
A Graphics Editor
for

Benesh Movement Notation

by

Baldev Singh

A thesis
presented to the University of Waterloo

in partial fulfillment of the
requirements for the degree of

Master of Mathematics
in

Computer Science

Waterloo, Ontario

September 1982

Copyright ® Baldev Singh, 1982

To my parents
for their encouragement and support

for my studies in Canada

1 certify that I have read this thesis and that in my opinion it is fully adequate in scope and quality, as
a thesis for the degree of Master of Mathematics in Computer Science.

1 certify that 1 have read this thesis and that in my opinion it is fully adequate in scope and quality, as
a thesis for the degree of Master of Mathematics in Computer Science.

(Reader)^/

1 certify that I have read this thesis and that in my opinion it is fully adequate in scope and quality, as
a thesis for the degree of Master of Mathematics in Computer Science.

(Reader)

Approved for the University Committee on Graduate Studies

(Dean of Graduate Studies)

I hereby declare that 1 am the sole author of this thesis.

I hereby authorize the University of Waterloo to lend this thesis to other institutions or individuals for
the purposes of scholarly research.

Signature

1 further authorize the University of Waterloo to reproduce this thesis by photocopying or by any other
means, in total or in part, at the request of other institutions or individuals for the purposes of scholarly
research.

*—

Signature

The University of Waterloo requires the signatures of all persons using or photocopying this thesis.
Please sign below, and give address and date.

- IV -

Abstract

This thesis describes an interactive computerized editor for Benesh Movement Notation which
aids in the preparation of dance scores using a medium resolution colour display. Benesh Movement
Notation is a two-dimensional system for recording human movement in three dimensions of space.
The Benesh notations has been successfully used in recording a wide repertoire of dances. The
preparation and revision of scores is a lengthy and error-prone process which interactive editing
techniques can greatly facilitate. The current state and future extensions of a prototype editing
system for Benesh notation and its user interface are discussed.

Acknowledgements

I am fortunate to have been associated with advisors who took an active interest in my work. Dr.
John C. Beatty, whose research in Computer Graphics spurred my own interest, was a very helpful
supervisor and guided me in trimming the topic to a manageable size for one thesis. Dr. Kellogg S.
Booth, filling in as my supervisor in Dr. Beatty’s absence, was a source of many useful suggestions,
advice and encouragement. Prof. Rhonda Ryman of the Dance Group provided guidance on the
Benesh Movement Notation and other dance related issues throughout the project.

Discussions with Prof. Benton Leong over daily dinners produced many helpful suggestions.
Several members of the Computer Graphics Laboratory supplied useful tools developed in their
projects. In particular, the graphics support software written by Paul Breslin was especially valuable.
Steve MacKay’s colour table manipulation routines and Darlene Plebon’s tablet software saved consid
erable development time. This thesis was typeset on an Aps n-5 phototypesetter using software
developed by Richard Beach.

It is important in a project such as this to elicit the evaluations of skilled users about the ease
and naturalness with which the system can be used. In this regard, I would like to thank Robyn
Hughes, choreologist with the National Ballet of Canada, Sandy Caverly Lowery and Joan Mallet of
York University, Wendy Walker, choreologist with the American Ballet Theatre, and the dancers who
attended the First International Summer School in Benesh Movement Notation held at the University
of Waterloo in August 1982. I am especially grateful to Monica Parker, director of the Institute of
Choreology, London, England for her support of the project.

I would also like to thank my officemates Susan Goetz and Doris Kochanek who have been
patient listeners and offered lots of advice. I am especially grateful to Doris for an untold amount of
encouragement and for a thorough reading of the manuscript which resulted in a number of improve
ments and clarifications.

The Computer Science Department and the Natural Sciences and Engineering Research Council
provided much appreciated financial support and facilities on which this project was carried out. I
have also benefited from many discussions with Mert Cramer and Dr. Tom Calvert of Simon Fraser
University. Finally, I am grateful to all members of the Computer Graphics Laboratory for providing
a pleasant environment in which this work could thrive.

- vi -

Table of Contents

1. INTRODUCTION 1

2. PROBLEM DESCRIPTION 4

3. THE BENESH MOVEMENT NOTATION 6

4. EDITOR 18
4.1. Data Structure Manipulator 19

4.1.1. Manipulation of Frames 20
4.1.2. Manipulating Symbol Positions within a Frame 21
4.1.3. Construction of Benesh Symbols 22

4.2. Display Handler 23
4.2.1. Frame Display 23
4.2.2. Menu Display 25

4.3. Command Loop 25
4.3.1. Error Recovery 26
4.3.2. Abort and Undo 27

5. THE USER INTERFACE 29
5.1. Hardware and Software 30
5.2. Interaction Language 34

5.2.1. The Conceptual Model 36
5.2.2. Recognition versus Recall 37

.5.2.3. The Command Set 38
5.2.3.1. The Menu Structure 40
5.2.3.2. Spatial Resolution and Visual Discrimination 47
5.2.3.3. Text versus Iconic Labels for Menu Items 48
5.2.3.4. Dynamic versus Static Menus 49

5.2.4. Consistency 50
5.2.5. Simplicity 51

5.3. Display Representation 52
5.3.1. Feedback 52
5.3.2. The System State 56
5.3.3. The Current Status of the Score 56

6. FUTURE EXTENSIONS 59
6.1. Extension to Editing Functions 59
6.2. Movement Verification 62
6.3. Hard Copy Facilities 69
6.4. Improvements to the User Interface 69

7. CONCLUSIONS 72

References 73

Appendix.A: List of notation systems 83

Appendix.B: A sample Benesh score 86

Appendix.C: Finite state diagrams of the editor 90

- vii -

List of Illustrations

1.1. Structure of Benesh Editor 3
3.1. Human body in anatomic position 7
3.2. The Benesh stave 8
3.3. Use of basic signs 10
3.4. Various head positions 11
3.5. Main body signs 12
3.6. Movement lines 13
3.7. Jumps 14
3.8. Changes in effort 15
3.9. Time signature and bars 17
4.1. Linked list storage structure for Benesh score 19
4.2. Frame node 22
4.3. Display window 24
5.1. Ikonas video chain 31
5.2. Foreground and background planes 32
5.3. Display layout of information in the background plane 33
5.4. Display screen with tablet and puck 35
5.5. Tablet puck 39
5.6. Root menu 41
5.7. Frame menu 42
5.8. Selecting an edit frame 43
5.9. Selecting an insertion position 44

5.10. Selecting a frame sequence 45
5.11. Window for constructing main body symbols 46
5.12. Standard architectural symbols [Dreyfuss 72] 47
5.13. Menu of direction symbols 47
5.14. Body menu 49
5.15. Different levels of feedback [Foley 82b] 53
5.16. Icons for lexical feedback 53
5.17. Alternate set of icons for lexical feedback 54
5.18. Syntactic feedback 55
5.19. Buddha icon [Dreyfuss 72] 55
5.20. Tracker icons 57
5.21. Status information display 58
6.1. Scroll bar 60
6.2. The skeleton 63
6.3. Measure of average men and women [Dreyfuss 59] 66
6.4. Ambiguity in extremity positioning 66
6.5. Main body symbol 67
6.6. Human body representations using solids 68
6.7. Scrolling menu 70

- V l l l -

C.l. State diagram of the editor 91
C.2. QUIT command 92
C.3. ADD_FRAME command 93
C.4. EDIT frame command 94
C.5. DELETE frames command 95
C.6. MOVE frames command 96
C.l. COPY frames command 97
C.8. SAVE frames command 98
C.9. PUT frames command 99

C.10. ARCHIVE score command 100
C.l 1. DE_ARCH1VE command 101
C.12. Editing a frame 102
C.13. Main body part positioning 105
C.14. Body limb positioning 106
C.l 5. ERASE_SYMbol command 107
C.l 6. MOVE_SYMbol command 108
C.17. TEMPO command 109
C.18. TIME_SIGnature command 110
C.19. RHYTHM command 111
C.20. DIRECTION command 112
C.21. NOTES command 113
C.22. CLEAR working frame command 114
C.23. BAR_LINE command 115
C.24. NEW FRAME command 116

- IX -

1. INTRODUCTION

"Literature does not survive by the spoken word. Music
does not survive by memory alone. Dance without notation is a
transient art. doomed to precarious existence and an early
oblivion."

- A. Hutchinson

Notation plays an important role in today’s technological society. It acts as a communication

medium between inventors and those who will implement their ideas. Without notation, knowledge

from the past can only be based on oral transmission as recorded in human memory. Because human

memory is fallible, the knowledge thus transmitted from person to person is relatively limited and

often inaccurate. Any comparative analysis of past and present works is virtually impossible, and thus

the depth and breadth of anyone’s work is limited to what can be carried in his memory.

In most fields of human study we take for granted the existence of a precise and concise notation.

An example is the alphabet one of man’s greatest inventions without which our culture as we know it

today would be unimaginable. However, the existence of such a universal notation is not true in the

field of human movement. The problems mentioned above are especially apparent in ballet - a clas

sical style of expressive dancing. Most ballets from the past have been completely lost, leaving behind

only the memories of the few people fortunate enough to have witnessed them. The losses have been

enormous even among the most recent ballets [Hall 64, 65].

Choreography is the art of composing dance steps and sequences, such as for a ballet. By the

standards of other theatrical arts such as opera and drama, the choreographic heritage is very poor.

The problem is that choreography suffers in transmission. Dancers working without a choreographer’s

guidance tend to change the choreography, moulding the lines and rhythms into patterns that are

comfortable for them to perform. When a role is handed over, usually by one dancer teaching it to

another, further changes take place. The ballet master then works on the results of this transmission,

trying to correct anything that seems out of place because it is not properly danced or simply because

it is untrue to the original. This frequently introduces further changes. All these changes are

cumulative and often so untrue to the creator’s intentions that a few years later the choreographer can

hardly recognize his own creation. The few works that do survive are ones that suit the widely varying

tastes of dancers from several generations, or are ea ’ to perform [Hall 65].

- 1 -

- 2 -

To minimize these losses from imperfections in human transmission, a concise and economical

notation is needed for recording human movements. This need has been recognized for a very long

time and during the past five centuries many attempts have been made at devising a suitable notation.

It is believed that the ancient Egyptians made use of hieroglyphics to notate dance and that the Ro

mans employed a method for recording salutatory gestures [Encyc. Brit. 74], But the earliest attempts

that are documented precisely date from the second half of the 15th century: these are manuscripts of

Spanish, Italian and Burgundian origins which used abbreviations to indicate the familiar steps of the

basse dance, the foremost social dance of the early Renaissance.

As professional ballet became distinguished from folk dance, many systems of movement nota

tion emerged for ballet. Appendix A lists a few of the known movement notation systems in chrono

logical order of their development. Some of these systems marked the steps of each dancer with lines

superimposed over a sketch of the floor plan, while others used small skeleton figures drawn in dance

positions. Still others adapted musical notation, using the conventional symbols to represent space in

stead of pitch. There have been many individualized systems. But most of these failed to be practical

under rigorous professional conditions. Among the few that have invited substantial professional

interest are Labanotation, developed by Rudolf Laban in 1928 [Laban 75; Hutchinson 77], and

Benesh notation, a system invented by Rudolf Benesh in 1947 [Benesh 56, 77; Causley 67].

Human movement is very complex; for this reason movement notation systems are inherently

complex and difficult to master. Using computer technology it is possible to provide tools that simplify

the use of these notations. Projects for developing such tools to interpret movement notations are in

progress at the University of Pennsylvania [Badler 78a, 78b, 79a, 79b, 80; Brown 76a, 76b, 78; Smoliar

77, 78; Fedak 78], the University of Waterloo [Savage 77a, 77b], the University of Iowa [Sealey 81],

the Simon Fraser University [Calvert 78, 80, 82a, 82b, 82c], Sydney University [Herbison-Evans 74,

78, 79a, 79b; McNair 79, 80] and elsewhere [Lansdown 77, 78]. With the exception of the Sydney

University project which uses Benesh notation, almost all of these projects deal exclusively with the

interpretation of Labanotation.

The Computer Graphics Laboratory at the University of Waterloo, in cooperation with the Dance

Group and the National Ballet of Canada, are currently investigating the computer editing of Benesh

Movement Notation. The aim is to provide state-of-the-art computer tools for creating, editing, and

verifying records of human movement. This thesis describes a first step in this direction: the design

and implementation of a graphical editor based on the Benesh Movement Notation. A prototype based

on the ideas presented here has been successfully implemented and tested by professional choreolo-

gists. The structure of this prototype editor is shown in figure 1.1. Chapter 2 explains the problem and

those aspects explored in this thesis. The basics of Benesh Movement Notation are outlined in Chapter

3. Chapter 4 discusses the internal workings of the editor while Chapter 5 describes the editor’s user

- 3 -

Ç USER ^

Benesh Model
(Chapter 3)

User Interface
(Chapter S)

Editor
(Chapter 4)

Graphics Software

y

Operating System
and

Hardware
(Chapter S)

Figure 1.1. Structure of the Benesh Editor.

interface. Suggestions for future extensions to the editor are discussed in Chapter 6. Some observa

tions and concluding remarks are presented in Chapter 7. Finally, a videotape illustrating the use of

the prototype editor accompanies this thesis. A copy of this videotape can be obtained from the

Computer Graphics Laboratory, University of Waterloo.

2. PROBLEM DESCRIPTION

"It is essential to release humanity from the false fixations o f
yesterday, which seem now to bind it to a rationale o f action
leading only to extinction."

- R.B. Fuller

At first glance, many movement notations seem similar to musical notations. Although both no

tations serve as a communication medium between composers and performers, they are used different

ly. Musicians learn a composition from musical manuscripts, whereas dancers learn their parts direct

ly from the choreographer (a dance composer) through oral communication. Thus creating dance

requires direct interaction between the choreographer and the dancers. In music, notation is the me

ans by which a performer realizes the creator’s conception of a composition [Brown 78]. In contrast,

movement notations are used to record the finished product for historical preservation. However, they

can also be used for comparative analysis and reconstruction at a later date without the

choreographer’s presence or the need to repeat the entire interactive process. While music notations

are well standardized, dance notations are still being developed. The editor described in this thesis is

based on the Benesh Movement Notation, a system which is widely used by professional dance

companies. A library of ballet scores written in Benesh notation is maintained by the Institute of

Choreology in London (England), and a number of ballets have been successfully reconstructed using

these scores.

The process of recording dance in Benesh Movement Notation begins with a choreologist (a spe

cialist in Benesh notation) attending rehearsals and making rough notes which are gradually refined

during subsequent rehearsals. This score is later checked for errors in the recorded movements and in

the notation usage. Once the score has been checked, it is put into its finished form by an autographer,

who lays out pages and works with special drafting pens. Upon completion of this process the score is

ready for printing.

During rehearsals, dancers learn complete movements with all parts of their body operating in

parallel. However, the notation must record all changes in each body part individually. If there are

many dancers quickly learning complex movements, it becomes difficult to capture all the details. The

recording process is limited by the speed at which the choreologist can write. Therefore the choreol-

-4 -

- 5 -

ogist usually notes only the essential key positions, filling in the details at later rehearsals. But in a

large ballet company, where many hours each day are devoted to teaching new steps, the choreologist

works with different groups of dancers throughout a ten to twelve hour period. This makes filling in

details after rehearsals virtually impossible. The task becomes even more difficult when the

choreographer decides to add or drop parts of the dance or revise steps and sections. Thus the choreol

ogist has to constantly struggle with the organization of notes, filling in the missing details during

cleanup rehearsals conducted after all the dancers have learned their parts.

Under these conditions the choreologist is often unable to work on the final draft of the score as

the rough notes accumulate. There is just not enough time until after the dance is in performance.

Then, many hours must be spent laboriously copying the rough notes, laying out the pages, and refin

ing the notation.

It should be apparent that the basic problem facing a choreologist is one of information overload

which worsens from rehearsal to rehearsal. Any improvements to this process require a faster means

for recording movements (ideally at the speed of performance), an efficient mechanism for storing and

retrieving this information for editing or verification, and means for producing the finished score in

hardcopy form.

One possible approach would be to store the rough score in a computer system by scanning it with

a video input device at the end of each rehearsal. The time between rehearsals could be devoted to

editing and verifying this information through a graphical editor and producing a medium quality

hard-copy output that could be used for further refinements at subsequent rehearsals. Alternatively,

movement information could be directly entered into a computer system during the rehearsal itself

using goniometers [Calvert 80, 82a; Townsend 77] or three-dimensional imaging techniques

[Pierrynowski 80, 82; MacKay 82a], Goniometers are devices which measure angles between body

parts. Another possible method is the use of electromyography which involves the study of electric

currents set up in muscle fibres by body movements [Grieve 76]. The information thus gathered could

be mapped into any notational system. Calvert has successfully used goniometers as input devices to

produce Labanotation scores of the dancer’s movements [Calvert 82a]. The mapped information could

be updated using a computer editor and checked for notation usage and correctness of the recorded

movements. Finally, high quality hard-copy could be produced for publishing or use at later

rehearsals.

Although substantial progress has been made in recording and analyzing movements, tools for

editing scores, especially in Benesh Movement Notation, are virtually non-existent. Much more

research is needed to make editing movement scores as easy and convenient as editing text. The work

presented in this thesis deals with the issues involved in editing dance scores based on the Benesh

Movement Notation system. A similar editor based on Labanotation has been developed at the

University of Pennsylvania [Brown 76a, 76b].

3. THE BENESH MOVEMENT NOTATION

"Science has dual history. It is a tale o f the birth o f men with
great powers o f abstraction, and it is a story o f the evolution of
languages peculiarly adapted to these abstractions"

- H. Levy

The basic problem in any movement notation is that of coping with the enormous amount of

information needed to record movements of each individual body part in three dimensions of space and

in time. One solution is to use symbols. But this would require a very large number of symbols, and

would result in a cumbersome notation. For a notational system to be workable, it must be as simple

and legible as an alphabet. But we find that completeness and accuracy seems to make demands that

are incompatible with simplicity and legibility. Some of the essential details a movement notation

must capture include:

• the location of the body in the movement arena and in relation to other performers;

• the direction in which the body is facing with respect to the observer;

• the exact position of body limbs;

• the details of head, torso and pelvis;

• movement quality or dynamics;

• the manipulation of props.

Since a movement notation must record movement as it is actually seen, we need to establish a

viewpoint. The standard choices for such a viewpoint are that of the dancer and that of the observer;

each is a reflection of the other.

For uniformity in body description the anatomic reference system is used. The body in the

anatomic position is erect, facing forward with arms at the sides, as shown in Figure 3.1. Henceforth

all body positions will be discussed with respect to the following planes through the body:

Mid-sagittal - the plane vertically dividing the body through the mid-line into right and left

halves.

- 6 -

-7 -

SUPERIORt

1
INFERIOR

Figure 3.1. Human body in anatomic position.

Sagittal - any plane parallel to the mid-sagittal plane vertically dividing the body into right

and left portions.

Transverse (Horizontal) - any plane dividing the body into superior (upper-most or above; e.g.

the head is superior to the neck) and inferior (lower-most or below; the foot is inferior

to the ankle) portions.

Coronal (Frontal) - any plane dividing the body into anterior (toward the front) and the poste

rior (toward the back) portions at right angles to the sagittal plane.

- 8 -

Benesh Movement Notation, invented in 1947 by Rudolf Benesh, records movements using

marks on a matrix representing a human figure. The five line music stave serves conveniently as a

matrix dividing the human body at the top of the head, the shoulders, waist, knees and the feet as

shown in Figure 3.2. Two horizontal dashed lines known as leger lines have been added to cover all

possible body positions. The leger line above the stave lines represents the maximum reach of the

hands when the arms are fully extended upwards. The leger line below the stave lines is a reflection

of the maximum point reachable by the feet during a jump from the standing position. The use of the

second leger line will be explained further in discussion of methods of recording jumps and similar

movements. Since the span of horizontally extended legs is approximately equal to the body height

with arms fully extended above, all possible body positions can be enclosed in a square. So the stave

is divided into square frames, each representing a body position [Grater 82]. All this makes the no

tation visual and avoids the need for a large number of symbols. The leger lines are not generally

shown in Benesh notation records, but are always implied. Also implicit is the vertical dashed line,

known as the body mid-line, which divides the body into left and right halves. The body mid-line is

not the line o f gravity, but does coincide with it whenever the body is in its anatomic position (see

Figure 3.1).

Figure 3.2. The Benesh stave.

NOTE: The doubly hashed region is the overlap for hands and feet.

The viewpoint used in Benesh notation is that of the performer. All movements are recorded

as observed from behind the performer. Basic body positions are recorded by noting the projection of

the four body extremities (hands and feet) and the bends (in knees and elbows) onto the coronal plane.

The projection onto the coronal plane is not a true projection of the whole body figure. Rather, it is

the projection of the body segments in relation to the body mid-line onto the corresponding areas

between the stave lines. The projections provide two dimensional information. For three dimension

al information all that is necessary is to know whether a limb is in front of or behind the frontal plane.

This is recorded using the basic signs:

level (with the coronal plane)

in front (of coronal plane)

behind (the coronal plane)

However, it is not necessary to state how far in front or how far behind the extremities are. Only one

place is physically possible because limbs are of fixed length and are attached to the body at specific

locations. The basic signs for bends in knees and elbows are:

level (with the coronal plane)

in front (of coronal plane)

behind (the coronal plane

Again, it is not necessary to say how bent a limb is, as this is governed by the position of the

corresponding extremity and the knee or elbow. Figure 3.3 illustrates the use of these basic signs.

The signs for all limbs are identical and thus do not identify the limb (right or left arm or leg)

to which they refer. Instead this is inferred from the location of the sign. Figure 3.2 shows the

domains for the four body limbs. Whenever a limb sign moves out of its domain, it is lightly crossed

out with a diagonal stroke known as a crossover. There are two kinds of crossovers: a lateral cross

over in which an extremity or bend (knee or elbow) moves over to the opposite side of the body; and

a vertical crossover in which a foot or bent knee moves above the waist line, or a hand or bent elbow

moves below the waist line. The two crossover signs are:

- 9 -

+

X

lateral crossover

vertical crossover

However, crossovers are not needed when the context clearly specifies the particular body limb. For

example, when the feet are below the hands as shown in Figure 3.3.

- 10-

Figure 3.3. Use of basic signs.

The head is represented by a straight line drawn between the fourth and fifth stave lines. One

end of this head line is fixed to the intersection point of the fourth stave line with the body mid-line,

while the other end always touches the fifth stave line. The angle between this head line and the body

mid-line specifies the degree of right or left tilt in the head. A shorter straight line drawn perpendic

ular to the head line represents the chin position. The length of this chin line indicates the degree of

turn in the head. The intersection point between the head and chin lines specifies the extent of back

ward or forward bend in the head as shown in Figure 3.4. Intersection at the mid-point indicates no

bend, while intersection above the mid-point represents a backward bend and intersection below mid

point indicate a forward bend. Absence of the head sign indicates no change from the last frame.

However, if no head sign is written at the start of a given sequence, the head is assumed to be erect as

in the anatomical position shown in Figure 3.1. Furthermore, no head sign need be written until that

position changes.

-11 -

Figure 3.4. Various head positions.

The third stave line represents the waist. Therefore all body bends and twists from the waist up

(upper torso) are recorded between the third and the fourth stave lines. The basic signs used and

their manipulation are identical to those used for the head. Figure 3.5 illustrates the method for

recording these main body parts. Hip (pelvic) movements are recorded similarly between the second
and the third stave lines.

The notation explained so far can provide the record of any static posture and a series of

postures can record a movement. But actual movement often consists of very smooth motion.

Benesh notation makes use of movement lines to record continuous smooth movements. A movement

line traces the path of movement in space from the starting position to the final position and summar

izes an infinite number of intermediate positions. It is attached to a sign at its final position but not

at the starting point, its inception, thus giving direction to the movement as shown in Figure 3.6. If

the moving limb travels in a forward or backward curve from its starting point, the movement lines are

qualified using the qualification signs:

| the forward-most displacement (in front of the coronal plane)

• the back-most displacement (behind the coronal plane)

- 12 -

Figure 3.5. Main body signs.

The forward-most or back-most displacement of a movement is indicated by a short straight line seg

ment intersecting at right angles to the movement line at the point of maximum forward displacement,

or a dot on the movement line drawn at the point of maximum backward displacement, respectively.

No qualification is necessary for movements within the coronal plane or within a plane parallel to the

coronal plane.

- 13 -

Figure 3.6. Movement lines.

For movements in which the body leaves the ground (jumps), the movement path is treated as

a special case. The movement line may span several frames. It begins under the take-off position,

is attached to the landing position, and is drawn between the first stave line and the leger line below

it. The frames between the take-off and landing positions, if any, describe movements in the air.

The recorded movement line is a mirror-like reflection of the actual movement path about the first

stave line, as shown in Figure 3.7.

- 14 -

T
1

--------------- 1__________ 11
i
i

i
1

i
!

i
i

1
1

__________ 1__________ " v ! r v ! j

H I \ \ 7 — Y i—
i

1 - H
l i _ *
1-------------

--------------- (----------------
1 1

Figure 3.7. Jumps.

Benesh notation uses direction signs to state the orientation of the performer relative to the

observer. The eight basic direction signs are shown below:

/ \

i facing the audience (upstage)

i facing backward (downstage)

facing stage right

— facing stage left

\ facing other directions

- 15 -

Shades of effort, changes of effort and other qualities of movement are recorded using the expres

sion marks of music. In music loudness is indicated by the letters / (forte) and p (piano). These

letters are used in the Benesh system to indicate the degree of effort in movement. The seven scales

of effort are:

ppp completely relaxed
pp very soft
p soft
nothing normal
/ strong
/ / very strong
f f f maximum strength

Changes in effort are shown in the same manner as in music: diverging lines indicate increasing effort

while converging lines indicate decreasing effort. Letters at the beginning and end indicate effort at

these points as shown in Figure 3.8. The degree of effort is recorded above the stave lines.

Effort increasing from strong to very strong.

Effort decreasing from strong to very soft.

Effort swinging between soft and strong.

Figure 3.8. Changes in effort.

In past centuries musicians have developed technical terms to describe the character, mood and

speed of music. Benesh notation has adopted these terms to describe the prevelant quality of move
ment [Ryman 82b].

TEMPO
Lento slow
Largo broad
Adagio “at ease”, slow, drawn out
Grave heavy, serious
Larghetto not so broad as Largo
Andante “going”, “walking”, medium slow
Moderato moderate
Allegretto less fast than Allegro
Andantino an Andante of small proportions
Aller go fast
Vivace lively
Presto very fast
Vivicissimo even livelier than Vivace
Prestissimo even faster than Presto

- 16 -

MANNER OF PLAYING
Ad Libitum at liberty
Agitato agitated
Cantabile in a singing fashion
Dolce sweetly
Dolente sadly, grieving
Sforzando “forced, accented”
Grandioso grandly
Legato smoothly, slurred; end of one note meeting begining of next
Marcato in a marked or emphatic manner
Pesante heavily
Saltando leaping (strings and springing bow)
Scherzando jokingly, playfully
Sostenuto sustained
Staccato detached, short; each note sperate

So far we have considered movement in isolation. To link movement to rhythms and phrases we

divide the stave into bars consisting of beats. In Figure 3.9, the number appearing in the top left

corner of the stave corresponds to the musical time signature. It indicates the number of beats to a

bar. All signs for movement rhythm appear above the stave and indicates whole beats or fractions of

beats. They do not indicate the duration of time, but rather the precise moment when a position is

reached. The basic rhythm signs are:

t
pulse

X te

I an

X ti

V dai

/ dee

beat specifies “the count”, e.g. one, two, etc.

specifies 1 /4 beat after the count

specifies the beat halfway between counts

specifies 1 /4 beat before the count

specifies the beat 1 /3 of the way between counts

specifies the beat 2/3 of the way between counts

Finally, Appendix B shows a sample Benesh score. The above explanation is only a summary of

the basic Benesh notation system. It can be logically extended to capture the movements of eye, hand

and fingers, which are very important in dance styles like the Bharat-Natyam. For a more complete

description of the Benesh notation and its extensions the reader is referred to [Benesh 56, 77; Causley

67; Parker 82; Ryman 82b] and to the Choreologist, a technical journal of the Institute of Choreology,

London, England.

- 17 -

4. THE EDITOR

"Intelligence ... is the faculty o f making artificial objects,
especially tools to make tools."

- H. Bergson

The basic unit of information in Benesh Movement Notation is the frame. Unlike a line of text,

which is made up of symbols (characters) written at discrete points in a one-dimensional space, the

Benesh frame records body information by means of symbols in a continuous two-dimensional

rectangular space known as the stave. Just like lines of text in a document, Benesh frames are

ordered sequentially within a score. However, the positioning of symbols within a frame is more

complex than placing characters in a line of text, as was explained in Chapter 3.

Considering for the moment a frame to be equivalent to a line of text, the editing requirements

for Benesh scores are similar to those for text. For example, three levels of basic operations are

necessary for editing a text document: editing lines, editing words within a line and editing characters

within a word. Similarly, the editing operations required for Benesh scores are: manipulation of an

entire frame or a set of frames, manipulation of symbol positions within a frame and construction of

the symbols themselves. There is a one-to-one correspondence between the text and Benesh score

entities. For example, a complete score corresponds to an entire text document. High level opera

tions such as print, copy and archive, for Benesh scores are analogous to those for text. The

techniques for implementing text editors are well developed and a number of very good editors such as

Vi [Joy 80], Emacs [Finseth 80], Xerox Star [Seybold 81a, 81b], Qed [Michlin 75], Fred [Gardner

80], Ed [Kernighan 78a, 78b], Ex [Blau 80], and K [Pettis 78] are available. The Benesh editor

described in this chapter uses many existing techniques by taking advantage of the analogy between

editing operations for text documents and for Benesh scores.

The primary objective of the editor is to improve the efficiency of editing Benesh scores and the

quality of the final score. A secondary goal is to assist this editing process by providing a pleasant

working environment. (The latter of course promotes the former.) This requires a powerful and easily

understood command set, appropriate user feedback, and quick system response to commands made

by the user. For the purpose of this discussion, the editor’s design is divided into three parts. The

data structure manipulator performs the actual editing, the display handler provides user feedback,

- 18 -

- 19 -

and the command loop translates user requests into calls to the data structure manipulator and the

display handler. Each part of this structure contributes in its own way towards providing quick
system response.

4.1 Data Structure Manipulator

Movement can be thought of as a smooth transition between static postures that differ slightly

from one another. For this reason any frame of Benesh Movement Notation records only the changes

in posture since the last frame, thus reducing the amount of information displayed. This greatly

simplifies the process of sequentially reading a score. However, it makes it very difficult to read a

static position somewhere in the middle of the score. For editing, it is essential to show the complete

body information so that the user can make the necessary changes to it. To do this, one would have

to read backwards from the desired frame and gather all body information that is not specified

explicitly in the frame. This could require searching backwards to the beginning of the score, a very

time consuming task. This problem can be resolved if complete information is stored for each frame

but only the changes since the last frame are actually displayed.

As in most text editors, the primary data structure used here is a doubly linked list of frame

nodes as shown in Figure 4.1. For the reasons discussed above each node contains complete body

information for a frame. Thus the need for a backward search is eliminated. In addition, edit opera

tions like delete, edit, move, and copy are simpler to execute because only the part of the linked list

specified in the command must be updated. Since each frame is an independent unit, the changes do

Figure 4.1. Linked list storage structure for Benesh score.

- 20-

not have to be propagated to subsequent frames in the score. Keeping complete body information for

each frame increases the storage overhead, but the system response is much improved. In our editing

environment this time/space trade-off seems to be justified.

The basic operations for editing a Benesh score can be categorized according to the entity of

information they deal with: frames, symbol positions within a frame, or the symbol themselves. Each

of these categories is described below.

4.1.1. Manipulation of Frames

Editing operations on frames relate to positions in the linked list. Thus each frame edit

command is mapped into an equivalent operation that manipulates the linked list structure. In

performing these operations, the editor uses a temporary storage area known as the save buffer. The

structure of the save buffer is identical to that of the linked list. There are four basic routines used

to manipulate the linked list and the save buffer.

Add_Fnode(before, new_node)
where before is a pointer to a linked list node and new_node is a pointer to a new
frame node. This routine inserts the node given by new_node in front of the node
specified by before in the linked list structure.

Deletef start, end)
where start and end are pointers to the first and last nodes of a sequence of frames in
the linked list. This routine deletes the specified section from the linked list
structure. Deleted frames are not simply discarded, but saved in the save buffer in
case an undo or a Put command needs to restores them as explained later in this
chapter.

Save(start, end)
where start and end are pointers to the first and last nodes in a sequence of frames in
the linked list. This routine copies the specified sequence into a save buffer.

Put(before)
where before is a pointer to a linked list node. This routine inserts a copy of the save
buffer immediately in front of the specified node. The contents of the save buffer
are left intact for another Put command.

All higher level operations on the data structure are performed by calling these basic routines. For

example,

Copy(start, end, before)
where start and end are pointers to the first and last nodes of a subsequence in the
linked list and before is a pointer to a frame node in the linked list. This routine
copies the specified sequence of frame nodes into the linked list immediately in front

- 21 -

of the frame node specified by before. This operation is equivalent to the following
sequence of calls to the basic routines:

Save(start, end)
Put(before j

Move(start, end, before)
where start and end are pointers to the first and last nodes of a subsequence in the
linked list and before is a pointer to a frame node in the linked list. This routine
inserts the specified sequence of frames into the linked list immediately in front of
the node specified by before, and deletes the subsequence from its original position.
This operation is equivalent to the following sequence of calls to the basic routines:

Deletef start, end)
Put(before).

Notice that an error occurs if before is between start and end. However, the user
interface routines ensure that such a situation does not arise.

4.1.2. Manipulating Symbol Positions within a Frame

Editing operations at this level deal with the position of sub-components (symbols) within a

frame. All new frames are first composed in a working area and then added to the linked list using

the basic routine Add_Fnode(). To edit an existing frame, the desired frame is first copied into a

working frame. When editing has been completed, the working frame replaces the old frame in the

linked list. This is accomplished by the following routine:

Copy_Fnode(from, to)
Where from and to are pointers to frame nodes. This routine copies the entire
contents of the frame node given by from into the frame node given by to.

Another set of routines is used to modify the body parts within the working frame. These

routines ensure that Benesh conventions are observed whenever any information within the working

frame is modified. A body part position can be deduced from the symbol used and its relative posi

tion within the frame. Since the body model used in the Benesh notation has a fixed number of parts,

all body information is stored in an array of pointers which reference structures containing the symbol

used and its relative position within the frame as shown in Figure 4.2. Each array element refers to

a specific body part. The manipulation of these body parts may involve positioning a new symbol

within the working frame, changing its position or replacing it with another symbol. The manipula

tion of individual body part symbols is discussed in Chapter 5, which deals with the user interface.

- 22-

to following node

Figure 4.2. Frame node.

4.1.3. Construction of Benesh Symbols

Benesh notation uses a basic pre-defined set of symbols. Others are built from a combination of

these basic symbols such as crossovers, and still others like main body symbols, are constructed when

ever necessary. This last approach is used for symbols which represent multiple, highly variable di

mensions, for example, the symbol which captures the degree of tilt, turn and backward or forward

bend of the head. In this case it would be very difficult to provide a fixed set of predefined symbols

covering all the possible combinations and thus a new symbol is constructed whenever a new head

position must be specified. This operation is further described in Chapter 5.

- 23 -

4.2. Display Handler

This section of code keeps the system state accurately displayed on the display screen. The goal

is to perform this function in such a way as to minimize the amount of clock time required in order to

make changes. Clock time is the time perceived by the user from the issuance of a command to its

completion, including updates to the display. The display routines are also responsible for showing

the system state and displaying the appropriate menus, depending on the state.

4.2.1. Frame Display

A moving display window is superimposed on the linked list structure. At any given time, the

editor displays all the frames in the current display window. Other frames are displayed by moving

the window over the desired frames in the linked list. To a user, the window displays the score as it

would normally be written on a piece of paper, except that the first frame in the window always shows

the complete body position for readability, irrespective of the frame immediately preceding it in the

score.

The window can display a maximum of sixteen frames arranged as two lines of eight frames

each. It consists of an array of pointers to a sequence of consecutive frame nodes in the linked list as

shown in Figure 4.3. The following routine is used to move the display window along the linked list:

Move_Window(+/- arg)
This routine moves the display window forward or backwards in the linked list,
depending on whether the argument is positive or negative, respectively. The argu
ment arg specifies the number of frames the window is to be moved.

The window is generally moved backwards or forwards by eight frames corresponding to a line of score

on the display screen.

To add a frame to the display window the user pre-selects the insert position within the window.

This position could lie between frames or at the beginning or end of the window. The frame

immediately in front of the insert position, if any, is copied into the working frame. The complete

body position is then displayed in the working frame, irrespective of what is visible in the display

window. This provides a reference point for continuing the new movement sequence. If no frame

exists immediately before the insertion position, such as when inserting at the beginning of the

displayed score, a blank working frame is displayed.

When adding a composed frame from the working frame to the display window, the new body

position is compared with the body position of the frame immediately in front of the insert position.

-24 -

head-'

Figure 4.3. Display Window.

Changes in body position are then determined and displayed in the new frame. However, as

described earlier, the complete body information is stored in the frame node.

Before adding a new frame to the display window, frames immediately following the insert

position are shifted right by one frame position to make room for the new frame. If, while adding new

frames, the insert position moves out of the display window, the window is advanced by eight frame

nodes within the linked list. If the window were only advanced by a single frame node, the next

addition of a new frame would immediately necessitate another shift.

If the display window contains some empty frame positions as a result of the previous operation

(such as deletion of a frame sequence), all frames following the empty frame positions, are shifted left

to close the gap. If the display window is empty as a result of the previous operation, the window is

moved over to the following frame nodes in the linked list, if any, and the new window is displayed.

Benesh Movement Notation uses two different types of frames. A header frame defines the

time signature and tempo information that applies to the following frames in the score. A body data

frame defines a body position. The frame following the header frame defines the starting position of

the movement sequence. Copying a frame from the display window into the working frame to act as

a reference must be done with care. If this frame is a header frame, it cannot act as a reference and

thus the working frame is left empty.

- 25 -

4.2.2. Menu Display

The system displays the full range of options available at a given time. Which options are avail

able depends on the system state and the context of the operation being performed. The list of op

tions available is called a menu. The editor’s command set is organized as a hierarchical collection of

menus. The display of the system state and the associated menu is the responsibility of the display

handler. The menu format and details of the system state display are described in Chapter 5.

4.3. Command Loop

The command loop implements the control logic of the editor. It is responsible for recognizing

user commands, executing them by calling routines for manipulating the data structures, and display

ing the results by invoking display routines. The basic loop structure for the editor is:

Cycle {
Get_Command(x)
Executef x)
Update_Display

} end Cycle

The philosophy behind this loop is to put as few restrictions on the user interface as possible.

Each user command maps into a executable procedure.

The command syntax is predetermined and implemented as a finite state automaton. Every

command causes a transition in the system state and the display of a new menu depending on this

transition. Appendix C shows the state transition diagrams for the editor’s command language.

Since the system displays only the next set of available options, the command semantics are also pre

determined and there is very little possibility for error. No parsing is necessary and syntax errors are

prevented by the user interface described in Chapter 5. Other errors are possible however, and the

procedures for recovering from them are discussed in the next section.

-2 6 -

4.3.1. Error Recovery

"To err is human,
to forgive is design"

- Anonymous

As in a text editor, there are two types of errors in the Benesh editor: internal errors, caused by

problems within the editor, and external errors, caused by the user. Internal errors result in an

immediate exit to the operating system. They occur because of system bugs or resource restrictions

and are identified by error messages in so far as is possible. Ideally the user never sees this type of

error. External errors are primarily user errors. Generally the action taken is the display of an error

message and a return to command level.

In this editor the basic philosophy about error recovery is to avoid errors and consequently error

recovery. By displaying only valid options at a given time most external errors are avoided. How

ever, the user could position a symbol in such a way as to specify an impossible body position. One

action would be to allow the user to make such errors, and then display an error message. However,

this requires a means of allowing the user to gracefully recover from this error. A much better way

would be to make it impossible for users to make such errors. This can be done by dynamically

constraining the positioning of symbols to areas that would not result in an impossible body position.

Displaying an error message and not allowing the symbol positioning is sufficient if the user tries to

place a symbol in an illegal area.

Even if the user is restricted to choices that are syntactically and semantically valid, he can

select an unintended command by mistake. Hence it must be possible to back out of an undesired

state. The user can do this by aborting the current action or undoing the last action to recover the

previous system state.

In addition, the system detects one potential error condition when the user wants to exit from

the editor. If the current score has not been archived, the system will display an appropriate warning

message asking the user to either archive the score or confirm his intentions to exit without archiving.

- 27 -

4.3.2. Abort and Undo

"O God! O God! that it were possible to undo things done;
to call back yesterday!"

- T. Heywood

At his discretion, the user can abort out of the current system state. Abort cancels the current

action and backs up the system state to the next higher level in the menu hierarchy. Thus a sequence

of abort requests will eventually return the editor to its initial state.

The editor also provides a one step undo of any command after it has been completed. This

allows the user to correct single-level mistakes. Two types of undo requests are supported by the

editor. The first type of request undoes the previous step in a sequence of actions which comprises an

editing operation, while the other undoes the entire last operation that was successfully completed. In

both cases undo acts like a toggle switch; a second application undoes the last undo, thus restoring the

original action.

To implement undo, the editor keeps track of the current and last system state. To undo a

single step within an operation, the editor switches between these states. However, undoing the last

complete operation is more complicated and is further divided into the undoing o f symbols, and the

undoing o f frames, corresponding to the different levels of editing: editing symbols within a frame and

editing frames within a score. When modifying a symbol, the old symbol is not deleted, but saved in

an undo structure along with its position and all other relevant information. To execute an undo, the

editor simply replaces the current symbol with the saved symbol from the undo structure. Adding a

new symbol is considered to be equivalent to modifying a non-existing symbol.

In order to undo frame manipulations, the editor maintains a save buffer where deleted frames

are placed. Frame move and copy operations also use this buffer. Thus there is a mechanism by

which the user can recover frames which were accidentally deleted. In addition, some internal vari

ables must be saved to restore the finished score display. For example, in the move frame operation

the saved variables are:

• a pointer to the first frame in the sequence and its display position within the

window,

• a pointer to the last frame in the sequence and its display position within the

window, and

• the new position in the display window.

- 28 -

The display window positions and pointers to the frame nodes displayed at those positions are

necessary to restore the finished score display just in case the display window was moved during the

last operation.

This chapter has described the functions and mechanisms supplied by the editor for creating,

manipulating and storing Benesh scores. To ensure that these functions are used correctly and in a

consistent manner, the user does not invoke these mechanisms directly but is instead presented with a

higher level abstraction as shown in Figure 1.1. This abstraction, the user interface, is described in

detail in the following chapter.

5. THE USER INTERFACE

"It is easy to make things hard.
It is hard to make things easy"

- A. Chapanis

The most important single consideration in designing any computer system, hardware or software,

is the design of the interface between computer and user. It is the most visible aspect and the only

channel of communication between the system and the choreologist. The success of a system is

entirely dependent on the success of its user interface. However, user interfaces are the most difficult

and the least understood part of interactive systems. The design process is very iterative and thus

very time consuming. For example, Xerox spent over 20 man-years developing the user interface for

their Star work-station and experimenting with alternate designs [Smith 82]; the result is a finely

tuned user interface.

For a successful user interface, the design must include a task analysis phase. The designer

must analyze current tasks performed by the user, prior to introducing the computer system. Foley

points out that “the first step is to understand the problem area and the prospective users” [Foley 82a],

Hansen advises, “know your user” [Hansen 71]. Task analysis is an essential step in gathering infor

mation necessary for making decisions throughout the design process. It involves interviewing the

prospective users and studying their working environment to determine which tasks can best be aided

by a computer. This study results in a set of design objectives, constraints and functional require

ments of the capabilities to be made available through the user interface. This first analysis can often

provide an insight into how these capabilities should be presented to the user. It also identifies the

group of users for which the system is being designed, their performance goals and the methods they

use to achieve those goals. A description of the current working environment with a breakdown of its

information entities and methods employed offers a starting point for the design process [Hornbuckle

67]. The idea behind this phase of design is to develop a new environment in which the user can work

to accomplish the same goals as before, but using a different set of objects and employing new

methods. The new task environment often adds new goals which were not feasible in the original

system.

-2 9 -

- 30 -

Task analysis itself requires a considerable amount of skill and experience. However, it greatly

simplifies the remaining steps in the design process. When designing a user interface, two primary

issues of concern are the selection of:

• an interaction language, the medium through which the user may express

commands to the system, and

• a display representation, which shows the system state and the task status in

response to user commands.

The first is expressed with actions applied to the input devices, while the latter is expressed through

the output devices.

Prototyping is a crucial step in the design process. It involves implementing a new concept and

testing it with intended users. If the concept doesn’t work, other ideas are tried until a suitable solu

tion is found. Prototyping presents two problems. First, the user generally has no idea of the

facilities that new technology can provide to aid in his task, so the designer must constantly present

alternatives from which the user may choose. Secondly, it may be difficult to decide whether a

concept works or not. The user often cannot help in this decision because of his lack of knowledge of

the design process. The designer has to develop methods for aiding this decision process.

The interactive techniques used by the Benesh editor have evolved through just such a task

analysis and prototyping process. A choreologist was closely observed at work under rehearsal condi

tions and later interviewed. The results of this study formed the problem description described in

Chapter 2. Close observation of user behaviour and a trace of interactions during editing sessions

helped in isolating problem areas and devising alternate techniques. The resulting design adheres to

a small set of principles that have been adopted to make the editing environment familiar and friendly

to the user, to simplify the man-machine interaction, and to unify all editing functions so that any

experience gained in one situation can be easily applied to similar situations. This chapter describes

these principles and illustrates each with examples from the Benesh editor.

5.1. Hardware and Software

Before describing the user interface of the Benesh editor, several essential characteristics of the

hardware and software should be pointed out. Without these it would not have been possible to

design an interface such as the present one.

- 31 -

The editor uses an Ikonas RDS 3000 frame buffer attached to a colour display monitor and a

Summagraphics Bit Pad tablet with a puck. The frame buffer consists of a large block of memory

(512x512x32 bits), a video generation system that displays the contents of the entire memory 30 times

a second, an interface to the PDP 11 /45 host minicomputer, and a dedicated bit-slice microprocessor

directly coupled to the frame buffer. A pixel is a 1x1x32 bit section of the frame buffer representing

a dot in the RGB (red, green and blue) colour space of the display monitor.

The Ikonas video generation system, as shown in Figure 5.1, consists of a control module, a

crossbar switch, and a set of colour lookup tables. The control module reads the appropriate bits for

each pixel from the frame buffer memory for input into the crossbar switch. The crossbar switch

allows reconfiguration of the 32 bits into any desired output format. A typical configuration is eight

bits of red, eight bits of green, eight bits of blue and eight bits for overlay. A colour lookup table

consists of a set of high speed registers that perform the mapping from pixel values stored in the frame

buffer to the digital colour levels sent to the D/A converters. As each pixel is accessed during the

display cycle, the various bit planes are read to form eight bit colour numbers, one each for red, green

and blue (RGB). These numbers act as indices into the red, green, and blue colour maps where the

actual digital intensities to be displayed are generated [Booth 82; McKay 82b]. The editor makes

extensive use of the colour lookup tables and the bit-slice microprocessor as explained below. Despite

the high depth resolution available on the Ikonas frame buffer, only eight of the thirty-two bit planes

are actually used in the editor. This will simplify the anticipated re-implementation of the editor on

a lower cost dedicated work-station.

Pixel

Frame buffer memory

Control module Cross-bar switch
Colour lookup

tables

Figure 5.1. Ikonas video chain.

-3 2 -

For interaction purposes the eight bit planes are divided into two sets called the foreground and

background as shown in Figure 5.2. The background planes contain static display information, such

as the static menus explained later. Figure 5.3 shows the layout of information in the background

planes. Each item of static information is written into the frame buffer memory using a different

eight-bit colour value. The item can then be made visible or invisible by manipulating colour lookup

table entries. To display an item written in the background planes, the corresponding colour lookup

table entry is set to a colour different from the background colour. Similarly, to turn off the display,

the corresponding colour entry is set to the background colour. This technique is commonly known as

colour table animation, and several variations of it are described in [Shoup 79; Booth 82]. Since the

background consists of seven bit planes, corresponding to entries 0 through 127 in the colour lookup

tables, a maximum of 128 different items can be written and displayed independently in the

background planes.

Figure 5.2. Foreground and background planes.

The foreground plane contains dynamic information, such as dynamic menus. A support pack

age developed by Paul Breslin is used to display all foreground information [Breslin 82]. This system

is organized around a segmented display file which is interpreted by the high speed bit-slice

microprocessor. It provides facilities to create , delete, move, or pick segments and to make them

visible or invisible.

- 33 -

Si w m w %Jte t> J
'J XV'«?. •/•WL'A

hv-s,*!. , v "* '*► p i w m

l e g a t e M B iw B a ft 'm z w w i ^ .
t e a b a g , i&id'JailwS'jW

it

V.'ivT1/; 7^iii*ae!safc*» m m
mem i n m mmf i

iW & SM SM

m s m &
S a g w w * feSSO T SSS

yii'i'rAvy& y^

mmm i m m m , mSM{̂ •‘VVKW/Suixfî A s l l »

Figure 5.3. Display layout of information in the background plane.

The editor runs with the frame buffer write-mask set to manipulate only the foreground plane

and with the auto-clear bit set to clear the foreground plane after every frame display cycle. This

combination of clearing and re-writing segments provides the effect of dragging a symbol if its display

position is changed before the next display cycle. Since all of this is done in the microprocessor, the

redisplay appears to be instantaneous. As long as the number of segments to be displayed is kept

small this results in very smooth dragging.

All code for the editor is written in the C programming language and runs on a PDP 11/45

minicomputer under the Unix operating system.

- 34 -

5.2. Interaction Language

"The best part o f human language properly so called, is
derived from reflection on the acts o f the mind itself'

- S. T. Coleridge

The user communicates with the editor through the graphics tablet and a puck. As the user

moves the puck across the tablet surface, its horizontal and vertical position is determined and a

tracker symbol is displayed at an equivalent position on the display screen as shown in Figure 5.4.

The editor is based on a menu-driven scheme. A list of options (the current menu) is displayed,

from which the user chooses an action by moving the puck until the tracking symbol is aligned with

the desired menu option on the display screen. Pressing one of the puck buttons selects the action.

The displayed items can specify actions or they can request a different menu. As explained in [New

man 79], the menu-based scheme offers several advantages. A menu displays the full range of options

available to the user. This avoids the problem of erroneous commands by preventing the user from

selecting options outside this range. This also helps the user to remember commands which he does

not use very frequently. In addition, it is very flexible: a menu label can be easily changed to suit the

user’s terminology, whereas relabeling a set of function keys or adding a new key can be very time-

consuming and expensive for the designer.

The prime objective in designing a suitable interaction language is to simplify communication

between the editor and its users. The following sections explain the principles used in designing such

a language.

- 35 -

Figure 5.4. Display screen with tablet and puck,

(photo by Photographic Services, University of Waterloo).

- 36 -

5.2.1. The Conceptual Model

"Conceptuality requires generalization of patterns
gleaned from special-case experiences"

- R.B. Fuller

A user’s conceptual model is the set of ideas which are used to explain the behaviour of the

system. It is the picture developed in the mind of the user which enables him to understand and

interact with the system. Developing a suitable conceptual model is a very important step in the

design of an interaction language; the approach adopted will strongly influence the function of the

system.

The designer can choose to adopt analogies familiar to the user and mimic the existing task

environment, or he can introduce entirely new functions requiring new approaches. Each approach

has its advantages and disadvantages. A conceptual model already familiar to the user will certainly

help in adapting to the new system. It will also help in user acceptance of the new system. However,

as the user gains experience with the system, he may require short cuts in specifying commands to

perform particular operations, making the mimicking approach inefficient.

On the other hand, a new approach provides the means for major improvements in the

methodologies for performing existing tasks and prevents the user from misconceptions carried over

from the previous method. However, this increase in efficiency has to be balanced against the training

and adaptation costs for switching to new methods. A typical strategy is to first computerize the

existing methods and then switch to better and more efficient methods as the user becomes familiar

and gains experience and confidence with the system [Foley 82a, 82b].

Habitually people prefer the traditional ways of doing things. These methods have evolved

from years of experience and most initial difficulties have been ironed out. People have already been

trained to use these methods. As a result they feel confident and comfortable using them. It is very

hard to change one’s way of thinking. In fact, professionals resent being told that their traditional

methods are inefficient. This is not meant to imply that new approaches which take advantage of

evolving technology should not be introduced, but rather that care must be exercised in introducing

new methods.

The conceptual model used in the Benesh editor is identical to that of the Benesh Movement

Notation. A few new approaches have been added to aid in the editing process. The use of a five

line musical stave to record movements in Benesh Movement Notation represents a human matrix

making the notation more visual. This aspect of Benesh notation is maintained and further enhanced

- 37 -

in the editor by using a body figure menu to manipulate different body parts. The finished score is

displayed exactly as a choreologist would normally write it on a piece of paper. The terminology used

for explaining the editor’s functions has been adopted from Benesh notation.

A new approach has been introduced for creating the Benesh score. Instead of asking the user

to explicitly draw the Benesh symbols, the editor presents a set of neatly drawn symbols. The user

need only select a symbol and position it at the desired location. The rules and conventions for posi

tioning the symbols are those of the Benesh notation and are strictly observed by the editor. All

frames are composed or modified in a working frame which is displayed at twice the size of a normal

frame in the score. This allows for more accurate positioning and manipulation of symbols. The

basic idea is to enlarge any frame area that is too small for accurate manipulation or positioning of a

symbol. These approaches have been added to aid in the existing tasks and not merely to introduce

new tasks.

5.2.2. Recognition versus Recall

Learning to use any system requires memorization of information. An important consideration

in designing a user interface is the nature o f the dialogue between the system and its user. The aim

is to minimize the amount of information a user must memorize in order to initiate and carry out a

dialogue with the system.

There are two approaches to the design of man-machine dialogues [Martin 73]. One is the

system-initiated dialogue, in which the system displays everything relevant to a task and then prompts

the user for his next action. The system guides the user. All “conversational” and menu oriented

systems belong to this category. The other approach is the user-initiated dialogue, in which the user

requests an action by issuing the necessary commands. Here the user needs to remember all the

available commands and their order of execution to perform a particular task.

During conscious thought, the brain utilizes several levels of memory, the most important being

the short-term memory. Many studies have analyzed the short-term memory and its role in thinking.

The following conclusions stand out:

• conscious thought deals with concepts in the short-term memory [Arnheim 71],

and

• the capacity of the short-term memory is limited [Miller 56],

- 38 -

When all relevant information is visible, the display relieves the load on the short-term memory by

acting like a “visual cache”. Thinking becomes easier and more productive. A well designed

dialogue can actually improve the quality of user thinking [Smith 82]. Thus a system-initiated

dialogue poses very little burden on the user’s memory. The conversational nature of this dialogue

implies a truly interactive form of communication. It enables the system to give instantaneous feed

back to the user in response to his previous action. This further enables the system to provide positive

or negative feedback, in addition to prompting the user for the next step. However, there is a draw

back: the dialogue steps are predetermined and follow a fixed sequence.

User-initiated dialogues, on the other hand, are generally easier to implement and more efficient

in executing a particular task once the user has gained some experience with the system. They are

usually more flexible and the user can use short cuts to execute functions to perform a particular task.

The ordering of dialogue steps is not fixed and thus more efficient for an experienced user. But the

opposite is true for a novice or casual user. Thus a system-initiated dialogue is limited due to the

specificity of the actions involved, while a user-initiated dialogue is less limited but presents an addi

tional burden on the user’s memory.

In designing the man-machine dialogue for the editor, the user’s problem space has been broken

into tasks and distributed among the different forms of dialogue. Commands like abort and undo,

that can be invoked at any time, are implemented through user-initiated dialogue. The commands in

this group have been restricted to a very small number and are structured to fit the user’s normal way

of thinking and working, thus reducing the added burden on the user’s memory resulting from this

type of dialogue. The remaining commands are implemented through system-initiated dialogue.

This allows for an appropriate grouping of commands within the system-initiated structures, as

explained in the next section.

5.2.3. The Command Set

The editor has a few commands that can be used throughout the system. These commands,

abort, undo, and help (not yet implemented) are user-initiated and can be invoked at any time during

an editing session by pressing the puck buttons as shown in Figure 5.5. The assignment of these

commands to the puck buttons is always displayed on the screen as an aid to the novice or occasional

user.

Buttons allow a very convenient and efficient way of specifying functions, but they distract the

user, causing a shift of attention from the display to the buttons. With experience a user can learn the

button locations and activate them without looking, just as a touch typist no longer looks at the

-39 -

Figure 5.5. Tablet puck

typewriter keys but instead concentrates on the manuscript being typed. This is especially true if

there are only a few button positions to remember. However, specifying commands through buttons

has other problems. Most function keyboards have no means of labeling buttons under program

control. Although it is possible to show a brief summary of the use of each button on a portion of the

display screen, the user has to logically connect function assignments to the buttons and so his atten

tion is again diverted. Therefore, we elected to use a minimum number of buttons (i.e. a four button

puck) and assign them to the most important functions in the command set. The remaining command

set is specified through simulated buttons as menu items on the display screen. Which command is

assigned to a button depends on the importance of the function and the frequency with which it is

executed during a typical session. Providing a limited number of buttons that are always available

within close proximity of the user’s current hand position allows the use of tactile memory to assist in

locating them.

A menu is commonly used to simulate buttons [Newman 79], It displays the full range of

available functions on the screen. Each item in the menu corresponds to a logical button and is

labeled with either a character string or an icon. These labels can be easily changed if necessary.

Selecting a menu item by pointing is equivalent to pressing a physical button. Thus menus are suit

able for invoking commands and also for selecting from a choice of operands.

-4 0 -

The editor’s command set has been divided and grouped into a hierarchy of menus with operand

menus at the bottom of the hierarchy. The appropriate menu is displayed on the screen, depending

on the system state and the functional semantics at a given time. In designing such a menu hierarchy,
the issues of concern are:

• the menu structure,

• the spatial resolution and visual discrimination of items within a menu,

• text versus iconic labels for menu items, and

• dynamic versus static menus.

5.2.3.1.The Menu Structure

Analyzing the functional requirements in the user’s conceptual model, a list of actions can be

made for providing these functions. This list forms the vocabulary of the system’s interaction

language. The list of actions for the editor was divided into functional groups:

• manipulating frames,

• editing frames,

• selecting frames, and

• positioning and manipulating symbols.

Manipulating Frames

The functional requirements for manipulating frames include adding, editing, deleting, moving

and copying frames; selectively displaying sections of the composed score; archiving the composed

score and dearchiving it at a later date for further editing. Commands for these functions are
grouped together and presented as options in a menu.

A menu can have a very large number of options. The previous discussions in the section on

recognition versus recall argued that short-term memory is the most important level utilized in cons

cious thought. Miller’s experiments [Miller 56] show that the capacity of our short-term memory is

limited to “the magical number seven plus or minus two” for absolute judgement in unidimensional

stimuli. He explains that this capacity can be increased by increasing the dimensions of the stimuli.

However, the increase in capacity is not linear. Instead it asymptotically approaches a fixed limit as

- 41 -

the dimensionality of the stimulus is increased [Miller 56]. One way to increase this capacity is by

grouping [Bourne 79]. Telephone numbers are divided into groups to help in remembering them.

Commands for manipulating frames have been sub-divided into five groups according to their

functionality, each group containing a maximum of five commands. Figure 5.6 illustrates this gro

uping within the root menu, the menu for manipulating frames.

Displayed only if the finished
score contains at least one frame

Displayed only if the save buffer
is not empty

Displayed if either side of the
display window contains some score

■fra in e Menu)

{Frame Menu)

Figure 5.6. Root menu.

- 42 -

Editing a Frame

Since all frames are composed and edited in the working frame, the functional requirements at

this level are specific to the working frame. The functions required for editing a frame can be

grouped into two categories: defining a new symbol or modifying an existing symbol, and manipulating

the position of these symbols, including the complete erasure of a symbol. Commands in the first set

can be further divided according to the type of Benesh frame they refer to, as shown in Figure 5.7, The

complete set is always displayed when editing a frame. However, the first selection of an option

referring to a specific frame type defines the type for the working frame. Henceforth, the menu

displays only options referring to the working frame type and others are eliminated from the display.

This menu (the frame menu) is invoked by selecting the add or edit frame operation on the menu for

manipulating frames shown in Figure 5.6.

Done

New Frame

1 7 Root Menu)

Displayed if working frame is
a header frame

Displayed if the working frame
is body data type

Bar line

Displayed only if the working frame
contains at least one symbol —

J

Displayed as a seperate menu as
shown in Figure 5.14 ~

Number
11

lI
l

Rhythm ''^ >4

Direction

- ' I 1
1

L - î ii
.)

.\V-J

'1
1

t. 1 11
■ - - , "1

• Symbol Menus j
t

' ' ' ' J; ' • ' ' 1
J

' ’ ,1
1' I
1L ' 1

" 1 - , ' .1
■’ 1

■ ' VXimb ' ! > f y

■ Main body
IlstisiissiS

Figure 5.7. Frame menu.

- 43 -

Selection of Frames

Selection is an integral part of all frame operations such as delete, move, and copy. This section

describes the interaction techniques employed in selecting a single frame or a sequence of frames.

To select a single frame the user moves the tracking cursor to the display window. As the

cursor moves over a displayed frame in this window, the frame is highlighted by changing its

background colour. Once the cursor moves out of the frame the highlight is turned off, as shown in

Figure 5.8. Pressing the do button on the puck selects the highlighted frame. If no highlighted

frame exists when the puck button is pressed, no selection is made.

Figure 5.8. Selecting an edit frame.

Adding frames to the display window requires selection of an insertion position for the new

frames. To select this position the user moves the tracking cursor over the display window. As the

cursor moves across the frames in the display window, an arrow indicating the insertion position is

displayed below the frames. The arrow always appears between two frame positions and remains

displayed as long as the cursor is positioned in the region between the horizontal mid-points of the

previous frame and the next frame, as shown in Figure 5.9.

- 44 -

insertion position

Figure 5.9. Selecting an insertion position.

To select a sequence of frames the user first chooses the beginning frame of the desired se

quence, in the same manner as when selecting a frame for editing. Having selected the beginning

frame for the desired sequence, all frames between this anchored frame and the frame currently under

the cursor are highlighted, as shown in Figure 5.10. Pressing the do button then selects the highlight

ed frame sequence. There is no implied ordering on the selection of a sequence; the anchor can be

either the first or the last frame in the desired sequence. At any time during the selection, the user

can reselect the anchor frame by moving the cursor onto the anchored frame and pressing the do but

ton. However, re-selection is only invoked if the user moves to a frame other than the anchored frame

before the second do. Thus pressing the do button twice without moving to any other frame selects a

frame sequence consisting of the single highlighted frame.

Moving or copying frames requires an insertion position to which the selected frame sequence is

to be moved or copied, respectively. This position is selected in the same manner as when specifying

the insertion position for adding new frames to the display window.

Positioning and Manipulating Symbols

Selecting an item from the frame menu results in the display of the appropriate symbol menu

showing the full range of available options for positioning the corresponding frame information. On

selection, the symbol is placed in its final position within the working frame, automatically whenever

this is known to the system. The time signature and rhythm symbols are examples of symbols which

- 45 -

Figure 5.10. Selecting a frame sequence.

always appear in pre-defined positions. On the other hand, if the final display position is not known,

the iconic tracker changes its shape to that of the selected symbol and is then dragged to the desired

position. The editor observes all the Benesh conventions for positioning symbols and thus only allows

positioning in valid areas of the frame. No verification is done for the body posture being composed.

The issues involved in such verification and possible methods for implementing it are explained in

Chapter 6. Reselecting a menu option for which a symbol has been previously defined causes re

placement of the symbol with the new symbol.

Each body limb is considered as a single unit consisting of a maximum of two symbols defining

the extremity and the bend (knee or elbow) positioning. Specifying the bend position is optional. In

its absence, a default position is assumed. To position a body limb the editor displays a symbol menu

containing all symbols for the extremity and the bend. If the user selects a bend symbol, the system

will prompt again for extremity positioning by displaying a symbol menu containing only symbols for

the extremity. However, if the user selects an extremity symbol, the editor ignores bend positioning.

The above discussion so far has involved symbols that have been pre-drawn and displayed for

user selection. This approach is possible due to the very small number of symbols involved. How

ever, the positioning of the main body, consisting of the head, torso and the pelvis, requires a very large

number of symbols (see Chapter 3 on Benesh Movement Notation). It is difficult to display all the

possible variations of these symbols at the same time. For this reason, main body symbols are

constructed whenever required.

- 4 6 -

To construct a main body symbol a window containing a default position symbol is displayed as

shown in Figure 5.11. The user can now change the symbol by selecting and manipulating the

individual line segments. If the longer line is selected, the shorter line disappears and the x-

component of all cursor movements drags the top end of the longer line along the top edge of the

window while the bottom end of the line is anchored at the mid-point on the bottom edge of the

window. The angle between this longer line and an imaginary vertical line passing through the anchor

point defines the degree of right or left tilt in the main body part. Pressing the do button selects the

line position as displayed and a shorter line appears intersecting the longer line in proportion

corresponding to the previous positions. If the shorter line is selected, the y-component of all cursor

movements is mapped to move the shorter line along the longer line. The x-component of all cursor

movements is used to represent a change in the length of the shorter line. This gives a vernier effect

along the x-axis, allowing users to accurately manipulate the length. The point of intersection of the

shorter line with the longer line defines the degree of forward or backward bend while the length of the

shorter line defines the amount of turn in the main body part. Again, pressing the do button freezes

the displayed position. Once the desired symbol has been constructed, selecting the done option

within the window copies the constructed symbol to its appropriate position in the working frame.

Reselecting the main body part option will copy the corresponding symbol from the working frame

into the window for further manipulation.

Figure 5.11. Window for constructing main body symbols.

- 47 -

S.2.3.2. Spatial Resolution and Visual Discrimination

The size of a menu item is very important for legibility. Bigger menu items are more legible

than smaller items. The required size is a function of the screen resolution, the total space available

for the menu display, and the number of different options to be displayed in the menu.

The distance between individual options within a menu also affects the selection process. The

greater this distance, the longer it takes for the user to move from one option to the neighbouring one,

but the smaller this distance the more difficult it will be to visually discriminate between adjacent

options during selection. The designer has to find a suitable compromise between these extremes. A

simple way to improve visual discrimination between items is the use of bounding boxes which

surrounds, the menu labels. The menus shown in Figure 5.6 and 5.7 illustrate the use of bounding

boxes. Bounding boxes must be used with care so as not to change the semantics of the menu label,

especially with iconic labels that may have a meaning beyond the context of the application at hand.

An example of this phenomenon from [Dreyfuss 72] is shown in Figure 5.12. The heavy dot means

“human” in standard architectural symbols. Adding a bounding box to it resembles a scaled “train”
symbol.

• H
Human Train

Figure 5.12. Standard architectural symbols [Dreyfuss 72],

Symbol menus are displayed in a circular organization as shown in Figure 5.13. The radius

chosen for the circle is a function of the number of symbols in the menu, their size and the spatial

distance required between them for visual discrimination. All symbol menus used by the editor have
been restricted to contain a maximum of nine symbols.

Figure 5.13. Menu of direction symbols.

- 48 -

5.2.3.3. Text versus Iconic Labels for Menu Items

"An idea in the highest sense o f that word, cannot be
conveyed but by a symbol. "

- S. T. Coleridge

We live in a world of graphical images and receive most of our information through visual media,

such as television and movies. In some sense, pictures seem to be a “natural” vehicle for communi

cation as they closely resemble the objects to which they refer. By contrast, the written language is

based on conventionalized and culture-bound symbolic codes. This argument is generally used to

justify the creation of a purely iconic language that is not dependent on any written language or

culture [Modley 47; Mead 68; Kolers 69; Bliss 65; Huggins 74], The use of such a non-verbal symbol

ic language can be a very useful tool for man-machine interaction [Johnson 70; Huggins 69]. How

ever, it is not clear whether a picture can always or even sometimes substitute for a linguistic state

ment.

Natural language is an excelent medium for communicating propositions intended for people.

A picture can also be thought of as a conveying a proposition, but the problem with a picture is that

it often conveys an infinite number of propositions [Gombrich 72]. Without some constraining

context, it is difficult to read the intended proposition. This problem of multiple meanings in a

picture has its roots in the very nature of the human conceptual apparatus, which uses a finite set of

general cognitive frameworks or schemata to form definite descriptions of specific inputs. Even in

purely visual perception, the same input can give rise to many different descriptions by drawing on

different combinations of schemas depending on changes in context [Mills 81, 82]. This flexibility

could create problems for the use of icons if they are not designed properly. The design of iconic

representations is a specialized area of study that draws on many other disciplines, such as art and

psychology. A good icon needs simultaneously to be a symbol - something that represents something

else by convention or association, and a picture - a visual representation. It needs to use abstract

graphical elements to highlight generic qualities, but be recognizable as a visual representation of a

specific kind of object, situation or event. Poor icon design will inhibit communication rather than

help. Dreyfuss presents a collection of standard symbols used internationally [Dreyfuss 72]. These

symbols can be easily adopted to icons in man-machine dialogues.

Translating a verbal statement into an equivalent pictorial description is often not easy. In

fact, it is difficult to form pictorial propositions about past, future and conditional events or to form

logical chains of inferences [Mills 81], However, in an appropriate combination pictures and text can

function together in directing the user towards the intended meaning of a message.

-49 -

These results have been used in labeling menu items for the editor and in defining the iconic

cursors explained in a later section. Abbreviated words from the Benesh terminology have been

adopted to label most menu items. Iconic representations have been used whenever available. For

example, actual symbolic representations have been used in all symbol menus instead of the conven

tional symbol names. The body menu in Figure 5.14, showing the body limbs and main body parts,

is an excellent example of pictorial labeling of menus. This combination of icons and abbreviated text

labels is intended to constrain the label meanings to avoid ambiguity.

Figure 5.14. Body menu.

5.2.3.4. Dynamic versus Static Menus

Menus that are always displayed at a fixed location when invoked are known as static menus.

The user becomes accustomed to their display locations and habitually looks for and expects them to

appear at the same position. This provides visual continuity and maintains a sense of “place” in the

interaction dialogue. However, a drawback of static menus is that the user has to move his eyes (and

the hand controlling the puck) from his current position on the display screen to the menu display lo

- 50-

cation. In contrast, a dynamic menu appears at the user’s current position on the display screen, thus

avoiding any eye or hand movements to the menu display area. The assumption is that the user’s

centre of attention is near the tracker, his current position on the display screen. Thus a dynamic

menu minimizes overall hand and eye movement. Static menus allow the use of tactile memory to

pre-position the tablet puck, while the dynamic menus are normally displayed at the user’s current

position to minimize visual search [Foley 82a].

Dynamic menus are more flexible; they can overlay existing data and so can be displayed any

where on the display screen. Static menus use fixed display regions that cannot be used for display

ing any other data. The total number of static menus that can be displayed is thus limited by display

real estate. The static menus provide a convenient way of leaving behind the current system state

instead of displaying it at a fixed location.

The editor uses a combination of both types of menus. All symbol menus are dynamic, thus

minimizing hand and eye movement for symbol selection. The remaining menus are static, highlight

ing the closure [Foley 82b] of each operation by requiring the user to return to the menu display area.

In addition, the static menu structure is also intended to show the system state, as explained in a later
section.

5.2.4. Consistency

Consistency asserts that all mechanisms should be used in the same way wherever they occur.

This implies that the conceptual model, semantics, command language syntax and display formats

should be uniform and not have any exceptions or special cases. For example, the yellow puck button

is used for selecting the desired symbol from a symbol menu. Thus the same button should always be

used for selecting menu options and selecting frames. Consistency is an admirable goal, but a very

expensive one to achieve. System complexity for implementation increases with adherence to the

consistency principle. Consistency allows the user to generalize the experience and knowledge gained

about one aspect of the editor to other aspects. It also helps to avoid the frustration which often

occurs when a system does not behave in an understandable or logical way.

The editor’s functions are completely consistent within different modes of editing such as

manipulating frames, editing within a frame and constructing symbols. However, across these modes

not all functions are consistent. Selection is consistent throughout the editor. To select a symbol,

frame, or menu item the user aligns the tracker with the desired item and presses the do button on the

puck. However, the positioning operation is not consistent for positioning frames and symbols. To

position a symbol while editing a frame, the tracker assumes the shape of the selected symbol and is

then dragged to its final position. To be consistent with this scheme in moving frames, once the frame

- 51 -

sequence to be moved has been selected, the tracking cursor would have to change its shape to that of

the selected frame sequence which could be then dragged to its final position. Instead, due to the

time constraints for implementing the editor, the user selects the insert position and the editor moves

the selected sequence of frames to this position.

One could make positioning of symbols consistent with the positioning scheme used for frames.

This scheme was tried and abandoned in favour of the continuous visual feedback provided by drag

ging.

5.2.5. Simplicity

"Order and simplification are the first steps towards the
mastery o f a subject - the actual enemy is the unknown"

- T. Mann

Simplicity is a very desirable goal. A simple system is better than a complicated one if both

provide the same function. One way to make a system appear simple is to make it consistent. This

leads to a simple conceptual model which is easier to understand and work with than a complex one.

For the most part the editor’s functions are consistent. Each function has been broken up into smaller

tasks which are independent and very simple. For example, the move and copy operations have been

implemented using the simpler operations delete, save and put. There are a few exceptions to the

uniformity and consistency principles because of limitations in resources.

Another way to achieve simplicity is to minimize redundancy in the system. Having two or

more ways to do something increases complexity without increasing capability. Too much

redundancy may create confusion for users. At the other extreme, a system could have a minimum

set of powerful commands that contain all the desired functionality and that do not overlap. Such a

set is called orthogonal. A designer has to balance between the two extremes. The editor has a

minimal redundancy in its operation set. The only operations that contain some redundancy are

move, copy, delete, save and put. As explained in Chapter 4, the move and copy operations are im

plemented using the other three operations This redundancy has been deliberately introduced to

simplify the operations and to allow multiple copying of the same selected frame sequence.

Another way to have the system appear simple is to make each of its parts simple. In partic

ular each part should be kept conceptually clean and separate. Sometimes this involves a major

redefinition of the user interaction. An example of this situation is the construction of the main body

symbol. The interactive techniques used for this construction were complicated when first designed.

- 52 -

The symbol was constructed in three pre-defined stages. First the angle of the long line segment had

to be defined. Then its intersection point with the short line was selected, and finally the length of the

short line was determined. This sequence required a total of three button pushes to complete

construction of a symbol, and the user could not manipulate any single variable without going through

the entire sequence. While this scheme was simple to implement it was not simple to use. The newer

technique described earlier allows independent manipulation of each symbol variable. It was more

difficult to implement but is much easier to use.

5.3. Display Representation

The display is the most visible part of any system and must be carefully designed to be both

appealing and informative. It should always reflect the user’s conceptual model and should hide all

implementation details. The design goal was to minimize the short-term memory required for system

operation, so as to relieve it for more important user tasks. This can be achieved by displaying all the

information necessary for the user to perform a task at any given time. The editor provides this

information through immediate feedback for all user requests, by displaying the system state at all

times, and by always displaying the current status of the finished score as well as that of the frame

being composed. This section describes the methods used for displaying this information.

5.3.1. Feedback

Feedback is an essential part of any conversation, whether with a machine or with a person. In

a normal conversation with another person, several forms of feedback are exchanged automatically

without any conscious action by the participants in the conversation. This feedback includes gestures,

body language, facial expressions and eye contact. Foley explains the psychological blocks that occur

in the absence of adequate feedback [Foley 74, 82a, 82b]. The most typical symptoms are boredom,

panic, frustration, and confusion. Immediate feedback not only avoids these psychological blocks but

also provides continuity in the dialogue.

There are three possible levels of feedback corresponding to the levels of the interaction

language: lexical, syntactic, and semantic as shown in Figure 5.15 adopted from [Foley 82b], The

editor provides feedback at all of these levels. Lexical feedback consists of changing the cursor icon

to the icons shown in Figure 5.16, depending on the puck button pushed. The icons have been adopt

ed from [Dreyfuss 67] and use a combination of text and symbols. An alternate set of icons shown in

Figure 5.17 was originally used but later abandoned because of their device dependent association and

the rastering effects on diagonal lines.

- 53 -

Semantic Processing User Input

User’s Feedback
and Results

Figure 5.15. Different levels of feedback [Foley 82b],

Do

Undo

Abort

Help

Figure 5.16. Icons for lexical feedback.

- 54 -

Abort

Help

Figure 5.17. Alternate set of icons for lexical feedback.

At the syntactic level, the feedback differs depending on the item being selected. Selecting a

frame results in a change in its background colour. Selecting a symbol from a symbol menu replaces

the cursor icon with the selected symbol for feedback as shown in Figure 5.18. Finally, semantic

feedback is provided by displaying the results of the selected operation.

This feedback hierarchy offers several advantages. Lexical feedback provides a placebo when

ever the system is running slowly. However, this placebo can be annoying under normal system

operation. When the transition from the lexical to the syntactic level takes a very short time, the

lexical feedback turns into an irritating flash. These flashes are especially annoying for the do button,

the most frequently used button. To avoid this effect, lexical feedback for the do button was

suppressed and for consistency all lexical feedback has been removed. Thus the current version of the

editor provides feedback at the syntactic and semantic levels only.

selecting frame

Option Label
y d Option Label

selecting menu option

selecting a symbol

Figure 5.18. Syntactic feedback.

Some form of placebo is still necessary for time-consuming operations such as archiving and

dearchiving finished scores. All editor operations have been timed and a placebo is provided for

lengthy operations. The placebo used is the Buddha icon, adopted from Newswhole [Tilbrook 80], as
shown in Figure 5.19.

, 0 , System is busy

Figure 5.19. Buddha icon [Dreyfuss 67],

- 56 -

5.3.2. The System State

A very important aspect of the display representation is showing the system state at all times.

Most systems reserve an area of the display screen for displaying this information. However, there

are some drawbacks to this approach. Viewing television is very different from viewing the editor’s

display. In the former case, it is a one way communication and the viewer sits back and relaxes. His

centre o f attention is the whole screen and if a message suddenly appears at the bottom of the televi

sion screen, he notices it. But in the case of the editor’s display there is a two-way communication:

the user manipulates the objects that he sees on the screen and the system acknowledges user prompts

with appropriate feedback. During an interactive dialogue, the user’s centre of attention is generally

focussed on the object that he is manipulating. Anything appearing outside his centre of attention,

especially outside his peripheral field of vision, will not register. Therefore the problem with display

ing the system state in a fixed location is that if this location falls outside the user's centre of attention

but within his peripheral field of vision, it will distract his attention. The user’s curiousity will move

his centre of attention to the location where the system state is displayed. After reading the state

information, the user will return his attention back to the original position. This eye movement every

time the system state is changed can be very tiring and very annoying, especially if the system state

changes quite frequently. A better way to present this information would be to display it within the

user’s centre of attention, thus avoiding eye movement and providing visual continuity.

The system state referred to here is not the internal program state, but the current mode of the

editor within the user’s conceptual model. Selecting an option in a menu other than a symbol menu

inverts the option label explained earlier in the last section and all other options are switched off.

This inverted menu option label shows the current mode of editing. As the user moves along the

menu hierarchy by selecting menu option, he leaves behind a trail of inverted option labels, the most

recent of which is always at the centre of attention. Together, these labels indicate the specific state

of the editing process.

The editor also shows the action in progress by changing the tracker icon, as shown in Figure

5.20. The editing mode defined by the inverted labels and the current action in progress as shown by

the iconic tracker together define the complete state of the system at a given time.

5.3.3. The Current Status of the Score

The editor displays the finished score in the display window. While editing a frame, the selected

frame is left highlighted to indicate its context within the score. When adding new frames to the

finished score, the editor displays the current insertion position, which is updated each time a new

frame is added. All frames added during the current add frame operation are left highlighted until

-57 -

selecting commands

selecting symbols

Select frames

selecting insertion positionWhere?

selecting frame

Select frame selecting edit position

Figure 5.20. Tracker icons.

the end of the operation. This always shows the current status of the finished score. However, only

the frames within the display window are shown at any given time and the user has no indication of the

relative position of the display window within the score. A scroll bar, explained in Chapter 6, could

be used to indicate the display window position and to manipulate this window.

When editing a frame or composing a new frame, the working frame shows three different types

of information. Firstly, a body part may not have been defined yet. Secondly, a body part may have

been carried over from the previous frame. Thirdly, a body part may have been newly defined for

this frame. All body information is shown using symbols. One way to show the different types of

information is to use symbols of different colour. However, this would imply an ordering of symbols

by their importance and thus change the semantics of the symbols. This would also require more than

one bit-plane in the foreground. Instead the editor displays this information for each body part by

using different background colours for the corresponding menu items, as shown in Figure 5.21. A

black background means that the menu item has not been selected. Colour association is used for the

remaining types of information. If the background colour of a menu item is the same as the highlight

colour of the last frame added to the finished score, this implies that the corresponding symbol has

been carried over from the previous frame and selection of this item will result in replacement of the

existing symbol. A background colour which is the same as that of the working frame implies that

- 58 -

item not specified yet
item carried over from previous frames
item newly specified for this frame

Figure 5.21. Status information display.

the corresponding body part has been newly defined. This colouring scheme provides a checklist of

body information that has been defined and that needs to be defined.

This chapter has touched on some key areas of the user interface design through a description

of the interface design and implementation for the Benesh editor. There are other issues which have

been considered but not implemented due to lack of time. These ideas are the topic of the next

chapter.

6. FUTURE EXTENSIONS

"It is a bad plan that admits no modification."

- P. Syrus

When computerizing an existing system a number of new capabilities are possible which would

otherwise be impossible or not worthwhile to implement. The functions provided by the Benesh editor

are very basic and limited by the conceptual model, which is identical to the basic Benesh model.

However, extending this model to take advantage of the possibilities inherent in a computerized

system results in some very useful capabilities that can enhance the process of editing Benesh scores.

This chapter describes extensions to the editing functions, movement verification, hard copy facilities,

and potential improvements to the editor’s user interface.

6.1. Extension to Editing Functions

Chapter 4 described the analogy between text and Benesh. This analogy suggests the full range

of text editing facilities for editing Benesh scores. The following is a list of desirable features to

further increase these editing capabilities.

Multiple Buffers and Windows

When composing a score manually, one easily switches back and forth between different tasks

such as writing one score while correcting another, or comparing several scores at the same time.

This ability can be provided in the Benesh editor using multiple buffers and multiple windows. As in

Fred [Gardner 80] multiple buffers store each score separately and allow the user to switch back and

forth between them at will. Any changes that have been made to any of the scores remain, even if the

user switches from the buffer and then back again. Multiple windows split the display screen so that

two or more scores can be displayed at the same time. The System Product Editor allows user to

divide the physical screen window into multiple windows to edit multiple files or view different seg

ments of the same file [IBM 70]. Each window is in effect, an independent terminal with its own file

identification line, command line, status area, and message line. Using this technique, different parts

of the same score could also be displayed simultaneously.

- 59-

- 6 0 -

Higher Level Score Objects

The full-screen editor Vi on Berkley Unix deals with high level text objects such as sentences,

paragraphs, and sections [Joy 80], Benesh notation also consists of high level objects such as a bar,

corresponding to a bar of music, or a movement section, consisting of all frames sharing the same time

signature. It is often advantageous to work in terms of these objects. Some useful operations at this

level would be move, copy, delete, and print (hard copy output). The implementation of these opera

tions requires a search for the beginning and end of a bar as well as for the previous and the next

header frame. Using this search function operations for high level objects can be mapped into basic

frame operations.

Full-screen Display Window

The sixteen frame display window is very limited. A full screen scrolling window would be very

helpful, especially when reading the finished score. Existing capabilities for manipulating the display

window are limited and would need to be expanded to include such facilities. User feedback about

the location of the display window within the score is currently inadequate, as explained in Chapter 5.

A scroll bar, as shown in Figure 6.1, gives a simple way of manipulating the display window and also

provides a means of feedback showing its position within the score. A scale ranging from zero to the

maximum number of frames in the score, displayed below the scroll bar, could be used for additional

feedback. The dark, rectangular region of the scroll bar is the scroll marker. Its relative position

within the scroll bar corresponds to the position of the display window within the score. The length

of the marker corresponds to the actual size of the display window. The user should be able to control

this size through the number of frames to be displayed in the window. To move the display window

along the score, the user would select the marker and move it along the scroll bar. As the marker

moved across the scroll bar, the display window would show the corresponding section of the score.

Scroll marker

I 1 I 1 I 1 I f I 1 I 1 I 1 I 1 I 1 I 1 I 1 I 1 I 1 I 1 I 1 I 1 I 1 I 1 I 1 I
Maximum number
of frames in the score

Figure 6.1. Scroll bar.

-61 -

Marking and Returning

A frame position can be identified by assigning a unique name to it known as a mark. If a list

of all marks is displayed in a fixed location, the user can return to a marked position by simply select

ing the corresponding mark. This provides an efficient means for moving to a specific frame within

the score and for specifying operands for frame operations. These marks can also be used as operands

to commands, instead of pointing to the actual frames. Furthermore by considering each frame as

marked by a number representing its position within the score, the user can specify operands by point

ing along the scroll bar scales. If a marked frame is deleted, the corresponding name is erased from

the display. The user should also be able to unmark a frame position. Marks are specific to a score

and can be archived and de-archived along with the score.

Macros

The idea of marking a frame can be extended to identifying a sequence of frames, one form of the

macros commonly used in computer science. Invoking a macro would insert the corresponding se

quence of frames after the current frame position. This avoids the need to recompose or copy

commonly used sequences of frames each time they are required. One could build a whole library of

such useful macros and build a score entirely from these macros. For example, most of the common

movement sequences in dance have been assigned specific names which are part of its vocabulary.

These movement sequences can be declared as macros and retrieved from the library without the

trouble of recomposing them. These macros can be made more flexible by using user supplied param

eters to change the contents of the macro, similar to commonly used macros with parameters in

computer science.

High-level Operations

The features discussed so far are not specific to Benesh notation but can be used for editing any

kind of information. This section describes some additional features that are specific to movement

notation.

Often one would like to perform operations on movements, such as changing the dynamic

qualities of movements and transforming movements. Changing the dynamic qualities of movements

refers to operations in the time domain, such as accelerating or decelerating movements. This

amounts to redefining the tempo and degree o f effort information in a Benesh score. A typical move

ment transformation is reflection - changing all body part movements into their mirror movements

-62 -

with respect to the sagittal plane (see Figure 3.1). The user feedback for these operations requires

new concepts and techniques, explained in the next section on movement verification. The editor

currently handles notation only for a single dancer. Multiple dancers introduce additional transfor

mations such as assigning the movements of one dancer to another or changing the direction of one

dancer with respect to another. The operations described here can be applied either to the whole

body or to an individual part of the body.

Another desirable feature is to identify movement sequences in a ballet as essential or optional.

This can be done by colour coding the Benesh frames. In addition, alternate movement sequences can

also be specified using this method.

Options

All users may not require the full functional capabilities of the editor. Therefore, it is advan

tageous to provide only the basic editing functions and to organize the remaining capabilities as op

tions invoked on request. The editor’s mode of operation is now defined by the combination of

requested options. A useful editor option would be read only. In this mode the editor would display

the score for reading but not allow any editing. Another useful option would be the verification of

notated movements, as described in the next section. Different editor modes could be used to create

an editing environment suitable for the user’s level of experience. The editor could guide new users

by displaying all relevant help information, while for experienced users this information could be

suppressed. This allows the editor to cater to the needs of individual users and to make efficient use

of the available resources.

The features currently available and the ones presented here require an efficient memory

management scheme for their implementation. One approach is to organize the complete score as a

set of display pages and keep only the current page plus the two adjacent ones in main memory while

storing the other pages on secondary storage. When a required page is not in core, the pages in core

are moved to the secondary storage and replaced by the new pages. The techniques for implementing

such facilities are well known and available in most text editors.

6.2. Movement Verification

One of the most attractive features of computerizing the editing of Benesh scores is the possibility

of verifying the notated score. One approach is to verify each body posture within a movement se

quence as it is being composed and to prompt the user to correct errors, if any are detected. This

requires a body model against which all notated information can be checked for possible errors. Such

a body model is described below.

- 63 -

Body Model

The skeleton is the basic structure to which all information from the notation is related. It

consists of straight line segments in three-dimensional space, each corresponding to a body part as

shown in Figure 6.2. The intersection points of these straight line segments correspond to the body

joints. The main advantage of this structure for representing human movements is its simplicity. It

can be expanded to increase its flexibility by simply breaking the straight line segments to create new

joints and by adding more segments. Thus the upper torso could be modeled more accurately by a

sequence of short line segments corresponding to the spine.

Figure 6.2. The skeleton.

Each angle has three components, one in each of the coronal,
sagittal and transverse planes

am - the angle of the pelvis to the body mid-line.
Pm - the angle of the upper torso to the pelvis.
Ym - the angle of the head to the upper torso.

a/ - the angle of the upper arm to the shoulder or the angle of the
upper leg to the pelvis.

P/ - the angle between the upper and lower limb parts.
Y/ - the angle of the hand or foot to the lower limb parts.

- 64 -

The skeleton is divided into two major parts, the main body and the limbs. The main body is

divided into head, upper torso, and pelvis, while the left arm, right arm, left leg, and right leg

constitute the limbs. Each arm is further sub-divided into the upper arm, lower arm, and hand.

Similarly each leg is sub-divided into the upper leg, lower leg, and foot. Detailed information about

a body position can be compiled by noting the relative angles between these straight line segments in

the sagittal, coronal, and transverse planes (see Figure 3.1). These angles are measured between

adjacent straight line segments in order of inferior (lower) to superior (upper) body parts for the main

body and superior to inferior body parts for limbs (see Figure 3.1). For example, the main body posi

tion is recorded as a tuple (am, /?m, y m), where ctm is the angle of the pelvis to the body mid-line, which

is perpendicular to the floor, /3„, is the angle of the shoulder to the pelvis, and y m is the angle of the

head to the torso. Similarly each limb position is recorded as a tuple (a/, /?/, y t), where at is the angle

of the upper arm to the upper torso or the angle of the upper leg to the pelvis, /?/ is the angle between

the upper and lower arm or leg, and y t is the angle between the palm or foot and the lower arm arm

or leg respectively (see Figure 6.2).

The body limb positions are recorded in relation to the main body parts, irrespective of the

position of these parts. The position of the main body parts is in turn recorded in relation to the body

mid-line. The positions of limbs are depicted by their projections onto the frontal plane. This projec

tion onto the stave provides only two-dimensional information. To extract the third dimension it is

necessary to know whether the projected point is in front, behind or within the frontal plane. This

information is given by the basic sign used to plot the projection point.

In mathematical terms, the problem is to calculate the defining angles for a three-dimensional

vector in the x-y, y-z, and x-z planes. The length of the vector and its projection onto the x-y plane

is known. The solution is shown below:

Let the vector be (x, y, z) with length /. We know that

x 2+ y2 + z 2 = l 2

and knowing x, y and / we have

z = ± \ J l 2 - x 2 - y 2

Now the angles in the three planes can be calculated as

i f yangle in the x-y plane = sin

- 65 -

angle in the y-z plane = sin
/

angle in the x-z plane = sin x

V^TT2/

Note :- Knowing the length of a vector and its angle in any two of three orthogonal planes uniquely

defines its relative position in a three-dimensional space. These are really just the familiar direction

cosines of trignometry.

The limb positions can now be obtained by applying the above mathematical solution and considering

each skeleton limb to be a three-dimensional vector. The lengths of all skeleton line segments are

shown in Figure 6.3 and the ,v and y coordinates can be obtained from the location of the basic sign in

relation to the pivot point of the limb. In addition, the basic sign used for the body part extremity

indicates whether the calculated z coordinate is negative, positive or zero. When the basic sign is a

vertical stroke {in front), the extremity is in front of the frontal planes, and this implies that the

calculated z-coordinate must be greater than that of the frontal plane. Similarly, when the basic sign

used is a dot {behind), the calculated z-coordinate must be less than that of the frontal plane. Finally

if the basic sign is a horizontal stroke, the calculated z-coordinate must be the same as that of the

frontal plane. Benesh symbols provide only an approximation to the projection of each body part. If

the projection points were really precise, a z-coordinate equal to that of the frontal plane would be

apparent by the length of the projection being equal to the length of the limb.

The solution given above is very simple, but as pointed by Mendo, there are cases where know

ing the projection location on the stave and the length still leaves two possible positions [Mendo 75].

The ambiguity is in the notation, rather than the mathematical solution. Figure 6.4 illustrates this

ambiguity using an upper body limb. To remove this ambiguity the convention followed is that the

basic signs mark either the only possible body part position or the one furthest away from the body.

A new sign has been introduced to cover these situations. It is an open dot as shown below:

^ position closest to the frontal plane which is between the
^ frontal plane and the furthest possible position.

The ambiguity mentioned above arises only in the presence of bent body limbs. Therefore, the new

sign is always used in conjunction with the bend signs, and the basic sign used for the bend determines

whether the projection point indicated by the new sign is in front of or behind the frontal plane.

- 66 -

Figure 6.3. Measure of average men and women [Dreyfuss 59].

-positions defined by the same symbol

Figure 6.4. Ambiguity in extremity positioning.

- 67 -

The main body part angles are directly defined by the symbols used as illustrated in Figure 6.5.

In fact, no verification is necessary for their position because the symbol construction process is

constrained to provide only possible positions.

intersection point indicates

Figure 6.5. Main body symbol.

Knowing the angles am, f}m, y m for the main body and a/, /5/, y / for each body limb, we can

construct the complete static body posture in three-dimensional space. To interpret and verify

Benesh Movement Notation, we need to extract this angular information from the notation.

In the Benesh stave, all five lines and the two leger lines are equidistant and intersect the body

at specific points as shown in Figure 3.2. However, human engineering data charts [Dreyfuss 59]

show that the distances between the five intersection points of the stave lines with the human body are

not equal. Figure 6.3, adopted from [Dreyfuss 59], gives body measurements for an average man and

woman. It shows the exact intersections of the stave lines with the body. Therefore the first step in

extracting three-dimensional information from a Benesh score is to convert all the data to a normalized

stave with proportions based on the measures shown in Figure 6.3. This enables us to verify the posi

tions of the symbols with respect to the stave lines. The angular information can then be extracted

from the normalized stave and compared against anatomical data such as that in [Heck 65] to verify

the scored position.

The verification scheme described above can only verify individual body part positions. The

movement of a particular body part also has a constraining effect on the possible movements of all

other remaining parts in order to maintain overall balance. Therefore, to truly verify a posture, the

body model must take into account the centre of gravity. One such model is described in [Hanavan

66].

-68 -

Another problem in verification that cannot be detected by the model described above or by

calculating the centre of gravity is the collision between body parts. With a stick-figure model, this

collision detection amounts to determining intersections of the underlying line segments in three-

dimensions of space. However, collision detection with solid models is more complicated. One

approach is to divide the body parts into volumetric objects. Now the collision problem can be re

duced to finding the volumetric intersection between all these objects. If the result of such an

intersection is null, then there are no collisions. If there is a collision then we know the body parts

involved in this collision. Since the geometric body representation can be very complex, finding all

intersections could be very time consuming. One possible strategy is to use two representations of the

body parts. For example, a crude approximation by bounding boxes (see Figure 6.6) and an accurate

representation with a larger number of more complex solids. Initially we calculate the intersection

using the crude representation. If a collision exists using this representation, then we perform the

more accurate second level of intersection calculation only for those parts which were involved in a

collision.

Another aspect of this problem is collision between dancers. In this case a single bounding box

for each dancer could be used as a very rough approximation to determine any pairs of dancers which

might potentially collide. Again more detailed calculations would only have to be performed on crit

ical pairs.

Figure 6.6. Human body representations using solids.

- 6 9 -

Any complete verification requires a final visual check of the actual notated movement. Each

frame in Benesh Movement Notation defines what is known to film animators as a key-frame. An

animation system with a suitable interpolation algorithm could be used to calculate the intermediate

positions between Benesh frames. This would enable us to verify movements by producing a stick

figure animation from the sequence of Benesh frames and the intermediate frames [Calvert 82a],

Such interpolation techniques for generating smooth animated motion are discussed in [Kochanek 82].

The body models discussed for movement verification can also be used for translating movement

scores between various notation systems. For example, the complete three dimensional body infor

mation calculated from the Benesh score using the skeleton model can be used as a basis for this trans

lation. Similar information is collected by other systems based on Labanotation and the reverse map

ping from body information into this notation also exists [Calvert 82a].

6.3. Hard Copy Facilities

Once the score has been created, modified and verified it is ready for printing. The printed copy

can then be preserved in a library of scores for later recreation. The reason for maintaining a library

of hard copy scores is purely historical. More compact methods of storage are available such as

micro-film. In fact, a score can be stored in its digital form and printed only when necessary. The

printed score can be used for reference during rehearsals or can be distributed to dancers for learning

their individual parts, similar to a script for actors. The final goal of any notation editor is to produce

typeset copies of the score suitable for reproduction. Since a Benesh score consists of a limited set of

symbols, it is possible to define a specialized Benesh type font. Several manufacturers of

phototypesetting equipment allow the incorporation of such user-defined fonts into their system.

6.4. Improvements to the User Interface

A major improvement in the user interface would be the display of a human figure which actually

assumed the notated positions. The figure does not have to be very realistic; a stick figure would be

sufficient for most purposes [Calvert 82]. This figure could appear in a window on the screen

adjacent to the working frame. As the body position is being notated the corresponding body parts of

the figure would move accordingly. Conversely, the user could move any parts of the stick figure

causing the appropriate Benesh symbol to be positioned in the working frame. Such a scheme might

require three-dimensional cues such as perspective and hidden line removal. Haloing techniques

might be sufficient for showing hidden lines [Beatty 81; Appel 79]. However, the user must be able

to change the viewpoint and rotate the stick figure.

- 70-

Another area for further improvement is the static menu display. Currently the menu displays

a limited number of options. As new functions are implemented to improve the system’s editing

capabilities, new options must be added to the menu. The upper limit for the total number of items

that should be displayed simultaneously in a menu depends on the display techniques used. One

approach to expand this limit is to use cyclical menus with a view window which displays a section of

the menu as shown in Figure 6.7. The items within the menu could be logically grouped as explained

in Chapter 5. The number of items within a group should be restricted to about seven [Miller 56].

Menu items within the view window would be visible at a given time. However, the remaining items

could be displayed by scrolling the window. A slider provided for this purpose is shown in Figure 6.7.

The scrolling speed could be adjusted using the slider provided on the side of window and the user

could freeze the window display when the required item is displayed. It is important not to simply

freeze the window display immediately, but to check the current position and display the group con

taining the maximum number of items displayed when scrolling was stopped. If it takes too long for

an item to cycle back to the view window, this could cause user frustration. For this reason the total

number of items in the circular list should be limited to perhaps three times the number of items that

can be displayed in the window.

Figure 6.7. Scrolling menu.

- 71 -

The editor uses a four button puck as the primary input device as shown in Figure 5.5. Each

button has been colour coded for easy differentiation. However, the user normally doesn’t look at

these buttons, but uses tactile memory to locate them. It has been observed throughout the prototyp

ing and testing phases of the system that users consistently have trouble selecting the appropriate but

ton for all actions other than the do function (yellow button). The colour coding is obviously of no

help. A suitable lexical feedback would be helpful but it has other drawbacks as described in

Chapter 5. These observations suggest the use of a single button for all functions. This can be

achieved by turning the puck button display described in Section 5.2.3 into a pickable menu. Now

either a stylus or a puck can be used, making the input function less device dependent.

Implementing the ideas discussed in this chapter would be a considerable amount of work, but

the resulting system would very likely save a considerable amount of the choreologist’s time.

7. CONCLUSIONS

"It could be one o f the most exciting intellectual develop
ments o f our time; for the language o f creative thought in every
domain is notation and the invention o f a new notation is indeed
the discovery o f a new creative tool "

- J. Benesh

The editor described in this thesis is designed to facilitate the learning, teaching, and use of the

Benesh Movement Notation. The particular value of such a system lies in its ability to edit any frame

or set of frames as often as necessary and to obtain a fair copy of the score after each editing cycle.

Computer scientists have long recognized the need for high level languages to model the

abstraction of various concepts without having to be concerned with low level details. The last decade

has witnessed the emergence of many high level programming languages. Benesh Movement Nota

tion is a high level language that models our abstraction of human movement. It captures the mode,

quality, and rhythm of movements at a fairly high level without dealing with the detailed bio

mechanical processes involved. However, there are other languages such as Labanotation [Hutchin

son 77] and Eshkol Wachman notation [Eshkol 75] that provide more detailed information on move

ment. Many of the techniques developed in the Benesh editor would be equally applicable to these

other notation systems.

Ronald Baecker and William Reeves have developed p-curves and moving points to define

smooth movements in computer animation [Baecker 69; Reeves 81]. The concepts behind these

developments are similar to the idea of movement lines and effort in Benesh notation. With some

modifications, Benesh Movement Notation could be used to define the movement of animated figures.

In addition, it could also be used to specify and verify robotic movements. Thus, while Benesh Move

ment Notation was designed purely to record ballet movements, it could also provide a high level tool

for defining other types of movements such as in animation and robotics. To be useful in these appli

cations there must exist editing tools at least as powerful as those universally in use for text processing.

The Benesh editor is a first step toward this reality.

- 72 -

References

[Anderson 79]

[Appel 79]

[Archer 75]

[Arnheim 69]

[Badler 78a]

[Badler 78b]

[Badler 79a]

[Badler 79b]

[Badler 80]

[Baecker 69]

[Barenholtz 77]

[Beatty 81]

[Benesh 56]

[Benesh 74]

Anderson, J., “Preserving Dances in Print,” New York Times, Sunday, May
6, 1979.

Appel, A., F.J. Rohlf, and A.J. Stein, “The Haloed Effect for Hidden Line
Elimination,” Computer Graphics, 13(2), pp. 151-157, August 1979.

Archer, L. B., A Study o f Computer Choreography, Royal College of Arts,
London, 1975.

Arnheim, R., Visual Thinking, University of California Press, Berkeley,
1969.

Badler, N.I., J. O’Rourke, and H. Toltzis, “A Human Body Modelling
System for Motion Studies,” Movement Project Report No. 13, Department
of Computer and Information Science, University of Pennsylvania,
Philadelphia, July 1978.

Badler, N.I., J. O’Rourke, S. W. Smoliar, and L. Weber, “The Simulation of
Human Movement by Computer,” Movement Project Report No. 14,
Department of Computer and Information Science, University of
Pennsylvania, Philadelphia, July 1978.

Badler, N.I., J. O’Rourke, and H. Toltzis, “A Spherical Representation of a
Human Body for Visualizing Movement,” Proceedings IEEE 67(10), pp.
1397-1403, October 1979.

Badler, N.I. and S.W. Smoliar, “Digital Representation of Human Move
ment,” Computing Surveys 11(1), pp. 19-38, March 1979.

Badler, N.I., J. O’Rourke, and B. Kaufman, “Special Problems in Human
Movement Simulation,” Computer Graphics (Proceedings Siggraph ’80)
14(3), pp. 189-197, July 1980.

Baecker, R.M., “Picture-Driven Animation,” Proceedings AFIPS Spring
Joint Computer Conference 34, AFIPS Press, Montvale, N.J., pp. 273-288,
1969.

Barenholtz, J., Z. Wolofsky, I. Ganapathy, T.W. Calvert, and P. O’Hara,
“Computer Interpretation of Dance Notation,” pp. 235-240 in Computing in
the Humanities, Proceedings o f the Third International Conference on
Computing in the Humanities, eds. Serge Lusignan and John S. North, The
University of Waterloo Press, Waterloo, Canada, August 1977.

Beatty, J.C., K.S. Booth, and L.H. Matthies, “Revisting Watkins Algo
rithm,” Proceedings 7th Canadian Man-Machine Communications Confer
ence, Waterloo, Ontario, pp. 359-370, June 1981.

Benesh, R. and J. Benesh, An Introduction to Benesh Dance Notation, A.
and C. Black, London, 1956.

Benesh, R. and J. McGuiness, “Benesh Movement Notation and Medicine,”
Physiotherapy 60(6), pp. 176-178, 1974.

- 7 3 -

- 7 4 -

[Benesh 77] Benesh, R. and J. Benesh, Reading Dance, The Birth o f Choreology,
Souvenir Press (E&A) Ltd., 1977.

[Birdwhistell 70] Birdwhistell, R.L., Kinesics and Context: Essays on Body Motion
Communications, University of Pennsylvania Press, Philadelphia, 1970.

[Blau 80] Blau, R. and J. Joyce, “Ex Reference Manual,” UNIX Programmer’s
Manual, Seventh Edition (VAX II Version) 2c, Computing Services, Univer
sity of California, Berkeley, August 1980.

[Bliss 65] Bliss, C.K., Semantography: Bliss Symbolics, Semantography Publications,
1965.

[Booth 82] Booth, K.S. and S.A. MacKay, “Techniques for Frame Buffer Animation,”
Proceedings Graphics Interface '82, NCGA, Toronto, pp. 213-220, 1982.

[Bourne 79] Bourne, L.E. and B.R. Ekstrand, Psychology: Its Principles and Meanings,
Holt, Rinehart and Winston, 1979. (3rd edition)

[Boysen 77] Boysen, J.P., P.R. Francis, and R.A. Thomas, “Interactive Computer Graph
ics in the Study of Human Body Planar Motion under Free Fall Conditions,”
J. Biomechanics 10(11/12), Pergamon- Press, Great Britain, pp. 783-787,
1977.

[Breslin 82] Breslin, P., “A Powerful Interface to a High Performance Raster Graphics
System,” M.Math. Thesis, Department of Computer Science, University of
Waterloo, 1982.

[Brown 82] Brown, J.W., “Controlling the Complexity of Menu Networks,” Communi
cations o f the ACM 25(7), pp. 412-428, July 1982.

[Brown 76a] Brown, M.D. and S.W. Smoliar, “A Graphics Editor for Labanotation,”
Computer Graphics 10(2), pp. 60-65, Summer 1976.

[Brown 76b] Brown, M.D., “A Graphic Editor for Labanotation,” M.Sc. Thesis, Univer
sity of Pennsylvania, 1976.

[Brown 78] Brown, M.D. and S.W. Smoliar, “Preparing Dance Notation Scores with a
Computer,” Computers and Graphics 3(1), pp. 1-7, 1978.

[Burtnyk 76] Burtnyk, N. and M. Wein, “Interactive Skeleton Techniques for Enhancing
Motion Dynamics in Key Frame Animation,” Communications o f the ACM
19(10), pp. 564-569, October 1976.

[Buxton 78] Buxton, W. “Design Issues in the Foundation of a Computer-Based Tool
for Music Composition,” Technical Report CSRG-97, Computer Systems
Research Group, University of Toronto, 1978.

[Calvert 68] Calvert, T.W., “Projections of Multidimensional Data for Use in Man-
Computer Graphics,” FJCC, Thompson Books, Washington, D.C., pp. 227-
231, 1968.

[Calvert 78] Calvert, T.W. and J. Chapman, “Notation of Movement with Computer
Assistance,” Proceedings o f the ACM Annual Conference 2, pp. 731-736,
1978.

[Calvert 80] Calvert, T.W., J. Chapman, and A. Patla, “The Integration of Subjective
and Objective Data in the Animation of Human Movement,” Computer
Graphics (Proceedings Siggraph ’80) 14(3), pp. 198-203, July 1980.

[Calvert 82a] Calvert, T.W., J. Chapman, and A. Patla, “Specifying and Controlling Hu
man Movement Sequences: The Kinematic Simulation of Human Move
ment,” IEEE Computer Graphics and Applications, 1982. (to appear in
November)

-75 -

[Calvert 82b] Calvert, T.W., J. Chapman, and A. Patla, “The Simulation of Human Move
ment,” Proceedings Graphics interface ’82, NCGA, Toronto, pp. 227-234,
1982.

[Calvert 82c] Calvert, T.W., A. Patla, and J. Chapman, “The Clinical Use of a Computer
Assisted Movement Notation System,” Physiotherapy Canada, 1982.
(accepted for publication)

[Cappozzo 76] Cappozzo, A., F. Figura, M. Marchetti, and A. Pedotti, “The Interplay of
Muscular and External Forces in Human Ambulation,” Journal o f
Biomechanics 9(1), pp. 35-43, 1976.

[Cargill 81] Cargill, T.A., “Full-Screen Editing in a Hostile Environment,” Software
Practice & Experience 11(9), pp. 975-981, September 1981.

[Causley 67] Causley, M., An Introduction to Benesh Movement Notation, Man Parrish,
London, 1967.

[Cotton 68]

[Curl 67]

Cotton, A.V., “Notation,” The Dancing Times, pp. 636, September 1968.

Curl, G.F., “An Enquiry into Movement Notation (Part I),” Laban and
Benesh Movement Notations, Chelsea College of Physical Education, 1967.

[Davis 72] Davis, M., Understanding Body Movement: An Annotated Bibliography,
Arno Press, New York, 1972.

[Davis 75] Davis, M., Towards Understanding the Intrinsic in Body Movement, Arno
Press, New York, 1975.

[Dell 70] Dell, C., A Primer for Movement Description, Dance Notation Bureau, New
York, 1970.

[Dell 77] Dell, C. and A. Crow, Space Harmony, Dance Notation Bureau, New York,
1977. (revised by Irmgard Bartenieff)

[Dreyfuss 59] Dreyfuss, H., The Measure o f Man: Human Factors in Design, Whitney
Library of Design, New York, 1959.

[Dreyfuss 72] Dreyfuss, H., Symbol Sourcebook, McGraw-Hill Book Company, New
York, 1972.

[Embley 81] Embley, D.W. and G. Nagy, “Behavioral Aspects of Text Editors,”
Computing Surveys 13(1), pp. 33-70, March 1981.

[Encyc. Brit. 74]

[Eshkol 58]

Encyclopaedia Britannica, Helen Hemingtonway Benton, Chicago, 1974.

Eshkol, N. and A. Wachman, Movement Notation, Weidenfeld and Nichol
son, London, 1958.

[Eshkol 70] Eshkol, N., P. Melvin, H.V. Foerster, and A. Wachman, “Notation of Move
ment,” Report BCL 10.0, Department of Electrical Engineering, University
of Illinois, Urbana, Illinois, 1970.

[Eshkol 75] Eshkol, N., Right Angled Curves, Movement Notation Society, 1975. (for
the Research Centre for Movement Notation, Faculty of Arts, Tel Aviv
University, Israel)

[Fedak 78] Fedak, J. F., “An Initial Design Specification of a Syntactic Analyzer for
Labanotation,” Movement Project Report No. 10, Department of Computer
and Information Science, University of Pennsylvania, Philadelphia, January
1978.

[Fetter 74] Fetter, W., “A Human Figure Computer Graphics Development for Multi
ple Applications,” Proceedings Eurocomp Congress, Online, Brunei, Eng
land, pp. 476-488, May 1974.

- 76-

[Finseth 80] Finseth, C. A., “Theory and Practice of Text Editors or A Cookbook for An
Emacs,” MIT/LCS/TM-165, Laboratory for Computer Science,
Massachusetts Institute of Technology, Cambridge, Massachusetts 02139,
May 1980.

[Finseth 82] Finseth, C.A., “Managing Words: What Capabilities should You have with a
Text Editor?,” Byte 7(4), pp. 302-310, April 1982.

[Foley 74] Foley, J.D. and V.L. Wallace, “The Art of Natural Graphic Man-Machine
Conversation,” Proceedings o f the IEEE, April 1974.

[Foley 82a] Foley, J.D. and A. Van Dam, Fundamentals o f Interactive Computer
Graphics, Addison-Wesley Publications, Massachusetts, 1982.

[Foley 82b] Foley, J.D., “The Design and Implementation of User-Interface Interfaces,”
Siggraph '82 Tutorial No. 7, ACM, July 1982.

[Fraser 80] Fraser, C.W., “Syntax-Directed Editing of General Data Structures,” TR
80-16, Department of Computer Science, The University of Arizona, Tuc
son, Arizona 85721, June 1980.

[Gardner 80] Gardner, J.A., “The FRED Text Editor: Reference Manual,” Computer Sci
ence Department, University of Waterloo, 1980. (Online documentation)

[Grieve 76] Grieve, D.W., “Electromyography,” pp. 109-149 in Techniques for the
Analysis o f Human Movement, ed. D.W. Grieve, Princeton Book Company,
Princeton, N.J., 1976.

[Goldberg 76] Goldberg, R., Performance: The Art o f Notation, Studio International, pp.
54-58, July/August, 1976.

[Gombrich 72] Gombrich, E.H., “The Visual Image,” Scientific American 227(3), pp. 82-
96, September 1972.

[Gorsky 77] Gorsky, A., Two Essays on Stepanov Dance Notation, Cord Special Publi
cation, 1977. (Translated from Russian by Roland John Wiley)

[Grater 82] Grater, A., private correspondence, Institute of Choreology, London, Eng
land, 1982.

[Green 68] Green, F., “Benesh Movement Notation,” The Dancing Times, pp. 479-483,
June 1968.

[Hackathorn 77] Hackathorn, R.J., “AN1MA II: A 3-D Color Animation System,” Computer
Graphics (Siggraph ’77) 11(2), pp. 54-64, Summer 1977.

[Hall 69]

[Hail 64]

Hall, E.T., The Hidden Dimension, Anchor Press, New York, 1969.

Hall, F., “Dance Notation and Choreology,” British Journal o f Aesthetics
4(1), pp. 58-66, January 1964.

[Hall 65] Hall, F., “An Alphabet of Movement,” New Scientist 28(467), pp. 285-288,
October 28, 1965.

[Hall 66] Hall, F., “Benesh Movement Notation and Choreology,” Dance Scope, New
York, Fall 1966.

[Hall 67a] Hall, F., “Benesh Notation and Ethnochoreology,” Ethnomusicology 11(2),
pp. 188-198, May 1967.

[Hall 67b]

[Hanavan 66]

Hall, F., “Benesh Movement Notation Today,” Ballet Today, Febuary 1967.

Hanavan, E.P., “A Personalized Mathematical Model of the Human Body,”
Journal o f Spacecrafts and Rockets 3(3), pp. 446-448, March 19, 1966.

- 77 -

[Hansen 71] Hansen, W., “User Engineering Principles for Interactive Systems,”
Proceedings 1971 Fall Joint Computer Conference, pp. 523-532, 1971.

[Heck 65] Heck, C.V., I.E. Hendryson, and C.R. Rowe, Joint Motion - Method of
Measuring and Recording, American Academy of Orthopedic Surgeons,
1965.

[Herbison-Evans 74] Herbison-Evans, D., “Animated Cartoons by Computer using Ellipsoids,”
Proceedings 6th Australian Computer Conference, pp. 811-823, 1974.

[Herbison-Evans 78] Herbison-Evans, D., “NUDES 2: A Numeric Utility Displaying Ellipsoid
Solids, version 2,” Computer Graphics 12(3), pp. 354-356, Aug. 1978.

[Herbison-Evans 79a] Herbison-Evans, D., “A Human Movement Language for Computer Anima
tion,” pp. 117-128 in Language Design and Programming Methodology, ed.
Jeffrey M. Tobias, September 1979. (Proceedings of the Symposium on
Language Design and Programming Methodology, Sydney, Australia)

[Herbison-Evans 79b] Herbison-Evans, D., “Algorithms for Real Time Animation of Drawings of
the Human Figure with Hidden Lines Omitted,” Technical Report 148,
Basser Department of Computer Science, Sydney University, 1979.

[Hoff 77] Hoff, F., “Dance Preserved at Motsuji,” Dance Research Journal 9(2), pp.
1-4, 1977.

[Hornbuckle 67] Hornbuckle, G.D., “The Computer Graphics/User Interface,” IEEE Trans.
HFE 8(1), pp. 17-20, March 1967.

[Huggins 69] Huggins, W.H. and D.R. Entwisle, “ Iconic Communications,” IEEE
Transactions on Education 14(4), pp. 158-163, 1969.

[Huggins 74] Huggins, W.H. and D.R. Entwisle, Iconic Communication: An Annotated
Bibliography, John Hopkins Press, Baltimore, 1974.

[Hutchinson 67] Hutchinson, A, “A Survey of Systems of Dance Notation (Part II),” Laban
Art o f Movement Guild Magazine 20, pp. 25-38, May 1967.

[Hutchinson 64] Hutchinson, A., “Notation: A Means of International Communication in
Movement and Dance,” Impulse, pp. 82-83, 1963/64.

[Hutchinson 68a] Hutchinson, A., “Experiences of Dance Notations,” The Dancing Times, pp.
308-304, March 1968.

[Hutchinson 68b] Hutchinson, A., “Some Questions about Accuracy,” The Dancing Times,
pp. 425-429, May 1968.

[Hutchinson 68c] Hutchinson, A., “A Look at the Benesh System,” The Dancing Times, pp.
364-365, April 1968.

[Hutchinson 70] Hutchinson, A., “Dance Notation: A Controversy,” Dance Scope 5(1), pp.
39-55, Fall 1970.

[Hutchinson 76] Hutchinson, A., Chronological List o f Dance Notation Systems, 1976.
(unpublished work)

[Hutchinson 77] Hutchinson, A., Labanotation, New York: Theatre Arts, 1977. (3rd Edi
tion)

[IBM 70] “IBM Virtual Machine/System Product: System Product Editor Command
and Macro Reference,” Program Number 5664-167, IBM, 1970.

[Jay 57]

[Johnson 70]

Jay, L., “A Stick-Man Notation,” Dance Observer, pp. 7-8, January 1957.

Johnson, A.R., “Dialogue and the Exploration of Context: Properties of An
Adequate Interface,” presented at Fourth Annual International Symposium
o f the American Society o f Cybernetics, Washington, D.C., 1970.

- 78-

[Jong 82] Jong, S., “Designing a Text Editor? The User Comes First,” Byte 7(4), pp.
284-300, April 1982.

[Joy 80] Joy, W., “An Introduction to Display Editing with Vi,” UNIX
Programmer’s Manual, Seventh Edition (VAX II Version) 2c, Computer
Science Division, Department of Electrical Engineering and Computer, Sci
ence, University of Berkeley, September 16, 1980.

[Kaufman 79] Kaufman, B., “The Simulation of Human Locomotion,” MSE Thesis,
Department of Computer and Information Science, University of
Pennsylvania, Philadelphia, June 1979.

[Kember 76] Kember, P.A., “The Benesh Movement Notation Used to Study Sitting
Behaviour,” Applied Ergonomics 7(3), pp. 133-136, 1976.

[Kernighan 78a] Kernighan, B.W., “A Tutorial Introduction to the UNIX Text Editor,”
UNIX Programmer’s Manual. Version 7, Bell Laboratories, Murray Hill,
New Jersey, September 1978.

[Kernighan 78b] Kernighan, B.W., “Advanced Editing on UNIX,” UNIX Programmer’s
Manual, Version 7, Bell Laboratories, Murray Hill, New Jersey, August
1978.

[Kitching 76] Kitching, A. and C. Emmett, “The Antics Computer System,” Computer
Graphics 10(4), pp. 13-17, Winter 1976.

[Kochanek 82] Kochanek, D.H.U., “A Computer System for Smooth Key Frame Anima
tion,” M.Math. Thesis, Department of Computer Science, University of
Waterloo, 1982.

[Kolers 69] Kolers, P.A., “Some Formal Characteristics of Pictograms,” American
Scientist 57(3), pp. 348-363, 1969.

[Laban 66]

[Laban 75]

Laban, R., Choreutics, Macdonald & Evans, London, 1966.

Laban, R., Laban’s Principles o f Dance and Movement Notation,
Macdonald & Evans Ltd., London, 1975. (2nd Edition)

[Lansdown 77] Lansdown, J., “Computer Choreography and Video,” pp. 241-252 in
Computing in the Humanities, Proceedings o f the Third International
Conference on Computing in the Humanities, eds. Serge Lusignan and John
S. North, The University of Waterloo Press, Waterloo, Canada, August
1977.

[Lansdown 78] Lansdown, J., “The Computer in Choreography,” IEEE Computer 11(8), pp.
19-30, August 1978.

[Ledgard 80] Ledgard, H.F., J. A. Whiteside, W. Seymour, and A. Singer, “An Experi
ment on Human Engineering on Interactive Software,” IEEE Trans, on
Software Engineering SE-6(6), November 1980.

[MacKay 82a] MacKay, S.A., R.E. Sayre, and M.J. Potel, “3D Galatea: Entry of Three-
Dimensional Moving Points from Multiple Perspective Views,” Computer
Graphics (Siggraph ’82) 16(3), July 1982.

[MacKay 82b] MacKay, S.A., “Techniques for Frame Buffer Animation,” M.Math. essay,
Department of Computer Science, University of Waterloo, 1982.

[Martin 73] Martin, J., Design o f Man-Machine Dialogues, Englewood Cliffs, N.J.,
1973.

[Massine 76] Massine, L., Massine on Choreography, Faber & Faber, London, 1976.

-79 - .

[McGuinness-Scott 82]

[McLaughlin 76]

[McNair 79]

[McNair 80]

[Mead 68]

[Mendo 75]

[Menosky 82]

[Mertens 81]

[Michlin 75]

[Miles 76]

[Miller 56]

[Mills 81]

[Mills 82]

[Modley 47]

[Moran 81]

[Morrice 67]

[Morris 28]

[Mossford 67]

[Newman 79]

[Nickerson 81]

McGuinness-Scott, J., Benesh Movement Notation: An Introduction to
Recording Clinical Data, Institute of Choreology, London, England, 1982.

McLaughlin, P., “Balanchine Forever,” Pennsylvania Gazzette, pp. 25-33,
October 1976.

McNair, B., “A Language for Notating Human Movement,” M.Sc. Thesis,
Basser Department of Computer Science, Sydney University, 1979.

McNair, B., D. Herbison-Evans, and N. Neilands, “Computer Assisted
Choreography Teaching,” Proceedings o f the 11th Annual Australian
Colleges o f Advanced Education, pp. 282-287, May 1980.

Mead, M. and R. Modley, “Communication Among All People, Every
where,” Natural History 77(7), pp. 56-63, 1968.

Mendo, G. and L. B. Archer, “Computer-Choreology Project I - Specifica
tions for the Character Recognition and Syntax Analysis of Benesh Move
ment Notation,” in A Study o f Computer Choreography, Institute of
Choreology, London, 1975.

Menosky, J., “Video Graphics & Grand Jetes,” Science, pp. 25-32, May
1982.
Mertens, S., “Taking Note of Dance,” Vancouver Sun, September 28, 1981.

Michlin, J., M.E. Figliuzzi, and B.R. Fowler, “A User’s Guide to TSO-
QED,” Bell Laboratories, Feb. 1975.

Miles, A., Labanotation for Ballet Dancers, Dance Notation Bureau, New
York, 1976.

Miller, G., “The Magical Number Seven, Plus or Minus Two: Some Limits
on Our Capacity for Processing Information,” Psychology Review 63(2), pp.
81-97, March 1956.

Mills, M.I., Telidon Behavioural Research 3: A Study o f the Human
Response to Pictorial Representations on Telidon, Department of
Communications, Ottawa, 1981.

Mills, M.I., “Cognitive Schemata and the Design of Graphics Displays,”
Proceedings Graphics Interface '82, NCGA, Toronto, pp. 3-12, 1982.

Modley, R., Piclograms and Graphs, Harper and Brothers, 1947.

Moran, T.P., “An Applied Psychology of the User,” Computing Surveys
13(1), pp. 1-11, March 1981.
Morrice, N., “Advantages of Benesh Movement Notation to a Choreogra
pher,” Ballet Today, January-Febuary 1967.

Morris, M., The Notation o f Movement, Kegan Paul, Trench, Trubner &
Co. Ltd., London, 1928.

Mossford, L., “Advantages of Benesh Movement Notation to a Ballet
Company,” Ballet Today, January-Febuary 1967.

Newman, W.M. and R.F. Sproull, Principles o f Interactive Computer
Graphics, McGraw-Hill Book Company, 1979. (2nd edition)

Nickerson, R.S., “Why Interactive Computer Systems are Sometimes not
Used by People Who might Benefit from Them,” Int. J. Man-Machine
Studies 15(4), pp. 469-483, 1981.

- 80-

[Noll 67] Noll, A.M., “Choreography and Computers,” Dance Magazine, pp. 43-46 &
81-82, January 1967.

[O’Rourke 78] O’Rourke, J., “Three-Dimensional Motion of a Three Link System,” Techn
ical Report, Department of Computer and Information Science, University
of Pennsylvania, Philadelphia, June 1978.

[Officer 77] Officer, J.M., “Computerization of Human Movement - A Tool for
Analysis,” Proc: The International Congress o f Physical Activity Sciences,
Quebec City, 1977.

[Parent 77] Parent, R.E., “A System for Sculpting 3-D Data,” Computer Graphics
11(2), pp. 138-147, Summer 1977.

[Parker 82] Parker, M., Benesh Movement Notation Encyclopaedia, Institute of
Choreology, London, England, 1982.

[Pettis 78] Pettis, K., “The Screen Editor K,” Computer Science Department, Univer
sity of Arizona, 1978. (unpublished manuscript)

[Pierrynowski 80] Pierrynowski, M.R., “Three-Dimensional Filming Using the Direct Linear
Transformation,” Department of Kinesiology, Simon Fraser University,
1980. (Unpublished work)

[Pierrynowski 82] Pierrynowski, M.R., “A Physiological Model for the Solution of Individual
Muscle Forces during Normal Human Walking,” Ph.D. Thesis, Department
of Kinesiology, Simon Fraser University, July 1982.

[Potter 75a] Potter, T.E., “Three-Dimensional Human Display Model for Two-
Dimensional Computer Graphics,” Report MIE-006, Department of
Mechanical and Industrial Engineering, Clarkson College of, Technology,
Potsdam, N. Y., 1975.

[Potter 75b] Potter, T.E. and K.D. Willmert, “Three-Dimensional Human Display
Model,” Computer Graphics 9(1), pp. 102-110, Spring 1975.

[Preston-Dunlop 69a] Preston-Dunlop, V., “A Notation System for Recording Observable Mo
tion,” International Journal o f Man-Machine Studies 1(4), pp. 361-386,
1969.

[Preston-Dunlop 69b] Preston-Dunlop, V., Practical Kinetography Laban, MacDonald & Evans
Ltd., London, 1969.

[Reeves 81] Reeves W., “Inbetweening for Computer Animation Utilizing Moving Point
Constraints,” Computer Graphics (Siggraph’81) 15(3), pp. 263-269, August
1981.

[Reichardt 68] Reichardt, J., “Computer Programmed Choreography,” in Cybernetic
Serendipity, ed. J. Reichardt, Studio International, London and New York,
1968.

[Rouse 81] Rouse, W. B., “Human-Computer Interaction in the Control of Dynamic
Systems,” Computing Surveys 13(1), pp. 71-99, March 1981.

[Ryman 81] Ryman, R., A. Ryman, and R. Hughes, “The Structure of Benesh Move
ment Notation,” Dance Group, University of Waterloo, Canada, 1981.
(unpublished resource material for computer editing project)

[Ryman 82a] Ryman, R., B. Singh, J.C. Beatty, and K.S. Booth, “A Computerized Editor
for Benesh Movement Notation,” June 1982. (Presented at the 10th Annu
al Dance in Canada Conference, Ottawa)

- 81 -

[Ryman 82b]

[Savage 77a]

[Savage 77b]

[Savage 79]

[Sealey 81]

[Seybold 81a]

[Seybold 81b]

[Shoup 79]

[Smith 82]

[Smoliar 77]

[Smoliar 78]

[Smoliar 80]

[Spegel 75]

[Stepanov 59]

[Strauss 77]

[Teitelbaum 80]

[Tilbrook 76]

[Townsend 77]

Ryman, R. and A. Grater, Benesh Movement Notation: Elementary
Syllabus Ballet Application, Institute of Choreology, London, England,
1982.

Savage, G.J. and J. M. Officer, “CHOREO: An Interactive Computer
Model for Dance,” 5th Man-Computer Communications Conference,
Calgary, Academic Press Inc. (London) Limited, pp. 233-249, May 1977.

Savage, G.J. and J.M. Officer, “Interactive Computer Graphics Methods
for Choreography,” in Computing in the Humanities, Proceedings o f the
Third International Conference on Computing in the Humanities, The
University of Waterloo Press, Waterloo, Canada., August 1977.

Savage, G.J., J.M. Officer, and G. McDougall, “Computer Graphics Simu
lation of Body Movement Language,” Proceedings 6th Man-Computer
Communications Conference, pp. 209-217, 1979.

Sealey, D., “Computers and Labanotation,” Proceedings o f the Twelfth
Biennial Conference. Columbus, Ohio, International Council of Kinetogra-
phy Laban, pp. 126-127, August 1981.

Seybold, J., “The Xerox Star: A Professional Workstation,” The Seybold
Report on Word Processing 4(5), May 1981.

Seybold, J., “Xerox’s Star,” The Seybold Report 10(16), April 27, 1981.

Shoup, R.G., “Colour Table Animation,” Computer Graphics 13(2), pp. 8-
13, August 1979.

Smith, D.C., C. Irby, R. Kimball, and B. Verplank, “Designing the Star
User Interface,” Byte 7(4), pp. 242-282, April 1982.

Smoliar, S.W. and L. Weber, “Using the Computer for a Semantic
Representation of Labanotation,” pp. 253-261 in Computing in the
Humanities, Proceedings o f the Third International Conference on Comput
ing in the Humanities, eds. Serge Lusignan and John S. North, The Univer
sity of Waterloo Press, Waterloo, Canada, August 1977.

Smoliar, S.W., “A Lexical Analysis of Labanotation with an Associated
Data Structure,” Proceedings o f the ACM Annual Conference, pp. 727-730,
1978.

Smoliar, S.W., “Computers Helping Dance Notation Help the Dance: a Vi
sion,” National Computer Conferene, pp. 67-71, 1980.

Spegel, M., “Programming of Mechanism Motion,” Technical Report No.
CRL-43, Division of Applied Science, New York University, New York,
November 1975.

Stepanov, V.I., Alphabet o f Movements o f the Human Body, The Golden
Head Press, Cambridge, 1959.

Strauss, G.B., C. Wing, and L. Yuen-wah, “Translated Excerpts of Chinese
Dance Notation,” Dance Research Journal 9(2), pp. 6-11, 1977.

Teitelbaum, T. and T. Raps, “The Cornell Program Synthesizer: A Syntax-
Directed Programming Environment,” TR 80-421, Department of Computer
Science, Cornell University, Ithaca, New York 14853, May 1980.

Tilbrook, D., “A Newspaper Page Layout System,” M.Sc. Thesis, Depart
ment of Computer Science, University of Toronto, 1976.

Townsend, M.A., M. Izak, and R.W. Jackson, “Total Motion Knee
Goniometry,” J. Biomechanics 10(3), pp. 183-193, 1977.

- 82 -

[Trucco 81]

[Turnbaugh 70]

[Ubell 76]

[Walter 81]

[Weber 78]

[Willmert 75]

[Willmert 77]

[Withrow 70]

[Wolofsky 74]

[Zeltzer 82]

[Zorn 05]

Trucco, T., “Notating the Dance,” Ballet News 2(8), pp. 16-18 & 42-43,
Febuary 1981.

Turnbaugh, D.B., “Dance Notation: Potential and Problems,” Dance Scope
4(2), pp. 39-47, Spring 1970.

Ubell, E., “Dance Notation Steps into a New Era,” New York Times, Sec
tion 2, pp. 12-19, 24 October 1976.

Walter, T., “How Dance Classics are Preserved,” Saturday Review, pp. 60-
61, November 1981.

Weber, L., S.M. Smoliar, and N.I. Badler, “An Architecture for the Simu
lation of Human Movement,” Proceedings o f the ACM Annual Conference,
2, pp. 737-745, 1978.

Willmert, K.D. and T.E. Potter, “An Improved Human Display Model for
Occupant Crash Simulation Programs,” Computers & Graphics 2(2),
Pergamon Press, Great Britain, pp. 51-54, May 1975.

Willmert, K.D., “Occupant Model for Human Motion,” Computers &
Graphics 1(3), Pergamon Press, Great Britain, pp. 123-128, 1977.

Withrow, C., “A Dynamic Model for Computer-Aided Choreography,”
Technical Report UTEC-CSc-70-103, Department of Computer Science,
University of Utah, Salt Lake City, June 1970.

Wolofsky, Z., “Computer Interpretation of Selected Labanotation
Commands,” M.Sc. Thesis, Kinesiology Department, Simon Fraser Univer
sity, Burnaby, B.C., Canada, 1974.

Zeltzer, D., “Representation of Complex Animated Figures,” Proceedings
Graphics Interface '82, NCGA, Toronto, pp. 205-211, 1982.

Zorn, F.A., “Grammar of the Art of Dancing,” Franklin, New York, 1905.

Appendix A

List of known movement notation systems in
chronological order of their development [Hutchinson 76],

- 83 -

- 84-

Year Name Type of System Country
1588 Arbeau Letter France
Late 15 C. Cervera Abstract (letters) Spain
1650 Playford Words, floor plans England
1661 Carducci Words, pictures (horse ballets) Italy
1671 Beauchamp Track (unpublished) France
1700 Feuillet Track France
1751 Favier Abstract music France
1762 De La Cuisse Floor plans France
1768 Landrin Words, Floor plans France
1800 Despreaux Letters France
1831 Theleur Abstract England
1832 Biosca Floor plans Spain
1852 Saint-Leon Stick figure France
1855 Bournonville Words/signs Denmark
1855 Klemm Music notes Germany
1859 Adice Figure drawings France
1880 Manzotti Floor plans Italy
1885 Soret Line photographs Switzerland
1887 Zorn Stick figure Germany
1892 Stepanov Music notes Russia
1892 Poli Letters/numbers France
1892 Giraudet, A. Letters/numbers France
1911 Zoder Words (folk) Austria
1918 Nijinsky Music notes Russia
1919 Desmond Stick figure Germany
1923 Alexander Letters/signs U.S.A.
1926 Grimm-Reiter Abstract Germany
1927 Fischer-Klamt Abstract Germany
1927 Kool Stick figure, music, floor plans Holland
1927 Peters Diagrams/music France
1928 Laban Abstract Austria
1928 Parnac Stick figure France
1928 Morris Abstract England
1928 Sotonin Abstract Russia
1928 Wailes Abstract, pictorial England
1931 Conte Music notes France
1931 Meunier Word abbreviations, signs France
1932 Chiesa Music notes Italy
1934 Cross Letters, signs, numbers U.S.A.
1935 Zadra Abstract Italy
1939 Babitz Visual (stick figure) U.S.A.
1940 Korty Music, figures, signs Germany
1940 Ruskaja Abstract Italy
1940 Lissitzian Stick figure Russia
1940 Schillinger Abstract U.S.A.
1942 Craighead Stick figure U.S.A.
1945 Nikolais Music notes U.S.A.
1946 Saunders Words U.S.A.
1949 Humphery Stick figure U.S.A.
1946 Ivancan Music notes Yugoslavia
1950 Kurath Abstract U.S.A.
1950 Tsonev Bulgaria
1951 Afdnt Stick figure Germany
1952 Raisz Floor plans U.S.A.

1952
1954
1954
1955
1955
1955
1956
1957
1958
1959
1960
1960
1964
1965
1965
1968
1969
1971
1973
1973
1973
1973
1973
1974
1979

- 85 -

Birdwhistell Abstract U.S.A.
Bourgat Abstract France
Misslitz Stick figure Germany
Loring/Canna Abstract U.S.A.
Katzarova Abstract (folk) Bulgaria
Benesh Visual (Stick figure) England
Proca-Ciortea Letters/abstract Romania
Jay Stick figure U.S.A.
Eshkol / Wachmann Abstract/numbers Israel
Fee Abstract U.S.A.
Paige (Apegian) Abstract U.S.A.
Varkovitsky Abstract Russia
McCraw Music notes U.S.A.
Halprin Floor plans U.S.A.
Suna Abstract/figure Latvia
Blom Letters/signs Norway
Vasilescu/Tita Abstract/music Romania
Haralampiev Music notes Bulgaria
Bakka Abstract Norway
Pajtondziev Music notes Yugoslavia
Popescu-Judetz Letters/signs U.S.A.
Schwale-Brame Abstract U.S.A.
Sutton Stick figure U.S.A.
Fitz Abstract U.S.A.
Jorgensen Abstract Denmark

Appendix B

A sample Benesh score.

- 8 6 -

- 87 -

ß(u (ßeffo atu éûis
cßomatfb

tfflijfiu/ Ÿc/îai/qn>s/y>

Institute of Choreology
4 Margravine Gardens

Barons Court
London W6 8RH

- 88 -

LA BELLE AU B01S DORMANT ACT I I I
AURORA'S VARIATION

as remenbered by Nne. Clao Nordl
to whom I t was tau g h t In B erlin

by P ieobrajenske In 1B23.

Choreography! Petipa nuslci TchalkowBky

- 8 9 -

LA BELLE AU BO IS DORMANT «CT II!

AURORA'S VARIATION

. ' S 1 = F F
p — 1—

L = » ------------^ — ^ = J
k t r

----------------------- J — ------U _ i 1 •* *

Bsnssh ftovsnant Notation © Rudolf Bsnssh London 1855.
Tha Bsnssh Instituts of Chorsology Ltd.© London 1882.

Appendix C

Finite state diagrams of the editor,
showing the state transitions for each command as actually implemented.

- 9 0 -

-91 -

Figure C.l. State diagram of the editor.

-92 -

Figure C.2. QUIT command.

U
N

D
O

-93 -

Figure C.3. ADD_FRAME command.

U
N

D
O

- 9 4 -

Figure C.4. EDIT frame command.

U
N

D
O

-95 -

Figure C.5. DELETE frames command

*96 -

Figure C.6. MOVE frames command.

-97 -

Figure C.7. COPY frames command.

- 98 -

Figure C.8. SAVE frames command.

-99 -

Figure C.9. PUT frames command.

U
N

D
O

- 100-

Figure C.10. ARCHIVE score command.

- 101 -

FigureC.il. DE_ARCHIVE command.

- 102-

select svmbol

select symbol

select symbol

BODY_CONTROL commands:
EFFORT
RHYTHM
DIRECTION
NOTES

BODY.MENU Commands:
Left arm
Right arm
Left leg
Right leg
Head
Torso
Pelvis

Figure C. 12. Editing a frame.

- 103 -

select symbol

Figure C.12. Editing a frame continued ...

- 104-

NEW_FRAME

CLEAR
BAR.LINE

Figure C.12. Editing a frame continued ...

- 105 -

JM SilîO I^

Temp Stale}'

Main Body parts includes:
Head
Torso
Pelvis

Work State

Figure C.13. Main body part positioning.

- 106 -

Figure C.14. Body limb positioning.

- 107 -

Figure C.15. ERASE_SYMbol command.

- 108 -

Figure C.16. MOVE_SYMbol command.

- 109 -

Figure C. 17. TEMPO command.

- 110-

Figure C.18. TIME_SIGnature command.

- I l l -

Figure C.19. RHYTHM command.

- 112 -

Figure C.20. DIRECTION command.

- 113 -

FigureC.21. NOTES command.

114

Figure C.22. CLEAR working frame command

- 115 -

Figure C.23. BAR_LINE command.

-116-

Figure C.24. NEW_FRAME command.

