
V isib le Surface S o lu tion s

U sing P la n e Sw eep

Brian L. Plante

ABSTRACT

This essay discusses the algorithms to he used for

implementing a plane sweep algorithm to solve the visible surface

problem in object space. An algorithm is presented based on the

work of Nurmi and the MV-trees described by Swart and Ladner.
/

This results in a solution for the visible surface problem that has

0((n+Ar) log n) time complexity and 0((n+ k) log n) space

complexity for scenes having n edges and k intersections of edges.

A ck n o w led g em en ts
r

I would like to thank my supervisor Kelly Booth for his help and
encouragement throughout this work.

I would also like to thank my student reader Lyn Bartram.

The members of the Computer Graphic Laboratory have all given me some
help in my time here.

And I would like to thank all of my friends both old and new who helped in
ways too numerous to mention.

- 2 -

In trod u ction
r,

1*1* V isib le Surface Problem

The visible surface problem is to render the surfaces that are visible in a
scene. The solution to this problem is to determine which parts of the scene can

be seen from a specified viewport, and must be rendered, and which parts

cannot be seen from the viewport, and must be omitted from rendering. The

only types of scenes which will be considered are scenes made up of plane

polygons that are opaque. Finding the visible surfaces also finds the visible

lines, so that the visible line problem is solved as a special case.

The algorithms described here assume that appropriate perspective

transformations have been applied to all objects in a scene so that all points

having the same (x ,y) coordinates lie on the same line of sight and thus a simple
z-comparison is sufficient to resolve visibility.

1.2. Im age space vs. object space

There are two main divisions of visible surface algorithms determined by

the precision to which the computation is done. An algorithm can be performed

in image space, where the result is calculated to (near) the resolution of the

device used to display the output. Alternatively, the computations can be

performed in object space, usually to the precision of the hardware floating point

instructions. A comparison of visible surface algorithms is made by Mathies

[Mat] and by Sutherland, Sproull and Schumacker [SSS]. Descriptions of

standard algorithms and transformations are given in the textbooks by Newman
and Sproull [NeS] and Foley and Van Dam [FVD].

- 3 -

Image space algorithms usually only look at the visibility problem for

regions of fixed size and shape (typically one pixel). Even when there are

visibility changes within these regions, the internal structure is largely ignored.
r

Such algorithms are often implemented as scanline algorithms, where the

visibility at each pixel is calculated in the same order as the scanline of a raster

output device. A typical scanline algorithm is Watkins’s algorithm [Wat, Mor].

The output from an image space algorithm is for a fixed size of display; to

change the display size typically involves re-solving the visible surface problem.

In object space algorithms the visibility problem is solved exactly. In

practice, the result is computed to machine precision and the resulting set of

non-overlapping polygons are passed to a Tenderer. This allows for a solution

that can be stored and rendered on different devices of varying resolution

without having to re-solve the visibility problem. The object space algorithms

have the disadvantage that they look at everything in a scene, even if it will be

too small to affect the final picture in any way. For example, a very thin

rectangle may only cover a small fraction of a pixel in its smaller dimension, but
an object space algorithm will still check the effect it has on the other elements

of the scene and break up those objects to reflect the presence of the thin
rectangle.

In Figure 1.1 the thin rectangle will contribute an insignificant amount to

the pixels it covers, but it will still cause the other elements of the scene to be

broken up, since an object space algorithm solves the visible surface problems
exactly.

- 4 -

r

Figure 1.1

1.3. P olygon al R epresentation

The form of input for a scene is assumed to be a collection of planar

polygons. Other surfaces can be approximated by polygons. It is assumed that

this has been done prior to solving the visible surface problem if more
complicated objects are being rendered.

If polygonal information is maintained properly, texturing and shading can

be done by referring to the original polygons, rather than to the individual

pieces of the polygon that remain after the visible surface calculation. This

involves keeping together all of the pieces and holes of a polygon that may be

generated by the visible surface algorithm so that the rendering algorithm can

process the complete polygon at one time. The reason for this will be explained
in Section 4.3.

Texturing and shading will be accomplished by using a master polygon,

which is an outline of the complete polygon. All of the pieces and holes of the

master polygon (the subservient polygons) are maintained in a linked list which

- 5 -

has as its head the record for the master polygon. The visible surface algorithm

accepts this form of polygonal representation for input as well as for output so

that a scene can be modified and have the visible surface problem solved again.

1.4. Scanline algorithm s

Scanline algorithms use a fixed increment (a scanline) to step down in the y

direction. Any crossings of edges on the scanline are processed for changes in

visibility, as are any edges that start or end. Watkins’s algorithm is an example

of a scanline algorithm used to solve the visible surface problem [Wat]. In

Figure 1.2, the places where a scanline algorithm will stop are shown. Each

scanline is a fixed distance from the previous scanline, so the algorithm checks

for intersections of edges at places where the picture has not changed its

visibility since the previous scanline. A pseudo-code version of a typical

scanline algorithm is included here as a comparison with the plane sweep
algorithms introduced later.

Figure 1.2

- 6 -

1.5. P su ed o—code for scanline algorithm
r

EdgeJList ♦— bucket sort edges by minimum y-value
Active_Edges ■*— NIL
for each scanline do

for each edge in Edge_List entering in this scanline do
search ActiveJEdges and put edge data in segment block
mark associated polygon of segment block as changing

end for
for each polygon that is changing do

check all segment blocks & pack segment blocks if necessary
end for
while not at end of scan line

get next sample span
repeat

compare depths of all segments in the sample span
update Active_JEdges to maintain sort in x-order
mark any polygons exiting on next scanline as changing

until span does not need subdividing to resolve
if single intersection in the span then

process the intersection & update Active_Edges
endif
output visible segments

end while
end for

1.6. P lan e Sw eep A lgorithm s

The plane sweep algorithms are the object space equivalents of scanline

algorithms for image space. Instead of using the fixed increment of a single

scanline in image space, the sweep line moves by a variable increment to the

“interesting” points. These points are the vertices of the polygons, the

intersections of edges, and the ends of lines generated by inter-penetrating

polygons. Each of these points may cause changes to the visible picture and

thus must be examined by a correct visible surface algorithm. The points where

a plane sweep will stop to check visibility changes are illustrated in Figure 1.3.

- 6 -

1.5. P sued o-cod e for scanline algorithm
r

EdgeJList «— bucket sort edges by ininimuin y-value
Active_Edges «- NIL
for each scanline do

for each edge in EdgeJList entering in this scanline do
search Active_Edges and put edge data in segment block
mark associated polygon of segment block as changing

end for
for each polygon that is changing do

check all segment blocks & pack segment blocks if necessary
end for
while not at end of scan line

get next sample span
repeat

compare depths of all segments in the sample span
update ActiveJEdges to maintain sort in x-order
mark any polygons exiting on next scanline as changing

until span does not need subdividing to resolve
if single intersection in the span then

process the intersection & update Active_Edges
endif
output visible segments

end while
end for

1.6. P lane Sweep Algorithm s

The plane sweep algorithms are the object space equivalents of scanline

algorithms for image space. Instead of using the fixed increment of a single

scanline in image space, the sweep line moves by a variable increment to the

“interesting” points. These points are the vertices of the polygons, the

intersections of edges, and the ends of lines generated by inter-penetrating

polygons. Each of these points may cause changes to the visible picture and

thus must be examined by a correct visible surface algorithm. The points where

a plane sweep will stop to check visibility changes are illustrated in Figure 1.3.

- 7 -

An efficient plane sweep algorithm attempts to examine only these points. One

problem that a standard plane sweep does not address is finding the

inter-penetrations of polygons. Since the edges of inter-penetrating polygons do
not necessarily intersect on the projection plane, the plane sweep must be
augmented to find these inter-penetrations.

Figure 1.3

- 8 -

2.1. F inding Intersections

A plane sweep algorithm was first applied to the problem of finding the

intersections of line segments in the plane by Shamos and Huey [ShH]. Their

algorithm solved the problem of whether any two line segments on a plane

intersected. Their algorithm ran in 0(n log n) time and used 0 (n) space for
scenes with n edges.

The Shamos-Huey algorithm was generalized to find all k intersections of a

collection of line segments by Bentley and Ottmann [BeO]. Their modified

algorithm runs in 0((n+ k) log n) time and used 0(n+ k) space. The key

difference with the Bentley-Ottmann algorithm is that the ordering of line

segments as they intersect the sweep line is updated at intersection points as
well as at end points. By switching two line segments found to intersect, the

ordering of line segments intersecting the sweep line can be maintained so that
all of the intersections are reported.

Bentley and Ottmann’s algorithm works by sweeping a horizontal sweep

line through the plane from top to bottom. A priority queue of events is used

to determine the next j/-value at which to stop. This priority queue initially

contains the end points of all of the line segments and is ordered by the j/-value

of the end points. As the sweep line progresses downward the priority queue

contains both end points and pending intersections of line segments. The

priority queue is typically implemented as a heap in order to allow for 0(log n)

insertion and deletemin operations (see [AHU] for further discussion of priority
queues).

T h e P la n e S w eep A lg o r ith m
r

- 9 -

Another structure, the active edge list, is used to maintain the line

segments which are currently cut by the horizontal sweep line. The active edge

list is ordered by ar-value on the sweep line. This structure is usually kept using

a balanced tree structure, such as AVL trees (see [AHU]), so that insertion and

deletion can be done in O(log n) time. This also ensures that finding the

predecessor and successor can be done on O{log n) time. Often extra pointers

are used to link the entries so that the latter two operations can be done in
constant time.

Brown improved the space bound to 0 (n) by observing that only the next
intersection for a line segment must be kept in the priority queue [Bro]. This is

because intersections of line segments not currently adjacent in the sweep line

order will be found when the line segments are adjacent, which must occur
before the intersection point.

Both the Shamos-Huey and Bentley-Ottmann algorithms rely on the fact

that for an intersection to occur, the two intersecting line segments must first

become adjacent in the active edge list. In order to find all of the intersections

of the line segments, only line segments that are adjacent in the active edge list

must be tested for intersection. The only times that the adjacency can change

is when a new line segment starts, an old line segments ends, or an intersection

of two line segments occurs on the sweep line. These are the only times the

active edge list must be updated. On each update at most two tests for new

intersections need be made involving the line segments whose status has
changed.

When an intersection is found, it is added to the priority queue according
to its j/-value so that the updating of the active edge list will be done at an

appropriate time when the sweep line reaches that y-value.

At each of the events in the priority queue, testing for intersections

between the adjacent line segments must be done according to the type of
entry.

- 10 -

When a line segment E starts, it is inserted into the active edge list. The

line segment which precedes E and the line segment E are tested to determine if

they intersect. If an intersection is found it is added to the priority queue of

events according to its y-value. A similar test is performed between E and the
line segment that succeeds E in the active edge list.

When a line segment E ends, it is deleted from the active edge list. The

line segment that preceded E and the line segment that succeeded E are tested

to determine if they intersect. If an intersection point is found it is added to
the priority queue of events according to its j/-value.

When an intersection point of two line segments E l and E2 is reached, the

line segments must be switched in the active edge list. Assuming that E l

preceded E2 before the intersection, E l will succeed E2 after the intersection.

E l must be tested with the line segment which succeeds it after the switch, and

E2 must be tested with the line segment which precedes it after the switch.

Any intersections found are added to the priority queue of events according to
its j/-value.

When an intersection is added to the priority queue, duplicate points must
be rejected. If these points are not rejected, then a test must be made when the

priority queue is processed so that the same intersection is not reported multiple

times. In Figure 2.1, we see that line segment A is inserted into the active edge

list, then line segment B is inserted. At this time the intersection point between

A and B is found. When line segment C is deleted, A and B are again adjacent,

so the intersection point is recomputed. If the insertion into the priority queue
does not check for duplicates, there will be wasted space maintaining the
duplicate entries.

The places where a sweep line will stop are shown in Figure 1.3. Unlike an

image space algorithm, where the scan lines are a fixed distance apart, the plane

sweep increments are variable, with a higher concentration in the areas where
events are happening.

-1 1 -

2.1 .1 . Psuedo-code for the Bentley—O ttm ann algorithm

Initialize a priority queue Q with the end points sorted in x.
Initialize the active edge list R to be empty.
While the priority queue is not empty do

SP «— deletemin(Q)
if SP is a upper vertex of a line segment E

insert E into R
if E intersects the previous or next line segment in R then

add the intersection point or points to Q
else if SP is a lower vertex of an line segment E

if the previous and next line segment of E intersect then
add the intersection point to Q

delete E from R
else /* SP is the intersection of E l and E2 */

output the intersection of E l and E2 at SP
switch E l and E2 in R
if the left segment and the line segment before it in R intersect

add the intersection to Q
if the right segment and the line segment after it in R intersect

add the intersection to Q
endif

endwhile

- 1 2 -

2.2. U sing plane sw eep for visible surface problem s

A scene is described by a collection of polygons, which may contain holes or

which may consist of more than one piece. These polygons are projected onto a

viewing plane, usually using a perspective transformation (see [FVD] for a

discussion on perspective transformations). If polygons do not inter-penetrate,

visibility only changes at the vertices of the polygons making up the scene and

at the intersection points of edges of the polygons as they project onto the

viewing plane. This is the same coherence property that is used in scanline

algorithms to eliminate z-depth tests at most pixels on a scanline.

In order to determine the changes in visibility at each of the sweep points,

depth and polygon information must be kept in addition to the active edge list.

The polygonal information is kept implicitly in the active edge list, since the

edges of the polygon that intersect the sweep line are all in the active edge list.

This is accomplished by keeping track of which polygon an edge belongs to.

Consecutive edges in the active edge list correspond to an interval of the sweep

line that one polygon currently covers. A polygon covers an interval when it is

the visible polygon for that interval.

Unfortunately, the covering polygon need not contain either of the two

edges for an interval, but may be a completely unrelated polygon that is

“uncovered” as the sweep line progresses down the plane. For each interval of

the sweep line covered by a polygon, depth information must be kept for

visibility testing. The method of storing the active edge list and the depth

information can alter the time and space requirements of an algorithm. Various

plane sweep algorithms will be discussed, including the worst case running times
for each.

- 13 -

2.2.1. W ork o f Sechrest and Greenberg

One of the earliest uses of a plane sweep to solve the visible surface

problem was by Sechrest and Greenberg [SeG]. In their algorithm, the active

edge list was implemented as a linear linked list, rather than as a balanced tree

structure. The depth information was also implemented as a linked list, so that

the algorithm appears to have a running time of 0((n+ k) n2). For worst case

processing, the use of linear linked lists is not appropriate, although for many
practical scenes they are acceptable.

One major part of Sechrest and Greenburg’s algorithm is the reconstruction

of the visible surfaces in a manner which keeps all of the pieces and holes of the

polygons together so that subsequent rendering of the scene can be done on all

of the parts of the polygon. The advantages of this approach will be discussed
in Section 4.3.

2.2 .2 . W ork o f O ttm ann and W idm ayer

Ottmann and Widmayer present a solution to the visible line problem that

extends a solution for iso-oriented rectangles to non iso-oriented polygons

[OWi]. A set of iso—oriented rectangles is a set of rectangles whose sides are

parallel to orthogonal (vertical and horizontal) coordinate axes. The algorithm

proceeds by creating the notion of a zigzag as an analogue of the side to a

rectangle. This is necessary because the sides of rectangles allow the active edge

list to be kept efficiently in a segment tree when a plane sweep is used for

iso-oriented rectangles. Zigzags provide a similar order relation for the edges of

polygons, and are used to define a semi-dynamic segment tree to maintain the

active edges. The intervals stored at the internal nodes of the segment tree are

used to store the polygonal depth information necessary for visibility tests. The

active edge list for the plane sweep is also represented by this structure, as the

- 14 -

zigzag edges define the ends of intervals of a polygon.

Figure 2.2b

The zigzag of an edge s is the polygonal line starting at the top end point

of s that follows s until another edge t is intersected (see Figure 2.2a). After

the intersection, the zigzag follows t in a “downward” direction until t

intersects another edge. This continues until the bottom end point of a segment

is met. This defines a one-to-one relationship between segments and zigzags.

No two different points on a zigzag have the same y value and two distinct

zigzags never cross each other, although zigzags do have intersection points in
common.

A zigzag za is to the left of a zigzag zb iff za and zb have points pa and pb

with a common j/-value, such that the rr-value of pa is less than the rr-value of

pb. The transitive closure of left will be denoted as left*. If two zigzags do not

have any y-values in common then they are not related by left*. For all pairs

of zigzags za and zb having no points with the same y-value, za is above zb iff

all y-values of points of za are greater than all j/-values of zb. A total order

left* | above can now be defined between any two zigzags za and zb. If za and

- 15 -

zb are related in left+, then they are related in left+ | above in the same way,

otherwise they are related in left+ | above in the same way as they are related in
above.

r.

The input to a scene is made up of polygons, so zigzags are modified to

continue on from the bottom of an edge to the upper point of the next edge of

the polygon sharing the vertex (See Figure 2.2b). In a scene of p convex

polygons, there will be 2p modified zigzags. If the input polygons are not

convex, there may be O(n) modified zigzags. This defines an ordering between

edges on the sweep line, by using the ordering of the zigzag that the edge is

currently part of. This ordering can be computed in 0((n+ k) log n) time and
0 (n) space using a plane sweep.

A segment tree is then built from the m zigzags found in a scene, and each

zigzag is associated with the top-most edge in the zigzag. In order to use the

segment tree, we define a dynamic rank array which is indexed by the n edges.
For an edge s the array is defined as:

'
i , if s is on the i-th zigzag in the current order.

rank(s) — undefined, otherwise

As well, an array current is maintained, indexed by the ranks, which contains

the edge having a given rank. These two arrays are updated as the sweep line

progresses down the scene. A segment tree is a minimal-height binary tree with

m leaves labelled from 1 to m representing the m ranks. Insertion or deletion

of an interval [a,b] is accomplished by updating the node-lists of each node in
the segment tree to “cover” the interval.

This allows the visibility problem to be solved in 0(n log2 n + k log n)
time and 0 (n log n) space.

- 16 -

2.2 .3 . W ork o f O ttm ann, W idm ayer and W ood

Ottmann, Widmayer and Wood give an algorithm which eliminates the need
r

for a prescan of the input to define an order relation. This is done using a fully

dynamic segment tree instead of a semi-dynamic structure [OWW]. The

dynamic segment tree is implemented by using a tree of bounded balance

(weight balanced) instead of an optimal binary tree as in the semi—dynamic

structure. For a discussion of trees of bounded balance, see Nievergelt and

Reingold [NiR]. Using a dynamic segment tree, we can then use the x ordering

of the active edges on the horizontal sweep line, which eliminates the need for a

prescan to determine the order relation. At each node of the segment tree, the

depth information of the polygons covering that interval is kept in an AVL tree,
ordered by 2-depth.

This algorithm has 0 (n log2 n + k log n) time and 0{n log n) space
complexity in the worst case, the same as the previous algorithm.

2.2.4. W ork o f Nurm i

An 0 ((n + k) log n) time and space algorithm for the visible line problem is

given in Nurmi [Nur]. His algorithm is based on the algorithm of Ottmann,

Widmayer and Wood, but uses a more efficient data structure introduced by

Swart and Ladner. This data structure accounts for the time improvement in

Nurmi’s algorithm, at the expense of increased space usage. Nurmi’s algorithm
will be discussed in detail in Chapter 3.

- 17 -

2.2.5. W ork o f Schm itt

An outline of a visible surface algorithm using a plane sweep is contained in
r

Schmitt [Sch]. His algorithm handles polygons made up of the edges bounding

them and is composed of four phases. The first phase builds a connection graph

consisting of all of the endpoints of the line segments making up the polygons,

all intersections points of these line segments, and drain points. The drain

points are introduced in order to eliminate all left corners that have no

connection to objects left of it. They are used to ensure that the connection

graph is connected, and to clarify inclusion relations during transversal. Figure

2.3 illustrates a simple scene, its drain points and the corresponding connection
graph.

The connection graph is a graph where the vertices are all points in the

plane which are end points of line segments, all intersection points of line

segments, and all drain points. Two vertices in the connection graph are

connected by an edge iff the two vertices are neighbours on a specific line

segment or a vertex needs a connection with another line segment via a drain
point (a drain edge).

The second phase of Schmitt’s algorithm traverses the connection graph

and determines the inclusion status of the edges. The inclusion status of an
edge e is defined by

R 0(e) = set of polygons that contain e

R - i(e) = set of polygons that e is on the lower boundary

■R+i(e) = se ̂ °f polygons for which e is on the upper boundary

The space requirement to store this information is 0(n). The graph can be
transversed in 0 (n + k) time.

- 18 -

Scene

Root vertex

Connection graph

Figure 2.3

- 19 -

All of this information is used by the third phase of Schmitt’s algorithm as
it determines the visible edges. During the transversal of the connection graph

in the second phase, the visibility of the edges is determined from the inclusion

status of the edges. This is done by checking for changes to the inclusion status

that affect an edge as the graph is being transversed. If the edge is visible, it is
kept for use by the fourth phase.

The fourth phase examines the visible edges of the connection graph and

extracts the visible surfaces. This stage uses information about which surfaces

the edges belong to on each side of the visible edge. The visibility of these

polygons determines the surfaces which must be reported, since one or both
polygons sharing the edge may be visible.

This algorithm is claimed to run in 0 (r + (n + k) log n) time, where r is

the number of pairs (polygon and line segment) having the line segment

completely within the interior of the polygon, n is the number of line segments,

and k is the number of intersections of line segments on the projection plane.
The space required is 0(n+k).

Schmitt’s algorithm was not chosen for implementation due to the

complexity of manipulating the connection graph and extracting the visible

surfaces from it, as well as the high space requirement to store the connection
graph.

2.2.6. W ork of Devai

Using line arrangements, Devai has developed an algorithm which is 0 (n 2)

[Dev]. The first step of the algorithm is to extend all of the edges of polygons to

infinite length lines. The graph G corresponding to the plane subdivisions

induced by these lines is then computed. In addition to the intersections at

finite points, it is assumed that all half-lines of the subdivision meet at a single

point at infinity. G is computed iteratively, by adding each line in turn to the

graph and then finding the intersection points of the new line with each of the

- 20 -

lines already in the graph.

A list of the intersections on each line is kept in sorted order. This is used

to determine the visible portions of each line. All of the polygons which
r

intersect each line are put onto a list for each line. Then for each polygon

intersecting a line, the visibility of each portion of the line is calculated.

This algorithm runs in time 0 (n 2) and requires 0 (n 2) space. It does not

depend on the number of intersections present in the scene, since the lines are

extended to infinity, and all of the intersections are found. Since the term of k

in the previous algorithms can be fi(n2), those algorithms can require

0 (n 2 log n) time for the worst scenes, which is more than required by Devai’s

algorithm. For less complex pictures where the number of intersections is less

then fl(n / log n), the previous algorithms will require less work than Devai’s
algorithm.

2.2 .7 . W ork o f M cKenna

McKenna has shown that visible surface processing can be accomplished in

0 (n 2) time and space [McK]. As with Devai, line arrangements are used to

build a graph of intersections with all lines extended to infinity. Instead of

processing each line separately, the second stage of McKenna’s algorithm sweeps

a “bendable” topologically vertical line from left to right through the
arrangement. A vertically ordered list of the n -\-1 current regions crossed by

the sweep line is maintained. This corresponds to the active edge list of a

regular plane sweep. For each region the boundary segments above and below

the region are kept. When boundaries meet at the right endpoint of the region

they are added to an unordered queue of completable regions.

For each of the current regions an ordered doubly linked list is maintained

of the polygons that contain the region, ordered by their z-value so that the

closest face is the first element of the list. The heads of the lists are kept in an

- 21 -

array indexed by faces and current regions, enabling the list to be accessed in

constant time. The frontmost face for each region is then kept for processing by
the next stage of the algorithm.

r
These frontmost faces are then used to determine visibility by removing all

of the arrangement segments whose incident regions have common frontmost

faces. The corresponding vertices are also removed. This leaves a tiling of the
plane by the visible polygons.

This algorithm runs in 0 (n 2) time and uses 0 (n 2) space to solve the visible
surface problem.

2.3. W orst case results

Devai has shown that the visible line problem is 8{n2), by giving an 0 (n 2)
algorithm and an example requiring fi(n2) steps to determine the visible lines

[Dev]. Further work by McKenna has shown that the visible surface problem is

also 9(n2) [McK]. It had been conjectured that the visible surface problem was

more difficult than the visible line problem. Schmitt [Sch] conjectured that the

visible surface problem would take f1(n2 log n) time to solve in the worst case.

It is an open question whether these results can be improved upon so that

the order statistics include k. This would result in an algorithm which would
still be 0 {n 2) in the worst case, but it would run faster when there are few

intersections between edges. Since it would take 0{n log n) to determine that

there are no intersections between edges, it would be necessary to have a term

of n log n in the running time. Therefore an “optimal” algorithm might have a
running time of 0(n log n + k).

The next chapter discusses the algorithm of Nurmi in more detail. It was

chosen for implementation because the data structures used in the algorithm are

conceptually simple compared to the other algorithms. The time bound is the

best for the algorithms which are intersection sensitive. It was felt that for

- 22 -

practical scenes it would run faster than McKenna’s algorithm.

r

- 23 -

A lg o rith m D escr ip tio n
r

3.1. M V—trees

MV-trees were introduced in Swartz and Ladner [SwL], to allow trees to be

copied in 0(1) time and to allow insertion, deletion and searches to be done in

O(log n) time. These are based on balanced binary trees that rely on balancing

actions on the path of insertion or deletion. Examples of algorithms which

maintain balanced trees in this manner are dichromatic trees, 2-3 trees, and
AVL-trees [AHU].

In order to accomplish constant time copying of trees, only the pointer to

the root of the tree is copied. On insertion of a node, each node on the path to

the new node is copied, so that only the one tree is affected. Similarly, on

deletion of a node, the nodes on the path to the deleted node are copied, so

again only the one tree is affected. Usage counts for the nodes are maintained

to reclaim storage which is no longer referenced by any of the trees. Since the

standard insertion and deletion algorithms were originally 0(log n), and we

have only added a constant amount of work to be done at each step, the new

tree algorithms remain 0(log n). For each insertion and deletion there will be

0(log n) additional space used compared to the original tree. The additional

space is less than copying the entire tree for a copy operation, but the total

space used by MV-trees is currently an open problem. The changes in an
MV-tree for insertion and deletion are shown in Figure 3.1.

MV-trees are used to maintain the polygonal depth information for each of

the intervals in the active edge structure. This allows the algorithm to simply

copy a pointer in order to copy the currently active polygons for the interval it

is being inserted into, without copying the entire tree of polygons. Insertion and

- 24 -

Insertion in an MV-tree

Deletion in an MV-tree

Figure 3.1

- 25 -

deletion of polygons in this structure can be done in logarithmic time. At each
step there are at most two of these operations to be performed.

3.2. N u rm i’s A lgorithm r

The input to the algorithm is a set of clipped polygons, which have been

projected onto a plane. The projection will normally be done by using a

perspective transformation, although an orthographic projection could also be

used. 3-D clipping in normalized coordinates ensures that there will only be

positive ar-coordinates, ranging from 0 to 1. The input polygons may be

concave, may have holes, and may even be non-connected, so that the output

polygons of the algorithm could serve as input. This was done so that small

changes in a scene could be made without re-solving the visibility of the entire

scene, but only re-solving the portions of the scene which have changed.

The output of the algorithm will be a set of non-overlapping polygons
which completely “tile” the clipping window. These polygons will maintain

information on the original “master” polygon they are derived from, so that

each polygon may be processed in its entirety for shading and texturing
purposes.

A plane sweep algorithm is used to determine the intersections of the edges

of the polygons. The active edge structure is implemented as an AVL tree and

the nodes of the structure are used both for determining the intersection points

and for maintaining the intervals of the sweep line. The operations of search,
insert and delete can all be performed in 0 (log n) time for AVL trees.

For each interval of the sweep line, a structure is kept with the faces that

cover the interval. These structures are implemented as MV-trees, using a base

tree type of AVL trees; these will be referred to as node—lists. The ordering of

faces is according to 2-depth. The operations of search, insert and delete can be

performed in O(log n) time as with normal AVL trees. Since these are

- 26 -

MV-trees a copy operation will take 0(1) time.

The sweep line stops at each vertex of the input polygons and at any

intersections of edges found during the sweep. At each of these points, the data
r

structures are updated and visibility tests are performed if necessary. The

update operations maintain the data structures to ensure that the node-list of

each active edge contains the face which covers the interval from that edge to

the next edge on its right side along the sweep line. As well the visible portions

of the polygons in the scene are being updated as the sweep progresses. By
definition, the right-most edge’s node-list is empty.

Shadow edges are used as duplicate edges for the visible edges. This is done
to enable quick testing of whether an edge is visible and to keep each edge in

only one polygon. A shadow edge are always oriented in the opposite direction

from its associated edge. This ensures that any visible polygons constructed will
have the correct orientation. A polygon that has its edges in clockwise order is

visible in the interior and a polygon that has its edges in counter-clockwise
order defines a hole.

The update operations and visibility tests to be done at each point vary

depending on the type of point encountered. The operators succ() and prev()

give the successive and previous active edge on the sweep line, for an edge. In

each case below edge el preceded e2 in the active edge list before the vertex was
processed.

Case 1: Top vertex - insert the two edges (el, e2) from the vertex into the

active edge structure. The node-list for the first edge is a copy of

the node-list of prev(el) with the polygon of el either deleted or

added from the list, depending on whether el is part of a hole or

not. The node-list for e2 is the same as the node-list for prev(el).

Check for an intersection of el and prev(el) and add it to the

priority queue if it exists. Check for an intersection of e2 and

- 27 -

succ(e2) and add it to the priority queue if it exists. If the polygon

of these edges is at the top of the node-list of el, start a new

visible polygon and create a shadow edge for the previously visible
polygon.

Figure 3.3

- 28 -

Case 2:

Case 3:

Bottom vertex - delete the two edges (el,e2) from the active edge

structure. Check for an intersection between prev(el) and succ(e2)

and add it to the priority queue if it exists. If shadow edges are

present for el and e2, join the shadow edges of el anQ e2. These

two shadow edges will be part of the same master polygon, but

they might not form a closed polygon.

Figure 3.4

Side vertex - replace edge el with the new edge e2 in the active

edge structure, and the edge e2 gets edge e l’s node-list unchanged.

The edge e2 keeps the same visibility as edge el had. Check for

an intersection of e2 and prev(e2) and add it to the priority queue

if it exists. Check for an intersection of e2 and succ(e2) and add it

to the priority queue if it exists. If el has a shadow edge then a

shadow edge must be created for e2. This shadow edge is joined

with the shadow edge of el, in the opposite direction that el and
e2 are joined.

Figure 3.5

Case 4: Intersection point - switch the two edges (el, e2) in the active

edge structure. If the interior of e l’s polygon lies to the left of the

edge then add the polygon to e2’s node-list otherwise delete the

polygon from e2’s node-list. If the interior of e2’s polygon lies on

the right of the edge then add the polygon to e l’s node-list

otherwise delete the polygon from e l’s node-list. If both edges are

invisible then they will continue to be invisible. If both edges are

visible then the closer edge at the intersection point continues to

be visible and the other edge becomes invisible. If one edge is

visible then it continues to be visible and the other edge becomes

visible if its face is at the top of its node—list at the intersection
point. This is explained in more detail in Section 3.4.

Each case involves at most two updating operations to the structures

storing the active edges and the node—lists. Each of these operations takes

O(log n) time and the priority queue updates also take O(log n). Since the

sweep line visits 0 (n + k) points (where k is the number of edge intersections),

the algorithm requires 0((n+ k) log n) time.

- 3 0 -

The 0(1) copying time for MV-trees is necessary so that the trees do not

need to be copied each time a node-list is copied. If standard AVL trees are

used, it will require 0 (n) steps to make a copy of the tree. This will affect the

time bound on the algorithm so that it no longer runs in 0((n+ k) lorg n) time.

The space requirements for the algorithm cannot exceed the time bounds so
the space required is at most 0((n+fc) log n). The possible increase in space

from 0 (n + k) is caused by the MV-trees which trade off time for space through

the copying operation. The exact space bounds of MV-trees is not known at the
current time, and remains an open problem.

- 31 -

3.3. P suedo code for N urm i’s algorithm

In the following, E l is the edge above the sweep point SP, arid E2 is the

edge below the sweep point. At an intersection, E l is the leftmost edge. The

function prev(E) returns the previous edge in the active edge list and the
function succ(E) returns the next edge.

for each polygon P insert all the vertices into priority queue Q
initialize active edge list R to the background polygon’s edges
while the priority queue is not empty do

SP «— deletemin(Q)
if SP is a side vertex then

replace E l with E2 in R
if E2 and prev(E2) intersect then add the intersection to Q
if E2 and succ(E2) intersect then add the intersection to Q
if E l has a shadow edge then

continue the shadow edge at SP with E2’s shadow edge
endif

elseif SP is a top vertex then
insert E l and E2 into R
if E l and prev(El) intersect then add the intersection to Q
if E2 and succ(E2) intersect then add the intersection to Q
if SP’s polygon is frontmost then

create shadow edges for E l and E2
create a hole in the previously visible polygon

endif
elseif SP is a bottom vertex then

if prev(El) and succ(E2) intersect then add the intersection to Q
delete E l and E2 from R
if E l has a shadow edge then

merge the shadow edges of E l and E2
endif

else { SP is an intersection }
if at least one of E l or E2 is visible

determine visibility after the intersection,
and update shadow edges as appropriate.

endif
switch E l and E2 in R
if E2 and prev(E2) intersect then add the intersection to Q
if E l and succ(El) intersect then add the intersection to Q

endif
endwhile

- 3 2 -

3.4. U pdating at intersections

During the sweep, visible edges have a “shadow” edge associated with them

to define the border between two visible polygons. These are represented by

dotted lines in the diagrams. These shadow edges are used to define holes and

visible pieces of polygons to ensure that the final polygons are a set of

non-overlapping polygons that completely tile the window. These edges are

updated as necessary at each sweep point, and their existence on an edge defines

the edge to be visible. This gives a fast method for determining if the edges at

an intersection point are invisible. If they are both invisible before the

intersection they will continue invisible after the intersection and the only

processing to be done is to update the active edge list and to check for new
intersections.

If at least one of the edges coming into an intersection is visible, then

updates to the visibility status of the edges may be necessary. There are eight

cases to consider at an intersection point, depending on the visibility of each

edge coming into the intersection point, and which side of the edge the polygon

is on. These cases are illustrated in Figure 3.6. Each of these cases will be
discussed in turn.

3.4 .1 . Case 1

We have a shadow edge for P2 along e l , which must be joined to e2, and

P2 is possibly closed off. The shadow edge of e2 for P3 continues along e l ,

replacing the old shadow edge. e2 will no longer have a shadow edge since it is
no longer visible.

- 3 3 -

Case 2 Case 3

Figure 3.6

3.4 .2 . Case 2

The shadow edges of e l and e2 are joined and P3 is possibly closed off. e l

gets a new shadow edge for P2 and e2 loses its shadow edge.

- 34 -

3.4 .3 . Case 3

The shadow edge of e2 is joined with e l and P i is possibly closed off. The

shadow edge of e l for P3 continues as a shadow edge of e2 andte l loses its
shadow edge.

3.4 .4 . Case 4

The shadow edges of e l and e2 are joined and P3 is possibly closed off. e2

gets a new shadow edge for P i and e l loses its shadow edge.

3.4 .5 . Case 5

The shadow edge of e l for P2 continues as e2. Both e l and e2 get shadow
edges for P3.

3.4 .6 . Case 6

The shadow edge of e l for P3 continues as the shadow edge of e2. e l gets
a shadow edge for P2.

3.4 .7 . Case 7

The shadow edge of e2 for P i continues as e l . Both e l and e2 get shadow
edges for P3.

3.4 .8 . Case 8

The shadow edge of e2 for P3 continues as the shadow edge of e l . e2 gets
a new shadow edge for P i.

- 35 -

M od ify in g th e G R p ack age in ter fa ce
t

4.1. O verview

The GR package evolved from a set of programming assignments given in

the introductory course on computer graphics. These assignments were

originally in FORTRAN, and were changed to Pascal in 1979. The change of

language allowed sophisticated data structures to be used in the package, and

improved student productivity. The research package used by the Computer

Graphics Laboratory (CGL) is an implementation of these assignments in the C

language. The major functional difference between the two packages is that a

larger number of input and output devices are supported by the research version
of the package.

The GR package on CGL was modified to accommodate the plane sweep

algorithm for solving the visible surface problem. A detailed description of the

GR package is contained in [Lea]. Only an overview will be presented here.
The GR package is split into five levels, each with its own function.

4.1 .1 . L evel 5

This level of the package is the application library. This level is used to
read in scene files and to display the scene file by walking the directed acyclic

graph which represents the scene file within this level and contains nodes for

modeling transformations (rotate, scale, translate) and modeling primitives

(polygons and text - only polygons are considered here). A routine called

ReadScene is used to read in a file containing a description of the graph. This
routine is used to input static scenes to the package.

- 36 -

4.1 .2 . Level 4

This level forms the graphics interface module for the GR package. A

number of graphics primitives are provided by this level to enable a user to do
t

drawing, colouring, and geometric transformations. Routines to handle the

perspective transformation are also included. Input to this level is specified as

non-homogeneous three-dimensional coordinates (x,y,z). The output of this
level is specified as homogeneous coordinates (x,y ,z,w).

4.1 .3 . L evel 3

This level of the package looks after clipping its input to a rectangular
volume, so that 1 ^ x ^ 1, —1 < y < 1 and 0 ^ z ^ 1. Both line clipping

and polygon clipping are supported. Conversion from homogeneous coordinates

back to non-homogeneous normalized device coordinates is also performed at
this level.

4.1 .4 . L evel 2

This level maps the (x,y,z) from floating point normalized device

coordinates to virtual device coordinates, which are 15-bit unsigned integers. A

viewport may be defined to be a portion of these virtual device coordinates, so
that the picture is mapped to a portion of the virtual screen.

4.1 .5 . L evel 1

This level contains all of the device-dependent code for input and output

devices. Coordinates are translated to/from the actual device coordinates by

the level 1 routines. A number of devices are supported by level 1 of the

package, including the Ikonas frame buffer, the Tektronix 4027 and 4010 display

terminals, the Hewlett Packard 2648A terminal, and a Summagraphics Bitpad
One tablet.

- 37 -

4.2. P lane Sweep

The plane sweep algorithm fits between levels two and three of the GR

package, making it effectively level 2.5. The current implementation modifies

the standard package so that all of the Level 3 routines now call Level 2.5
routines instead of Level 2 routines for output related tasks that could affect

the plane sweep. The master polygon and all of its pieces and holes are clipped

for input into the sweep. Polygon clipping is used rather than line clipping

because the plane sweep assumes that its input is a collection of polygons. The

calculations for the sweep are carried out in floating point arithmetic and the

polygons are then either written to a file for subsequent processing or passed

down to level 2, where the coordinates are converted to integer virtual device

coordinates. The output file is passed through a conversion program to convert

the polygons into the format acceptable to the standard GR ReadScene routine.

4.3. M aster Polygons

Every input polygon is either a master polygon or is associated with a

master polygon. The master polygons are processed with their subservient

polygons through the transformations of level 4 of the GR package and through

the clipping in level 3. Currently this relationship does not continue to the

lower levels for rendering, but the software could be extended to maintain the
polygon together for processing at the rendering stage.

The master polygons keep all of the information on the polygon, such as
normals at vertices, the plane equation, and any texture mapping parameters.

Each of the subservient polygons keeps a pointer to the master polygon and the

master polygon keeps a pointer to a linked list of its subservient polygons. Each

master polygon must have at least one subservient polygon defining a

potentially visible portion, or else the whole polygon is considered to be visible.

In order to allow holes to be represented, a hole is transversed in the opposite

- 38 -

direction to that of the master polygon, so that the order of vertices for both

holes and regular polygons determines which side of an edge is on the interior of
the polygon.

The master polygon concept is used to ensure that shading and texturing

can be done correctly. Linear interpolation is the usual method for determining

normals or shading values at points other than a vertex. This is not rotationally

independent, so the order in which operations are performed can give different

values for the same point. This can cause shading values for pieces of a polygon

which abut to be different. A similar problem occurs with textures not lining up
properly for the various pieces of a polygon.

4.4 . R eadScene Changes

The format of the ReadScene was modified to allow master polygons to be

distinguished from the subservient polygons. If a polygon is subservient to

another polygon, then the number of that polygon is added as an additional field

on the scene node description. If this field is missing or is zero, then the

polygon is assumed to be a master polygon, so Poly in Level 4 of the GR

package was modified to create a subservient polygon consisting the the entire

master polygon if there are no subservient polygons given as input. By

implementing the input in this manner, old definitions can be read in, and all of

the input polygons will be considered as master polygons. The ReadScene files

will be upward compatible, but files output from the plane sweep must have the

master polygons deleted before the files can be used by the standard GR
package.

- 39 -

C onclusions
t

5.1. C urrent Im plem entation

The integration of a plane sweep algorithm as a new level of the GR

package is in progress. The output from the algorithm may be run through a

conversion program to create a new ReadScene file which can be read in by the

standard package or the new version. If this file is to be used with the standard

package, a second step is necessary in order to remove the master polygons from

the file, and to interpolate the normals at the vertices of the subservient

polygons so that the standard package has the information necessary to render

the scene. This allows the scene to be rendered using the standard package
without modifying the lower levels of the package to accommodate the master
polygon representation.

A background polygon is defined to cover the window to ensure that there

is a polygon covering the whole window. This ensures that the window can be

“tiled” with no holes. This polygon is positioned at maximum 2-depth so that

other polygons in the scene will always obscure it. The input polygons to the

plane sweep have the vertices of their edges put into the priority queue after the

master polygon and its subservients have been clipped. When all of the

polygons have been processed the plane sweep is started.

During the plane sweep the visible polygons intersecting the sweep line are

kept as an oriented collection of edges. When these polygons are closed they are

added to a linear list of visible polygons. These are the polygons which are

output as the tiling of the plane. All of the master polygons are output,

together with the visible portions of each polygon. This output file is processed
by a conversion program to create a new ReadScene file.

- 4 0 -

5.2. P ossib le extensions

The lower levels of the GR package should be modified to process the

master polygons and the subservients together. This would Tbe done in

conjunction with rewriting the rendering software to take advantage of having

all the parts of a polygon available, so that shading and texturing can be done
correctly on the visible portions of the scene.

Currently the information on polygon colours is not retained by the plane
sweep. The colour nodes read by ReadScene should be included in the output
file generated by the plane sweep.

5.3. A pplications

This software will be used to generate images for use by the Department of

Psychology for cognitive experiments. These experiments consist of static

images which will be used on the DY-4 workstations and the Amiga personal

computer. Because the plane sweep solves the visible surface problem

independent of the resolution of the display, the same scene files can be used for
both display systems.

The output from the plane sweep has the advantage of being compact

compared to a raster image. This allows it to be sent to the display systems

quickly. Usually the rendering speed is limited by the display system
capabilities.

- 41 -

R eferen ces
r

[BeO] Bentley, J. L., Ottmann, T. A., Algorithms for reporting and

counting geometric intersections, IEEE Transactions on Computers
C-28 (1979) pp. 643-647.

[Bro] Brown, K. Q., Comments on “Algorithms for reporting and counting

geometric intersections”, IEEE Transactions on Computers C-30
(1981) pp. 147-148.

[Dev] Devai, F., Quadratic bounds for hidden-line elimination, Proceedings

of 2nd Symposium on Computational Geometry (1986) pp. 269-275.

[FVD] Foley, J. D., Van Dam, A., Fundamentals o f interactive computer
graphics, Addison-Wesley (1982).

[Mat] Mathies, L., Scanning algorithms for computer graphics, Masters
Essay, University of Waterloo (1981).

[McK] McKenna, M., Worst-case optimal hidden—surface removal, John
Hopkins University Report JHU/EECS-86/05 (1986).

[Mor] Morgan, M. F., Graphics support for cognitive research in human
factors, Masters Essay, University of Waterloo (1985).

[NeS] Newman, W. M., Sproull R. F., Principles o f interactive computer
graphics, McGraw-Hill (1979).

[NiP] Nievergelt, J., Preparata, F. P., Plane-Sweep algorithms for

intersecting geometric figures, CACM Vol 25 No. 10 (Oct 1982).

[NiR] Nievergelt, J., Reingold, E. M., Binary search trees o f bounded

balance, SIAM Journal on Computing (1973) pp. 33-43.

- 42 -

[Nur] Nurmi, O., A fast line-sweep algorithm for hidden line elimination,
BIT Vol 25, No. 3 (1985).

[OWi] Ottmann, T. and Widmayer, P., Solving visibility problems using
skeleton structures, MFCS (1984).

[OWW] Ottmann, T. and Widmayer, P., Wood, D., A Worst-case efficient

algorithm for hidden-line elimination, Intern. J. Computer Math.,
Vol 18 (1985).

[OWo] Ottmann, T., Wood, D., Space economical plane-sweep algorithms,
University of Waterloo Technical Report CS-84-32.

[SeG] Sechrest, S., Greenberg, D., A Visible polygon reconstruction
algorithm, TOG Vol 1, No 1 (Jan 1982).

[Sch] Schmitt, A., Time and space bounds for hidden line and hidden
surface algorithms, Eurographics’81.

[ShH] Shamos, M. I., Hoey, D., Geometric intersection problems,

Proceedings of the 17th Annual IEEE Symposium on Foundations of
Computer Science (1976).

[SSS] Sutherland, I. E., Sproull, R. F., Schumacker, R. A., A

characterization o f ten hidden—surface algorithms, Computing
Surveys, Vol 6, No 1 (March 1974).

[SwL] Swart, G., Ladner, R, Efficient algorithms for reporting

intersections, University of Washington Technical Report 83-07-03.

[Wat] Watkins, G. S., A real time visible surface algorithm, University of

Utah Technical Report UTEC-CSc-70-101.

