); l".node ;= p; l".flink:= nil;

if qrear ~= nil then qrear".flink ;=1
else qfront := 1;
qrear := 1;

end; (* queue *)
function nextqueuednode : pqptr;
(* returns a node from the queue *)
begin

49
nextqueuednode := qfront".node;
qfront := qfront".flink ;
if qfront = nil then qrear := nil; end; (* nextqueuednode *)

function queuelength:integer;
(* returns the length if less than 2 *)
beg in

if qfront= nilthen queuelength ;= 0
else if qfront = qrear

then queuelength
else queuelength :=

end; (* queuelength *)
procedure setupqueue;
(* sets up a queue from the the listpointers *)
begin qfront :=partiallist;

while partiallist ~= nil
beg inlistplace:=nil; partial:= true;

partiallist := partiallist".flink;
end;

end; (* setupqueue *)
procedure extendgroup (p,sibling:pqptr);
(* extends the group containing sibling to include p *)
beg inif p".brother = sibling then

beg inp".brother := p".sister;
p".sister ;= sibling;

end;if sibling''.group = sibling then
if sibling''.brother = p then
beg insibl ing''.brother := sibling''. sister ;

sibling''.sister ;= p;
end;

p".group := sibling" .group;
sibling".group := nil;
p".group".group := p;

end; (* extendgroup *)
procedure combinegroups(p:pqptr) ;
(* combines the groups pointed to by p's siblings

to include p *) var s,b:pqptr;
begin with p" do beginif sister".group = sister then

if sister".brother = p then
beginsister".brother := sister".sister;

:= 1
2;

partiallist and resets
qrear := listrear;do with partiallist".node" do

50
sister".sister := p;

end;if brother".group = brother then
if brother".brother = p then
beg inbrother".brother := brother".sister;

brother".sister := p;
e n d ;s := sister".group; b := brother".group; sister".group := nil; brother".group := nil;

s".group := b; b".group := s;
end; end; (* combinegroups *)
procedure resetgroup (prpqptr);
(* resets group pointers *) begin with p" do begin

group".group := nil; group := nil;
end;end; (* resetgroup *)
function nodeposition (p:pqptr)rpositiontype;
(* decides where p is located *)
begin

if p = root thennodeposition := rootoftree
else if p".parent = nil thennodeposition := interiorchildofqnode

else if p".parent".nodetype = pnode then nodeposition := childofpnode
else nodeposition := endsonofqnode

end; (* nodeposition *)
function siblinggroup (prpqpt
(* decides what type of group

and returns the sibling of
begin with p" do begin

if brother ~= nil then sibl
else sibling := sister;
if sibling".group = nil

then siblinggroup := nog else if sibling".group" .
then siblinggroup := else siblinggroup :=

end end; (* siblinggroup *)

r; var sibling:pqptr):g
surrounds an end node
p *)
ing := brother

roup
parent ~= nil
endgroupinnergroup;

rouptype
P

function siblingsgroup (p:pqptr;var sibling:pqptr):grouptype
(* for an interior node p »decides what type of groups

surround p and returns the pertinent sibling *)
begin with p" do

if brother".group ~= nil
then if sister".group ~= nilthen if (sister".group".parent ~= nil) and(brother".group".parent ~= nil)

then siblingsgroup := twoendgroups
else siblingsgroup := twoothergroups

51
else begin sibling := brother;

if brother".group".parent ~= nil
then siblingsgroup ;= endgroup
else siblingsgroup := innergroup;
end

else if sister".group ~= nilthen begin sibling ;= sister;
if sister".group".parent ~= nil

then siblingsgroup := endgroup
else siblingsgroup := innergroup
end

else begin siblingsgroup := nogroup;
if brother".partial

then sibling := brother
else sibling :=sister;

end;
end; (* siblingsgroup *)
procedure putonpartiallist(p:pqptr);
(* puts a node on the partiallist *)
begin with p" do begin insert(p,partiallist);

listplace := partiallist; partial:=true; if partiallist".flink=nil then listrear ;=partiallist;
end end; (*putonpartiallist*)
procedure takeoffpartiallist(prpqptr);
(* takes a node off the partiallist *)
begin with p" do beginif 1istrear".node = p then listrear := 1istrear".blink

delete(listplace,partiallist);
listplace := nil; partial :=false;

end end; (* takeoffpartiallist*)
procedure resetfullnode (p:pqptr);
(* resets a full node *) begin with p" do begin

emptychildren := fullchildren;
fullchildren := nil;

end end; (* resetfullnode *)
procedure extendsubroot(p,sibling :pqptr) ;
(* extends the pseudoroot to include p *)
var temp:pqptr;
begin with subroot" do begin

if endsonl = sibling
then endsonl := p
else endson2 := p;

end; end; (* extendsubroot *)
procedure removefromemptychildren(p:pqptr);
(* removes a node p from the parents list of

emptychildren *) begin with p" do begin

52
if brother ~= nil

then if brother".brother = pthen brother".brother := sister
else brother".sister := sister

else if parent".emptychildren = p
then parent''. emptychildren := sister;

if sister ~= nil
then if sister".brother = pthen sister''.brother := brother

else sister''. sister := brother else if parent''. emptychildren = p
then parent".emptychildren := brother

brother := nil; sister := nil; end end; (* removefromemptychildren *)
procedure addtofullchildren (pipqptr);(* adds a node p to its parents list of full children *)
var qrpqptr;
beg inremovefromemptychildren (p) ;

with p".parent" do begin
p".brother := fullchildren;
if fullchildren ~= nil
then fullchildren".sister := p;
p".sister := nil; fullchildren := p;

end;end; (* addtofullchildren *)
procedure
(* points

createpseudoroot(p,qrpqptr);
the pseudoroot to the ends of

pertinent group *) begin with pseudoroot" do begin
endsonl := p; endson2:= q;
subroot := pseudoroot;

end;end; (* createpseudoroot *)

the

(**
procedure used in findpertinentsubroot **)

procedure findgroup(prpqptr; var fullendfpartialendrpqptr);
(* for a q node it finds where the partial son and the full sons are located and returns a pointer to the partialend and
the fullend *)

begin with p" doif endsonl".group ~= nil
then fullend := endsonl
else if endson2".group ~= nil

then fullend := endson2
else if endsonl".partialthen begin fullend:=endsonl;partialend:=endsonl end

else begin fullend:=endson2;partialend:=endson2 end
with fullend".group" do

if brother ~= nil

53
then if brother".partial

then partialend := brother
else if sister ~= nil

then if sister''.partial
then partialend := sister
else partialend := fullend".group

else partialend := fullend".group
else if sister ~= nilthen if sister".partial

then partialend := sister
else partialend := fullend".group;

end; (* findgroup *)
(**

procedures used with process pertinent
subtree and makedirectednode**)

procedure
(*

beg in if

findl(ptpqptr; var partialson,fullend,emptyend,
fullsibling, emptysibling:pqptr);

used in makedirectednode to find the sibling which is full
and the one which is empty, it also helps to decide which way
to point the directed node *)

with p" do begin(endsonl" .group ~= nil) or (endsonl".partial and
(endson2".group = nil))then begin fullend:=endsonl;emptyend:=endson2; end

else begin fullend:= endson2; emptyend:= endsonl; end;
fullend".group ~= nil
then beginfullsibling := fullend".group;

if fullsibling".brother".partial
then partialson := fullsibling".brother
else if fullsibling".sister".partial

then partialson ;= fullsibling".sister
else partialson := nil;

if partialson ~= nil
then if partialson".brother = fullsibling emptysibling := partialson".sister

if

emptysibling
(füllend)

then
else

resetgroup
end

else begin
partialson := fullend; fullsibling
if partialson".brother = nil

then emptysibling := partialson".sister
else emptysibling := partialson".brother;

end;
end; end; (*findl *)

= partialson .brother

:= nil;

procedure find2 (partialsonrpqptr; var fullsibling,
emptysibling : pqptr);(* does the same for processpertinent subtree as findl did for

makedirectednode. see above procedure *)

54
begin with partialson" do

if brother = nil thenbegin emptysibling := brother; fullsibling := sister; end
else if brother".partial or (brother".group ~= nil) then

begin emptysibling := sister;
fullsibling := brother

endelse begin emptysibling := brother;
fullsibling := sister

end;
if fullsibling~=nil then

if (fullsibling".group=fullsibling) and
(fullsibling".brother=partialson) then

beginfullsibling".brother := fullsibling".sister;
fullsibling".sister:=partialson;

end;
end; (* find2 *)
function makefullparent(prpqptr):pqptr;(* returns nil if p is nil, p if p has no siblings,otherwise

a new parent is created for the full children *)
var qtpqptr;
begin

if p = nil then
makefullparent := nil

else beginp".parent".fullchildren := nil;
if p".brother = nil thenbegin p".parent := nil; makefullparent := p; end
else begin q := makenew(pnode); q".emptychildren :=

while p~=nil dobegin p".parent := q;
p := p".brother

end;
makefullparent := q;

end
end

end; (* makefullparent *)

P?

function makeemptyparent (prpqptr):pqptr;
(* returns nil if p is nil, p if p has no siblings or p's parent

if p does have siblings *)
var q:pqptr;
begin

if p = nilthen makeemptyparent := nil
else with p" doif (brother = nil) and (sister = nil)then begin parent := nil; makeemptyparent:= p; end

else begin makeemptyparent := parent;
parent".brother := nil; parent".sister := nil;
parent".parent := nil;
end;

55
end; (* makeemptyparent *)
function initialdirectednode(fullnode,emptynode:pqptr):dptr;
(* sets up the first directednode *)
begin

with directednode'' do begin
füllend := fullnode;
emptyend:= emptynode;
fullnode".brother := emptynode;
if emptynode ~= nil then

emptynode''.brother := fullnode;
end; end; (* initialdirectednode *)
procedure merge(directednode:dptr; partialson,fullsibling,

emptysiblingrpqptr);
(* merges the directed node with the full and partial sibling *)
begin with directednode'' do begin

if füllend''.brother = nil
then füllend".brother := fullsibling
else füllend".sister := fullsibling;

if fullsibling ~= nil
then if fullsibling".brother = partialson

then fullsibling".brother := füllend
else fullsibling".sister := füllend;

if emptyend".brother = nilthen emptyend".brother := emptysibling
else emptyend".sister := emptysibling;

if emptysibling ~= nil
then if emptysibling".brother = partialson

then emptysibling".brother := emptyend
else emptysibling".sister := emptyend;

end; end; (* merge *)
procedure replace(p,q:pqptr);
(* replaces the new qnode subroot for the old pnode subroot*)
begin with p" do begin

if p= root then root := q;
q".parent := parent;
q".sister := sister; q".brother := brother;
if sister ~= nil then if sister".brother = p

then sister".brother := q else sister".sister := q;
if brother ~= nil then if brother".brother = p

then brother".brother := q else brother".sister := q;
if parent ~= nil then case parent".nodetype of
pnode: if pa rent".emptychildren = p then

parent".emptychildren := q;
qnode: if parent".endsonl=p then parent".endsonl := q

else if parent".endson2 = p then parent".endson2 := q
end;

end; end; (* replace *)
procedure addtochildren(q,p:pqptr);

56
(* add q to p's emptychildren *)
begin with p" do beginq".parent := p; q".brother := emptychildren;

if emptychildren''.sister = nil
then emptychildren''. sister := q
else emptychildren''.brother := q;

emptychildren := q;
end; end; (* addtochildren *)
procedure createfamily(q,firstpartial,fullnode,secondpartial : pqptr);
(* q becomes the parent of the rest of the parameters *)
begin

q".endsonl := firstpartial;firstpartial".parent".firstpartial := nil;
firstpartial".parent := q;
firstpartial".brother := fullnode;
if fullnode ~= nil

then beginfullnode".group ;= fullnode;
fullnode".sister := firstpartial;
fullnode".brother:= secondpartial;
if secondpartial ~= nil
then beginsecondpartial".sister.:= fullnode;

q".endson2 := secondpartial;secondpartial".parent".secondpartial ;= nil;
secondpartial".parent ;= q;
end

else beginq".endson2:= fullnode; fullnode".parent := q;
end

end
else beginfirstpartial".brother := secondpartial;

secondpartial".brother := firstpartial;
q".endson2 := secondpartial;
secondpartial".parent".secondpartial := nil;
secondpartial".parent := q;
end

end; (* createfamily *)
(**

main reduce procedures************************-**************************************)
procedure fullnodephase;(* starting with a queue of full leaves, the procedure moves

up the tree finding all the full nodes *)
var groupend:pqptr; siblingrpqptr;
beg inwhile queuelength > 0 do begin

p := nextqueuednode;
with p" do case nodeposition(p) of

57

endsonofqnode:

rootoftree : subroot := p;
childofpnode: beginif ~ parent".partialthen putonpartiallist(parent);

addtofullchildren(p);
if parent".emptychildren = nil

then begin queue (parent);takeoffpartiallist(parent);
resetfullnode(parent);

end;
end;: beginif parent".partialthen bothendcount := bothendcount +1

else putonpartiallist(parent); case siblinggroup(p,sibling) of
nogroup: group := p; endgroup: begin queue(parent);takeoffpartiallist(parent);

bothendcount:=bothendcount -1;
resetgroup(sibling);
end;innergroup: begin extendgroup(p,sibling);blockedcount := blockedcount -1;
end

end
end; .interiorchildofqnode: case siblingsgroup(p,sibling) of

nogroup: begin group:= p; groupend := p;blockedcount := blockedcount + 1;
end;innergroup,endgroup: beginextendgroup(p,sibling);

groupend := p;
end;

twoendgroups: beginqueue(sister".group .parent);
bothendcount := bothendcount - 1; takeoffpartiallist(sister".group".parent); resetgroup(sister); resetgroup(brother);
end;twoothergroups: begin blockedcount := blockedcount 1;

groupend := sister".group;
combinegroups(p);
end

end
end ;

end; .if (blockedcount > 1)or(bothendcount > 0) then reject :- true,
if (blockedcount = 1) and (partiallist = nil) then createpseudoroot(groupend,groupend .group);
end; (* fullnodephase *)
procedure partialnodephase;

58
(* from a queue of potential partial nodes all the rest are

found and all the reject cases are tested for *)
var sibling:pqptr;
begin

setupqueue;while (blockedcount + queuelength > 1) and ~ reject do begin
p := nextqueuednode;
case nodeposition(p) of
rootoftree : beginblockedcount := blockedcount + 1;

potentialroot := p;
e n d ;

childofpnode : with p".parent" doif firstpartial = nil then
begin if ~ partial then

beginqueue(p".parent);
partial:= true

end;removefromemptychildren(p);
firstpartial := p;

endelse if subroot = nil then beginsecondpartial := p; removefromemptychildren(p);
subroot := p".parent;
subroot".partial := false;

end
else reject := true;

endsonofqnode: with p" do case siblinggroup(p,sibling) of
nogroup: if sibling".partial thenif sibling = potentialroot then

if subroot = nil thenbegin potentialroot := nil;
createpseudoroot(p,sibling);

end
else reject := true

else beginpotentialroot := p; blockedcount := blockedcount+1;
endelse if ~ parent".partial then
begin queue(parent);parent".partial := true;
end

else reject := true;
innergroup : if subroot = nil thencreatepseudoroot(p,sibling .group)

else if (pseudoroot".endsonl = sibling) or (pseudoroot".endson2=sibling) then
extendsubroot(pfsibling)

else reject := true;
(* all okay *)endgroup:

59
end;interiorchildofqnode: with p~ docase siblingsgroup(p,sibling) of

nogroup: if sibling~.partial and(sibling=potentialroot) then
if subroot ~= nil then

reject := true
else begincreatepseudoroot(p,sibling);

potentialroot := nil;
end

else beginpotentialroot := p; blockedcount := blockedcount+1;
end;

innergroup: if subroot = nil thencreatepseudoroot (p,s ibling ~ .group)
else if (pseudoroot~.endsonl=sibling) or

(pseudoroot~.endson2=sibling) then
extendsubroot(p,sibling)

else reject := true;
endgroup: (* all okay *);
twoothergroups: reject := true

end
end;if blockedcount > 1 then reject := true;

end; (* end of while statement *)if queuelength = 1 then potentialroot := nextqueuednode;
end; (* partialnodephase *)
procedure findpertinentsubroot;(* process now moves down the tree to find the real subroot *)
var p ,fullend,partialend:pqptr;
beg inif potentialroot ~= nil then

p := potentialroot
else p := subroot;while (p ~= subroot) and ~ reject do with p~ do begin

partial := false;
case nodetype ofpnode: if fullchildren = nil then

beg inaddtochildren(firstpartial,p);
p := firstpartial;
p~ .parent''. f irstpartial := nil;

endelse if subroot = nil then
subroot := p else reject := true;

qnode: beginfindgroup(p,fullend»partialend);
if (fullend = partialend) and

part ialend''.partial then
p := partialend

60
else if subroot = nil thencreatepseudoroot(fullend,part ialend)

else if (subroot".endsonl = partialend) or (subroot",endson2=partialend) then
p := subroot

else reject := true;
end

end
endend; (* findpertinentsubroot*)

function makedirectednode(p:pqptr):dptr;(* the recursive procedures that transforms partial nodes
into directed nodes *)var partial son,fullnode,emptynode,fullend,emptyend,fullsibling,
emptys ibling rpqptr;

beg in
with p" do begin
partial : = false;
case nodetype of
pnode: beginfullnode := makefullparent(fullchildren); emptynode := makeemptyparent(emptychildren);

if firstpartial = nil then
beginpertinentfullnode := fullnode;

makedirectednode :=initialdirectednode(fullnode,emptynode);
endelse begindirectednode:=makedirectednode(firstpartial)

firstpartial := nil;merge(d irectednode,nil,fullnode,emptynode);
if fullnode ~= nil thendirectednode".fullend := fullnode;
if emptynode ~= nil thendirectednode".emptyend := emptynode;

end;
end;

qnode: beginfindl(p,partialson,fullend,emptyend,fullsibling,
emptysibling);

if partialson ~= nil then
begindirectednode := makedirectednode(partialson);

merge(directednode,partialson,fullsibling,emptysibling);
endelse pertinentfullnode := fullsibling;
if fullend ~= partialson then
begindirectednode".fullend := fullend;

fullend".parent := nil;
end;

61
if emptyend ~= partialson then
beg indirectednode".emptyend := emptyend;

emptyend".parent := nil
end;

end
end; (* of case *) end; (* of with statement *)

makedirectednode := directednode;
end; (* makedirectednode *)
procedure processpertinentsubtree;
(* main reduce procedure that processes the tree *)
var q,fullnode,partialson,fullsibling,emptysibling,dad rpqptr;
begin if subroot~=nil then with pseudoroot do begin

subroot".partial := false;
if subroot".nodetype = pnode then

if subroot".firstpartial = nil then
if subroot".fullchildren = nil

then beginendsonl := subroot; endson2 := subroot;
end

else beginfullnode := makefullparent(subroot".fullchildren)
addtochildren(fullnode,subroot);
endsonl := fullnode; endson2 := fullnode;
end

else begin
q := makenew(qnode);fullnode := makefullparent(subroot".fullchildren) ;
ereatefamily(q,subroot".firstpartial,fullnode,

subroot".secondpartial);
if subroot".emptychildren = nil

then replace(subroot,q) else addtochildren(q,subroot);
endsonl:= q".endsonl; endson2 := q".endson2;
end;

if endsonl".partial then beginpartialson := endsonl; dad := partialson".parent;
find2(partialson,fullsibling,emptysibling);
directednode := makedirectednode(partialson);
if fullsibling".partial thendirectednode".fullend".group := directednode".fullend;
directednode".emptyend".parent := dad;merge(directednode,partialson,fullsibling,emptysibling);
if dad ~= nil then if dad".endsonl = partialson

then dad".endsonl := directednode".emptyend
else dad".endson2 := directednode".emptyend;

endsonl := pertinentfullnode;
end;

if endson2".partial then beginpartialson := endson2; dad := partialson".parent;
find2(partialson,fullsibling,emptysibling);
directednode := makedirectednode(partialson);

62
directednode".emptyend".parent := dad;
merge(directednode,partialson,ful1sibling,emptysibling);
if dad “= nil then if dad~.endson2 = partialsonthen dad".endson2 := directednode".emptyend

else dad".endsonl := directednode".emptyend;
endson2 ;= pertinentfullnode;
end;

if endsonl".group ~= nil
then resetgroup(endsonl)else if endsonl~=endson2 then resetgroup(fullsibling);

end; end; (* processpertinentsubtree *)
{*********** * ** **

reduce and main program**)
procedure reduce (t:pqptr;s:listptr);

beg in
initialize(s);
fullnodephase;
partialnodephase;
findpertinentsubroot;
if ~ reject thenprocesspertinentsubtree

end; (* reduce *)
function planar iboolean;
beg inreject := false;root ;= createuniversaltree(adjlist[1]);

for i ;= 2 to stn-1 do
beginif ~ reject then reduce(root,theset[i]);

if ~ reject then
begint := createuniversaltree(adjlist[i]);

replacepseudoroot(t);
end;

end;
planar := ~ reject;

end; (* planar *)
(********** start of main body of pltest **********)

beg infor j := 1 to stn do
begin

theset[j] := nil;
adjlist[j] := nil

end;
format;
if planar then

result := 1
else result r.= 0

63
end; (* pltest *)
{**

end of procedure pltest**)

procedure createvertices;
(* Procedure assigns vertex n of records and initializes

local variable I is used as
var i : integer;
beg infor i := 1 to total do

beg inwith gph[i] do
begin

id : = i;
dfnum := 0
lowpt := 0
stnum := 0
stnext := 0;
adjlist := nil; (’
flag := 1 a' ;

end
endend; (* createvertices *)

to location GPH[n] in the list
the fields of the records. The
a counter *)

(’ set vertex name to value of (* set depth-first number
(* set low value (* set st number

(* set next st-number
set adjacency list pointer

index i
to zero
to zero
to zero
to zero
to nil

(* mark vertex as "available"

*)
*)
))
*)
*)
*)

procedure makelink (j,k : integer);(* Procedure forms the adjacency lists for each vertex.
Parameters J and K are vertices read as input and passed
from READANDBUILD *)

beginnew(aptr); (* allocate a new record for an edge of thegraph and assign its address to aptr *)
with aptr'' do
beg innext[1] := gph[j].adj1ist; (* next[l] points to most recentnode added to adj. list of j *)

next [2]
node [I]
node[2 j
edgetype

= gph[k].adjlist;
= j ;= k;
:= 1n1;

e l i n k := n i l ;
m a r k := ' n '

e n d f
g p h [j] • a d j 1 i s t : = a p t r ;

g p h [k] . a d j l i s t : = a p t r
l; (* m a k e l i n k *)

(* mark the edge as "neither" *)
(* mark the point as "new" *)

adjacency list pointer of vertex
j points to last added vertex on its adjacency list *)

64
procedure readandbuild;
(* Procedure reads the graph so that adjacency lists can be built

Local variable I is the vertex under examination. NUM represents an adjacent point of I. The input graph is
represented as a set of adjacency lists. The
is the total number of vertices in the graph,
lists are written on the lines following this
vertex number appears with a left parenthesis
following it. All vertices adjacent to it and

first number read
Adjacency
number. A
immed iately
having numbers

greater than it are added to the adjacency list for that vertex.
These numbers are delimited by blanks. The last adjacent node
is immediately followed by a right parenthesis. The last right
parenthesis of the last adjacency list of a graph is immediately
followed by a period. This signifies the end of the data. If
more than one graph will be tested, the period must be

by a semicolon,
integer ;

replaced
var i,num :
beg in

chr := 1
while not
(* while
beg inread (num);

i := num;
read(chr);
while chr ~= 1)1 do
(* while there still
beg in

read(num);
makelink(i,num);
read(chr)

end;
read(chr)

end
end; (* readandbuild *)

This signifies more data is to come *)

(chr in [';1,'.']) do
not at end of data for a graph *)

(* read the first vertex

exist adjacent points *)
(*add

get an adjacent point
num to adj. list of i *)

*)

procedure popstack (vv,ww : integer);(* Procedure pops edge stack down to and including the edge
(vv,ww). These edges form a biconnected component. Before
leaving the procedure, the vertices vv and ww and the edge
(vv,ww) are marked old in preparation for the st-numbering.
The local variable FROM represents the vertex you came
from and the variable TTO is the vertex you went to as
determined during the depth-first search *)

var from,tto : integer;
beginfrom := top".node[1]; (* vertices making up the top edgein the stack are assigned to

variables from and tto *)
tto := top".node[2];
while (from ~= vv) or (tto ~= ww) do
(* while the edge (vv,ww) hasn't been reached *)
beg in

if gph[from].flag = 'u' then
(* if it is marked "used" *)

gph[from].flag := 'n';

65

(* mark it "new" *)
if gph[tto].flag = 'u' then

gph[tto].flag := 'n';
top := top~.elink;
from := • top~.node[1];
tto := top".node[2]

end;gph[from].flag := 'o';
gph[tto].flag := 'o';
top~.mark := 'o';
top := top~.elink

end; (* popstack *)

(* move pointer down one position
in the edge stack *)

(* mark vertex vv "old" for st-numbering *)
(* mark edge "old" for stnumbering *)
(* move pointer down one position *)

function pathtried (kind : char; i,j,pt,test : integer) : boolean;
(* This routine returns "true" if a path is found between

two vertices and "false" otherwise. Local variable SWITCH is
a Boolean flag. It is set to "true" when an edge has been found.
Parameter KIND designates the type of edge that is required -
"tree" or "back." Parameter PT is the start node for the path. TEST is the selector for the case statement. It further specifies
the type of edge to be traversed. The integers I and J
determine the direction to take in the tree from vertex PT.
If w is an adjacent node of PT, then

i j
1 2 --- > pt is the parent/ancestor of w
2 1 --- > pt is the son/descendant of w *)

var switch : boolean;
beg inaptr := gph[pt].adjlist; (* look at the first adjacent nodein the list *)

switch := false;while (aptr ~= nil) and (switch = false) do
(* while there remain adjacent nodes to investigate and

while a path has not been found *)
if (aptr''.node [i] = pt) then
(* if the node is in the correct location *)if (aptr ~. edgetype = kind) and (aptr''.mark = \n') then

(* if the edge is the correct kind and "new" *)
case test of

1: switch := true;
2 : if (gph[pt].lowpt =

66
gph[aptr".node[j]].dfnum) then

switch := true
elseaptr := aptr".next[i];

3: if (gph[pt].lowpt =gph[aptr".node[j]].lowpt) then
switch := true

elseaptr := aptr".next[i]
end (* case *)

elseaptr := aptr".next[i] (* look at the nextadjacent node *)
elseaptr := aptr".next[j];

pathtried switch = true
end; (* pathtried *)

(* look at the next adjacent
node in the other location *)

procedure pathfinder (var pbot : integer; p : integer);
(* This routine calls PATHTRIED to obtain a path. It

places the vertices from the returned path on a stack
so that the start vertex is the last to be pushed.
It also marks the visited vertices and edges as "old."
Parameter P is the start vertex for a path. Parameter
PBOT indicates the next available position in the stack.
Index variable I gives the location of the node from which
another call to PATHTRIED will be made *)

var i : integer;
beginpbot := maxplusl;

if pathtried('b',2,l*p,l) then
beg ingph[aptr".node[l]].flag := ’o’; (* mark the vertex "old" *)

aptr".mark := 'o’; (* mark the edge "old" *)
stak[pbot] := p; (* place the node in the stack *)
pbot := pbot-1;stak[pbot] := aptr".node[1] (* place last nodepath on stack

end
else

if pathtried (111,1,2,p,1) then
begin

aptr".mark := 'o' ; stak[pbot] := p; (* push p on stack *)
p := aptr".node[2] ; (* assign p's child to p *)
while(gph[p].flag = 'n') do
(* while there are "new" vertices *)
beginif pathtried('b',2,1,p,2) then i := 1

(* if a back edge is found then the path
will continue from the vertex in node[i] *)

*
 o

67

end;

elseif pathtried('t',1,2,p,3) then
i := 2;

gph[p].flag := 'o';
aptr~.mark := 1 o';
pbot := pbot - 1;
stak[pbot] := p;p ;= aptr~.node[i] (* P is the vertex

end;pbot := pbot - 1;
stak[pbot] := p

end
elseif pathtried('b',l,2,p,l) then

beg inaptr~.mark := ' o' ;
stak[pbotj^ := p; p := aptr~.node[2];
while gph[p].flag = 'n' do
beginif pathtried(1t',2,1,p,1) then

beg ingph[p].flag := 'o'; aptr".mark := 'o';
pbot := pbot - 1;
stak [pbot]i := p; p := aptr~.node[1]

end

in node[i] *)

end;pbot := pbot - 1;
stak[pbot] := p

end
elSstak[pbot] := 0 (* the null path is returned *)

(* pathfinder *)

procedure writeout (mssg
(’

integer);
This procedure outputs results including the number
of connected components, biconnected components, and
number of nodes with no adjacent vertices. It lists
the vertices according to their depth-first searchacts as an index variable andnumber.
VTX is a

var w, vtx :
beg incase mssg

Local variable W
vertex label *)
integer ;
ofbeg inwriteln; writeln;
writeln('The graph
writeln

end ; 2
consists of')

2 : begin

68
write('There were ');
if singlepts = 0 then

wr ite('no')else write(singlepts:3);
write(' lonely points in the graph.');
writeln; writeln; writeln

end;
3 : beginwriteln(1

writeln
end;

Component ',comp:3);

4 beg in
wr ite (1
if result =

writeln(
else

wr iteln(
wr iteln; writeln('

Biconnected component
1 then
is planar 1)
is not planar');

DFNUM VERTEX

',bcomp:3);

STNUM LOWPT');

end
end; (*

for w := 1 to total do(* look through the list of vertices indexed by
depth-first number *)
if dflist[w] ~= 0 then
beg invtx := dflist[w];

writer ’,w:3);
write ('
write(1
writeln(1
dflist[w] := 0

',vtx:3);',gph[vtx] stnum:3) ;
,gph[vtx].lowpt:3);(* replace the vertex label with a zero at location w *)

end;writeln; writeln /
end
* case *) writeout *)

procedure stnumber (t,s : integer);(* This procedure does the numbering of the' vertices. It pops
the vertices placed on the stack from the PATHFINDER
routine. The last node oh the path is not popped. When
a null path is returned by PATHFINDER, the top node on the
st-number stack is popped and assigned a number. This
routine and PATHFINDER share the same stack. PATHFINDER
pushes vertices up into the stack and STNUMBER pushes
vertices down onto the stack. Thus STTOP identifies t e top
position in the stack which holds the vertices ready for the
stnumbering. Variable PTHBOT identifies the "top" of the stack
which holds the vertices that were traversed d“r in9 J* J;? . * .PATHFINDER. DFN is the depth-first search number, PREV iden

69
the node that was previously st-numbered, and FIRST gives the
label of the node that was st-nurabered first *)

var sttop^thbotfdfnfprev/first : integer;
begin (* get edges for biconnected component *)popstack(t,s);

sttop := 1; stak[sttopj := t;
sttop sttop + 1;
stak[sttop] := s;
first := s;
prev := s;
stn := 0;
while sttop >= 1 do
beg ins := stak[sttop];

sttop := sttop-1;
pathf inder(pthbot,s);
if stak[pthbot] ~= 0 then
beg inpthbot := pthbot + 1;

(* place t in lowest position in stack *)
(* push s on top of t in stak *)

(* initialize stnumber variable to 0 *)
(* while the stak is not empty *)

(* s is current top element *)(* pop s *)
(* find a path from s to t *)

(* check if null path returned *)
(* don't include last node on returned path *)

while pthbot <= maxplusl do
beg in

sttop := sttop + 1;stak[sttop] := stak[pthbot]; (* transfer verticesfrom path to stak *)
pthbot := pthbot + 1

end
end
else
beg instn := stn + 1; gph[s].stnum := stn;

gph[s].flag := 'u' ;
dfn := gph[s].dfnum;
dflist[dfn] := s;

(* assign an st-number *)
(* mark the node as "used" again *)

(* identify s's dfnumber *)
(* write s into the list using its dfnum for an index *)

gph[prev].stnext := s;
prev := s

end
end;gph[prev].stnext := 0; (* zero indicates vertex prev islast to be st-numbered *)
pltest(first); (* test the component for planarity *)
wr iteout(4)

end; (* stnumber *)

function min (a,b : integer) : integer;(* Function computes the minimum of two values *)
begin

if a <= b then min := a
else min := b

end; (* min *)

70

procedure biconnect (v : integer);(* This recursive procedure finds the biconnected components
of a graph. It also repositions (if needed) the two
vertices in the record adjpoint so that NODE[l] holds the
vertex you came from and NODE[2] holds the vertex you went
to during the depth-first search. The vertices' adjacency
list pointers are switched accordingly. Instead of a
separate stack to hold new edges as they are encountered, the actual adjpoint records are "stacked" or linked. This
is done with the use of the pointer ELINK. The procedure
designates an edge to be either a "tree" or "back" edge. Depth-first search numbers and low point values are also
assigned. The local variable W represents an adjacent
point. TEMPTR and TEMP are used in the switching process.
LOC tells the location of vertex v at any time. BPTR
points to adjacent nodes *) var w,loc,temp : integer; temptr,bptr : ptr;

beg incount := count + 1;gph[v].flag := 'u'; (* mark the vertex as "used" *)
gph[v).dfnum := count; (* assign a depth-first number *)
gph[v].lowpt := count; (* assign a low point value *)bptr := gph[v).adjlist; (* set bptr pointer to an adjacentnode of v *)
while bptr ~= nil do(* while not at end of adjacency
beg inif v = bptr''. node[l] then

begin
w : = bptr".node[2];
loc := 1

end
else
begin

w := bptr".node[1] ;
loc := 2

end ;if gph[w].flag = ' a
beg inif loc = 2 then

begin
temp := bptr"
bptr".node[1]
bptr".node[2]

list for v *)
(* if node[l] is vertex v *)

(* then node[2] holds an
adjacent point *)

(* v is in location one *)

(* else vice versa *)

(* is the point "available" *)
(* if v is in node[2] *)

(* then switch the vertices *)

then

node[1];:= bptr".node[2];
:= temp;

temptr := bptr".next[1]; (* switch the pointers *)
bptr".next[1] := bptr".next[2];
bptr".next[2] := temptr;
loc := 1

end;bptr".elink := top; (* add edge to edge stack *)

71
top := bptr; (* move pointer up one position *)
bptr".edgetype := 1t1j (* mark edge as "tree" edge *)
biconnect(w); (* start a search from w *)
if gph[w]. lowpt < gph[v].dfnum then (* check for articulation points *)gph[v].lowpt := min(gph[w].lowpt,gph[v].lowpt)
else(* an articulation point has been found *)
begin

bco.np := bcomp + 1;
stnumber(v ,w)

end
end
61S 0if bptr".edgetype = 'n' then (* is the edge "neither" *)

beg inif gph[bptr".node[1]].dfnum >gph[bptr".node[2]].dfnum then
(* check which node was visited first *)
beg inif v = bptr".node[1] then

loc := 2
else loc := 1;temp := bptr".node[1]; (* switch the vertices *)
bptr".node[1] := bptr".node [2];
bptr".node[2] := temp;
temptr := bptr".next[1]; (* switch the pointers *)
bptr".next[1] := bptr".next[2];
bptr".next[2] := temptr

end; , ..bptr".elink := top; (* add edge to stack)
top := bptr; (* move pointer up in edge stack *)
bptr".edgetype := 'b'; (* mark edge as "back" edge *)
gph[v].lowpt := min(gph[v].lowpt,gph[w].dfnum)

end; . ̂ .bptr := bptr".next[loc]; (* look at next point on v sadjacency list *)
end

end; (* biconnect *)

procedure search;(* Procedure finds an "available" start point for the search of
a connected component. If the adjacency list for an
"available" node is empty, the number of single points is incremented by one. Local variable T is used as a counter and
and an index variable *)

var t : integer;
beginfor t := 1 to total do

72

beg inif gph[t].flag ̂ ' then (* is the vertex "available" >*!)
if gph[t].adjlist ~= nil then (* are there incident edges ■*)
begin

bcomp := 0;
comp := comp + 1;
top := nil;
writeout(3);
count := 0;
biconnect(t)

(* stack of edges is empty *)
(* print message 3 *)

(* start search for biconnected
component from vertex t *)

endelse singlepts := singlepts + 1
endend; (* search *)

(**
start of main program****************** *************************************** *********)

beg in
chr := ' ';
while chr ~= 1.1 do
beg inreadln(total);

createvertices;
readandbuild;
for d := 1 to max do

dflist[d] := 0;
singlepts := 0;
comp := 0;
count := 0;
wr iteout(1) ;
search; (* start
writeout(2)

endend (* main program *)

(* while not at end of data *)
(* read the number of vertices *)

(* create list of vertices *)
(* read input graph and form adjacency lists *)

(* print message one *)
search for a connected component *) (* print message 2 *)

