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ABSTRACT

This essay discusses the algorithms to he used for 

implementing a plane sweep algorithm to solve the visible surface 

problem in object space. An algorithm is presented based on the

work of Nurmi and the MV-trees described by Swart and Ladner.
/

This results in a solution for the visible surface problem that has 

0((n+Ar) log n) time complexity and 0((n+ k) log n) space 

complexity for scenes having n edges and k intersections of edges.
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In trod u ction
r,

1*1* V isib le Surface Problem

The visible surface problem is to render the surfaces that are visible in a 
scene. The solution to this problem is to determine which parts of the scene can 

be seen from a specified viewport, and must be rendered, and which parts 

cannot be seen from the viewport, and must be omitted from rendering. The 

only types of scenes which will be considered are scenes made up of plane 

polygons that are opaque. Finding the visible surfaces also finds the visible 

lines, so that the visible line problem is solved as a special case.

The algorithms described here assume that appropriate perspective 

transformations have been applied to all objects in a scene so that all points 

having the same (x ,y ) coordinates lie on the same line of sight and thus a simple 
z-comparison is sufficient to resolve visibility.

1.2. Im age space vs. object space

There are two main divisions of visible surface algorithms determined by 

the precision to which the computation is done. An algorithm can be performed 

in image space, where the result is calculated to (near) the resolution of the 

device used to display the output. Alternatively, the computations can be 

performed in object space, usually to the precision of the hardware floating point 

instructions. A comparison of visible surface algorithms is made by Mathies 

[Mat] and by Sutherland, Sproull and Schumacker [SSS]. Descriptions of 

standard algorithms and transformations are given in the textbooks by Newman 
and Sproull [NeS] and Foley and Van Dam [FVD].
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Image space algorithms usually only look at the visibility problem for 

regions of fixed size and shape (typically one pixel). Even when there are 

visibility changes within these regions, the internal structure is largely ignored.
r

Such algorithms are often implemented as scanline algorithms, where the 

visibility at each pixel is calculated in the same order as the scanline of a raster 

output device. A typical scanline algorithm is Watkins’s algorithm [Wat, Mor]. 

The output from an image space algorithm is for a fixed size of display; to 

change the display size typically involves re-solving the visible surface problem.

In object space algorithms the visibility problem is solved exactly. In 

practice, the result is computed to machine precision and the resulting set of 

non-overlapping polygons are passed to a Tenderer. This allows for a solution 

that can be stored and rendered on different devices of varying resolution 

without having to re-solve the visibility problem. The object space algorithms 

have the disadvantage that they look at everything in a scene, even if it will be 

too small to affect the final picture in any way. For example, a very thin 

rectangle may only cover a small fraction of a pixel in its smaller dimension, but 
an object space algorithm will still check the effect it has on the other elements 

of the scene and break up those objects to reflect the presence of the thin 
rectangle.

In Figure 1.1 the thin rectangle will contribute an insignificant amount to 

the pixels it covers, but it will still cause the other elements of the scene to be 

broken up, since an object space algorithm solves the visible surface problems 
exactly.
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Figure 1.1

1.3. P olygon al R epresentation

The form of input for a scene is assumed to be a collection of planar 

polygons. Other surfaces can be approximated by polygons. It is assumed that 

this has been done prior to solving the visible surface problem if more 
complicated objects are being rendered.

If polygonal information is maintained properly, texturing and shading can 

be done by referring to the original polygons, rather than to the individual 

pieces of the polygon that remain after the visible surface calculation. This 

involves keeping together all of the pieces and holes of a polygon that may be 

generated by the visible surface algorithm so that the rendering algorithm can 

process the complete polygon at one time. The reason for this will be explained 
in Section 4.3.

Texturing and shading will be accomplished by using a master polygon, 

which is an outline of the complete polygon. All of the pieces and holes of the 

master polygon (the subservient polygons) are maintained in a linked list which
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has as its head the record for the master polygon. The visible surface algorithm 

accepts this form of polygonal representation for input as well as for output so 

that a scene can be modified and have the visible surface problem solved again.

1.4. Scanline algorithm s

Scanline algorithms use a fixed increment (a scanline) to step down in the y 

direction. Any crossings of edges on the scanline are processed for changes in 

visibility, as are any edges that start or end. Watkins’s algorithm is an example 

of a scanline algorithm used to solve the visible surface problem [Wat]. In 

Figure 1.2, the places where a scanline algorithm will stop are shown. Each 

scanline is a fixed distance from the previous scanline, so the algorithm checks 

for intersections of edges at places where the picture has not changed its 

visibility since the previous scanline. A pseudo-code version of a typical 

scanline algorithm is included here as a comparison with the plane sweep 
algorithms introduced later.

Figure 1.2
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1.5. P su ed o—code for scanline algorithm
r

EdgeJList ♦— bucket sort edges by minimum y-value 
Active_Edges ■*— NIL 
for each scanline do

for each edge in Edge_List entering in this scanline do
search ActiveJEdges and put edge data in segment block 
mark associated polygon of segment block as changing 

end for
for each polygon that is changing do

check all segment blocks & pack segment blocks if necessary 
end for
while not at end of scan line 

get next sample span 
repeat

compare depths of all segments in the sample span 
update Active_JEdges to maintain sort in x-order 
mark any polygons exiting on next scanline as changing 

until span does not need subdividing to resolve 
if single intersection in the span then

process the intersection & update Active_Edges
endif
output visible segments 

end while 
end for

1.6. P lan e Sw eep A lgorithm s

The plane sweep algorithms are the object space equivalents of scanline 

algorithms for image space. Instead of using the fixed increment of a single 

scanline in image space, the sweep line moves by a variable increment to the 

“interesting” points. These points are the vertices of the polygons, the 

intersections of edges, and the ends of lines generated by inter-penetrating 

polygons. Each of these points may cause changes to the visible picture and 

thus must be examined by a correct visible surface algorithm. The points where 

a plane sweep will stop to check visibility changes are illustrated in Figure 1.3.
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1.5. P sued o-cod e for scanline algorithm
r

EdgeJList «— bucket sort edges by ininimuin y-value 
Active_Edges «- NIL 
for each scanline do

for each edge in EdgeJList entering in this scanline do
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end for
for each polygon that is changing do
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end for
while not at end of scan line 
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repeat

compare depths of all segments in the sample span 
update ActiveJEdges to maintain sort in x-order 
mark any polygons exiting on next scanline as changing 

until span does not need subdividing to resolve 
if single intersection in the span then

process the intersection & update Active_Edges
endif
output visible segments 

end while 
end for

1.6. P lane Sweep Algorithm s

The plane sweep algorithms are the object space equivalents of scanline 

algorithms for image space. Instead of using the fixed increment of a single 

scanline in image space, the sweep line moves by a variable increment to the 

“interesting” points. These points are the vertices of the polygons, the 

intersections of edges, and the ends of lines generated by inter-penetrating 

polygons. Each of these points may cause changes to the visible picture and 

thus must be examined by a correct visible surface algorithm. The points where 

a plane sweep will stop to check visibility changes are illustrated in Figure 1.3.
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An efficient plane sweep algorithm attempts to examine only these points. One 

problem that a standard plane sweep does not address is finding the 

inter-penetrations of polygons. Since the edges of inter-penetrating polygons do 
not necessarily intersect on the projection plane, the plane sweep must be 
augmented to find these inter-penetrations.

Figure 1.3
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2.1. F inding Intersections

A plane sweep algorithm was first applied to the problem of finding the 

intersections of line segments in the plane by Shamos and Huey [ShH]. Their 

algorithm solved the problem of whether any two line segments on a plane 

intersected. Their algorithm ran in 0(n  log n) time and used 0 (n ) space for 
scenes with n edges.

The Shamos-Huey algorithm was generalized to find all k intersections of a 

collection of line segments by Bentley and Ottmann [BeO]. Their modified 

algorithm runs in 0((n+ k ) log n) time and used 0(n+ k)  space. The key 

difference with the Bentley-Ottmann algorithm is that the ordering of line 

segments as they intersect the sweep line is updated at intersection points as 
well as at end points. By switching two line segments found to intersect, the 

ordering of line segments intersecting the sweep line can be maintained so that 
all of the intersections are reported.

Bentley and Ottmann’s algorithm works by sweeping a horizontal sweep 

line through the plane from top to bottom. A priority queue of events is used 

to determine the next j/-value at which to stop. This priority queue initially 

contains the end points of all of the line segments and is ordered by the j/-value 

of the end points. As the sweep line progresses downward the priority queue 

contains both end points and pending intersections of line segments. The 

priority queue is typically implemented as a heap in order to allow for 0(log n ) 

insertion and deletemin operations ( see [AHU] for further discussion of priority 
queues ).

T h e P la n e  S w eep  A lg o r ith m
r
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Another structure, the active edge list, is used to maintain the line 

segments which are currently cut by the horizontal sweep line. The active edge 

list is ordered by ar-value on the sweep line. This structure is usually kept using 

a balanced tree structure, such as AVL trees ( see [AHU]), so that insertion and 

deletion can be done in O(log n ) time. This also ensures that finding the 

predecessor and successor can be done on O{log n) time. Often extra pointers 

are used to link the entries so that the latter two operations can be done in 
constant time.

Brown improved the space bound to 0 (n ) by observing that only the next 
intersection for a line segment must be kept in the priority queue [Bro]. This is 

because intersections of line segments not currently adjacent in the sweep line 

order will be found when the line segments are adjacent, which must occur 
before the intersection point.

Both the Shamos-Huey and Bentley-Ottmann algorithms rely on the fact 

that for an intersection to occur, the two intersecting line segments must first 

become adjacent in the active edge list. In order to find all of the intersections 

of the line segments, only line segments that are adjacent in the active edge list 

must be tested for intersection. The only times that the adjacency can change 

is when a new line segment starts, an old line segments ends, or an intersection 

of two line segments occurs on the sweep line. These are the only times the 

active edge list must be updated. On each update at most two tests for new 

intersections need be made involving the line segments whose status has 
changed.

When an intersection is found, it is added to the priority queue according 
to its j/-value so that the updating of the active edge list will be done at an 

appropriate time when the sweep line reaches that y-value.

At each of the events in the priority queue, testing for intersections 

between the adjacent line segments must be done according to the type of 
entry.
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When a line segment E  starts, it is inserted into the active edge list. The 

line segment which precedes E  and the line segment E  are tested to determine if 

they intersect. If an intersection is found it is added to the priority queue of 

events according to its y-value. A similar test is performed between E  and the 
line segment that succeeds E  in the active edge list.

When a line segment E  ends, it is deleted from the active edge list. The 

line segment that preceded E  and the line segment that succeeded E  are tested 

to determine if they intersect. If an intersection point is found it is added to 
the priority queue of events according to its j/-value.

When an intersection point of two line segments E l  and E2 is reached, the 

line segments must be switched in the active edge list. Assuming that E l 

preceded E2 before the intersection, E l  will succeed E2 after the intersection. 

E l  must be tested with the line segment which succeeds it after the switch, and 

E2 must be tested with the line segment which precedes it after the switch. 

Any intersections found are added to the priority queue of events according to 
its j/-value.

When an intersection is added to the priority queue, duplicate points must 
be rejected. If these points are not rejected, then a test must be made when the 

priority queue is processed so that the same intersection is not reported multiple 

times. In Figure 2.1, we see that line segment A is inserted into the active edge 

list, then line segment B is inserted. At this time the intersection point between 

A and B is found. When line segment C is deleted, A and B are again adjacent, 

so the intersection point is recomputed. If the insertion into the priority queue 
does not check for duplicates, there will be wasted space maintaining the 
duplicate entries.

The places where a sweep line will stop are shown in Figure 1.3. Unlike an 

image space algorithm, where the scan lines are a fixed distance apart, the plane 

sweep increments are variable, with a higher concentration in the areas where 
events are happening.
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2.1 .1 . Psuedo-code for the Bentley—O ttm ann algorithm

Initialize a priority queue Q with the end points sorted in x.
Initialize the active edge list R to be empty.
While the priority queue is not empty do 

SP «— deletemin(Q)
if SP is a upper vertex of a line segment E 

insert E into R
if E intersects the previous or next line segment in R then 

add the intersection point or points to Q 
else if SP is a lower vertex of an line segment E

if the previous and next line segment of E intersect then 
add the intersection point to Q 

delete E from R
else /* SP is the intersection of E l and E2 */ 

output the intersection of E l and E2 at SP 
switch E l and E2 in R
if the left segment and the line segment before it in R intersect 

add the intersection to Q
if the right segment and the line segment after it in R intersect 

add the intersection to Q
endif

endwhile
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2.2. U sing plane sw eep for visible surface problem s

A scene is described by a collection of polygons, which may contain holes or 

which may consist of more than one piece. These polygons are projected onto a 

viewing plane, usually using a perspective transformation (see [FVD] for a 

discussion on perspective transformations). If polygons do not inter-penetrate, 

visibility only changes at the vertices of the polygons making up the scene and 

at the intersection points of edges of the polygons as they project onto the 

viewing plane. This is the same coherence property that is used in scanline 

algorithms to eliminate z-depth tests at most pixels on a scanline.

In order to determine the changes in visibility at each of the sweep points, 

depth and polygon information must be kept in addition to the active edge list. 

The polygonal information is kept implicitly in the active edge list, since the 

edges of the polygon that intersect the sweep line are all in the active edge list. 

This is accomplished by keeping track of which polygon an edge belongs to. 

Consecutive edges in the active edge list correspond to an interval of the sweep 

line that one polygon currently covers. A polygon covers an interval when it is 

the visible polygon for that interval.

Unfortunately, the covering polygon need not contain either of the two 

edges for an interval, but may be a completely unrelated polygon that is 

“uncovered” as the sweep line progresses down the plane. For each interval of 

the sweep line covered by a polygon, depth information must be kept for 

visibility testing. The method of storing the active edge list and the depth 

information can alter the time and space requirements of an algorithm. Various 

plane sweep algorithms will be discussed, including the worst case running times 
for each.
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2.2.1. W ork o f  Sechrest and Greenberg

One of the earliest uses of a plane sweep to solve the visible surface 

problem was by Sechrest and Greenberg [SeG]. In their algorithm, the active 

edge list was implemented as a linear linked list, rather than as a balanced tree 

structure. The depth information was also implemented as a linked list, so that 

the algorithm appears to have a running time of 0((n+ k) n2). For worst case 

processing, the use of linear linked lists is not appropriate, although for many 
practical scenes they are acceptable.

One major part of Sechrest and Greenburg’s algorithm is the reconstruction 

of the visible surfaces in a manner which keeps all of the pieces and holes of the 

polygons together so that subsequent rendering of the scene can be done on all 

of the parts of the polygon. The advantages of this approach will be discussed 
in Section 4.3.

2.2 .2 . W ork o f O ttm ann and W idm ayer

Ottmann and Widmayer present a solution to the visible line problem that 

extends a solution for iso-oriented rectangles to non iso-oriented polygons 

[OWi]. A set of iso—oriented rectangles is a set of rectangles whose sides are 

parallel to orthogonal (vertical and horizontal) coordinate axes. The algorithm 

proceeds by creating the notion of a zigzag as an analogue of the side to a 

rectangle. This is necessary because the sides of rectangles allow the active edge 

list to be kept efficiently in a segment tree when a plane sweep is used for 

iso-oriented rectangles. Zigzags provide a similar order relation for the edges of 

polygons, and are used to define a semi-dynamic segment tree to maintain the 

active edges. The intervals stored at the internal nodes of the segment tree are 

used to store the polygonal depth information necessary for visibility tests. The 

active edge list for the plane sweep is also represented by this structure, as the
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zigzag edges define the ends of intervals of a polygon.

Figure 2.2b

The zigzag of an edge s is the polygonal line starting at the top end point 

of s that follows s until another edge t is intersected (see Figure 2.2a). After 

the intersection, the zigzag follows t in a “downward” direction until t 

intersects another edge. This continues until the bottom end point of a segment 

is met. This defines a one-to-one relationship between segments and zigzags. 

No two different points on a zigzag have the same y value and two distinct 

zigzags never cross each other, although zigzags do have intersection points in 
common.

A zigzag za is to the left of a zigzag zb iff za and zb have points pa and pb 

with a common j/-value, such that the rr-value of pa is less than the rr-value of 

pb. The transitive closure of left will be denoted as left*. If two zigzags do not 

have any y-values in common then they are not related by left*. For all pairs 

of zigzags za and zb having no points with the same y-value, za is above zb iff 

all y-values of points of za are greater than all j/-values of zb. A total order 

left* | above can now be defined between any two zigzags za and zb. If za and
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zb are related in left+, then they are related in left+ | above in the same way, 

otherwise they are related in left+ | above in the same way as they are related in 
above.

r.

The input to a scene is made up of polygons, so zigzags are modified to 

continue on from the bottom of an edge to the upper point of the next edge of 

the polygon sharing the vertex (See Figure 2.2b). In a scene of p convex 

polygons, there will be 2p modified zigzags. If the input polygons are not 

convex, there may be O(n) modified zigzags. This defines an ordering between 

edges on the sweep line, by using the ordering of the zigzag that the edge is 

currently part of. This ordering can be computed in 0((n+ k) log n) time and 
0 (n ) space using a plane sweep.

A segment tree is then built from the m zigzags found in a scene, and each 

zigzag is associated with the top-most edge in the zigzag. In order to use the 

segment tree, we define a dynamic rank array which is indexed by the n edges. 
For an edge s the array is defined as:

'
i , if s is on the i-th zigzag in the current order.

rank(s) — undefined, otherwise

As well, an array current is maintained, indexed by the ranks, which contains 

the edge having a given rank. These two arrays are updated as the sweep line 

progresses down the scene. A segment tree is a minimal-height binary tree with 

m  leaves labelled from 1 to m  representing the m ranks. Insertion or deletion 

of an interval [a,b] is accomplished by updating the node-lists of each node in 
the segment tree to “cover” the interval.

This allows the visibility problem to be solved in 0(n  log2 n +  k log n) 
time and 0 (n  log n) space.
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2.2 .3 . W ork o f O ttm ann, W idm ayer and W ood

Ottmann, Widmayer and Wood give an algorithm which eliminates the need
r

for a prescan of the input to define an order relation. This is done using a fully 

dynamic segment tree instead of a semi-dynamic structure [OWW]. The 

dynamic segment tree is implemented by using a tree of bounded balance 

(weight balanced) instead of an optimal binary tree as in the semi—dynamic 

structure. For a discussion of trees of bounded balance, see Nievergelt and 

Reingold [NiR]. Using a dynamic segment tree, we can then use the x  ordering 

of the active edges on the horizontal sweep line, which eliminates the need for a 

prescan to determine the order relation. At each node of the segment tree, the 

depth information of the polygons covering that interval is kept in an AVL tree, 
ordered by 2-depth.

This algorithm has 0 (n  log2 n +  k log n) time and 0{n  log n ) space 
complexity in the worst case, the same as the previous algorithm.

2.2.4. W ork o f Nurm i

An 0 ((n + k ) log n) time and space algorithm for the visible line problem is 

given in Nurmi [Nur]. His algorithm is based on the algorithm of Ottmann, 

Widmayer and Wood, but uses a more efficient data structure introduced by 

Swart and Ladner. This data structure accounts for the time improvement in 

Nurmi’s algorithm, at the expense of increased space usage. Nurmi’s algorithm 
will be discussed in detail in Chapter 3.
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2.2.5. W ork o f Schm itt

An outline of a visible surface algorithm using a plane sweep is contained in
r

Schmitt [Sch]. His algorithm handles polygons made up of the edges bounding 

them and is composed of four phases. The first phase builds a connection graph 

consisting of all of the endpoints of the line segments making up the polygons, 

all intersections points of these line segments, and drain points. The drain 

points are introduced in order to eliminate all left corners that have no 

connection to objects left of it. They are used to ensure that the connection 

graph is connected, and to clarify inclusion relations during transversal. Figure 

2.3 illustrates a simple scene, its drain points and the corresponding connection 
graph.

The connection graph is a graph where the vertices are all points in the 

plane which are end points of line segments, all intersection points of line 

segments, and all drain points. Two vertices in the connection graph are 

connected by an edge iff the two vertices are neighbours on a specific line 

segment or a vertex needs a connection with another line segment via a drain 
point (a drain edge).

The second phase of Schmitt’s algorithm traverses the connection graph 

and determines the inclusion status of the edges. The inclusion status of an 
edge e is defined by

R 0(e) = set of polygons that contain e

R - i(e) =  set of polygons that e is on the lower boundary

■R+i(e) =  se  ̂ °f polygons for which e is on the upper boundary

The space requirement to store this information is 0(n). The graph can be 
transversed in 0 (n + k ) time.
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Figure 2.3
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All of this information is used by the third phase of Schmitt’s algorithm as 
it determines the visible edges. During the transversal of the connection graph 

in the second phase, the visibility of the edges is determined from the inclusion 

status of the edges. This is done by checking for changes to the inclusion status 

that affect an edge as the graph is being transversed. If the edge is visible, it is 
kept for use by the fourth phase.

The fourth phase examines the visible edges of the connection graph and 

extracts the visible surfaces. This stage uses information about which surfaces 

the edges belong to on each side of the visible edge. The visibility of these 

polygons determines the surfaces which must be reported, since one or both 
polygons sharing the edge may be visible.

This algorithm is claimed to run in 0 (r  +  (n + k ) log n) time, where r is 

the number of pairs (polygon and line segment) having the line segment 

completely within the interior of the polygon, n is the number of line segments, 

and k is the number of intersections of line segments on the projection plane. 
The space required is 0(n+k).

Schmitt’s algorithm was not chosen for implementation due to the 

complexity of manipulating the connection graph and extracting the visible 

surfaces from it, as well as the high space requirement to store the connection 
graph.

2.2.6. W ork of Devai

Using line arrangements, Devai has developed an algorithm which is 0 (n 2) 

[Dev]. The first step of the algorithm is to extend all of the edges of polygons to 

infinite length lines. The graph G corresponding to the plane subdivisions 

induced by these lines is then computed. In addition to the intersections at 

finite points, it is assumed that all half-lines of the subdivision meet at a single 

point at infinity. G is computed iteratively, by adding each line in turn to the 

graph and then finding the intersection points of the new line with each of the
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lines already in the graph.

A list of the intersections on each line is kept in sorted order. This is used 

to determine the visible portions of each line. All of the polygons which
r

intersect each line are put onto a list for each line. Then for each polygon 

intersecting a line, the visibility of each portion of the line is calculated.

This algorithm runs in time 0 (n 2) and requires 0 (n 2) space. It does not 

depend on the number of intersections present in the scene, since the lines are 

extended to infinity, and all of the intersections are found. Since the term of k 

in the previous algorithms can be fi(n2), those algorithms can require 

0 (n 2 log n) time for the worst scenes, which is more than required by Devai’s 

algorithm. For less complex pictures where the number of intersections is less 

then fl(n /  log n), the previous algorithms will require less work than Devai’s 
algorithm.

2.2 .7 . W ork o f M cKenna

McKenna has shown that visible surface processing can be accomplished in 

0 (n 2) time and space [McK]. As with Devai, line arrangements are used to 

build a graph of intersections with all lines extended to infinity. Instead of 

processing each line separately, the second stage of McKenna’s algorithm sweeps 

a “bendable” topologically vertical line from left to right through the 
arrangement. A vertically ordered list of the n -\-1 current regions crossed by 

the sweep line is maintained. This corresponds to the active edge list of a 

regular plane sweep. For each region the boundary segments above and below 

the region are kept. When boundaries meet at the right endpoint of the region 

they are added to an unordered queue of completable regions.

For each of the current regions an ordered doubly linked list is maintained 

of the polygons that contain the region, ordered by their z-value so that the 

closest face is the first element of the list. The heads of the lists are kept in an
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array indexed by faces and current regions, enabling the list to be accessed in 

constant time. The frontmost face for each region is then kept for processing by 
the next stage of the algorithm.

r
These frontmost faces are then used to determine visibility by removing all 

of the arrangement segments whose incident regions have common frontmost 

faces. The corresponding vertices are also removed. This leaves a tiling of the 
plane by the visible polygons.

This algorithm runs in 0 (n 2) time and uses 0 (n 2) space to solve the visible 
surface problem.

2.3. W orst case results

Devai has shown that the visible line problem is 8{n2), by giving an 0 (n 2) 
algorithm and an example requiring fi(n2) steps to determine the visible lines 

[Dev]. Further work by McKenna has shown that the visible surface problem is 

also 9(n2) [McK]. It had been conjectured that the visible surface problem was 

more difficult than the visible line problem. Schmitt [Sch] conjectured that the 

visible surface problem would take f1(n2 log n ) time to solve in the worst case.

It is an open question whether these results can be improved upon so that 

the order statistics include k. This would result in an algorithm which would 
still be 0 {n 2) in the worst case, but it would run faster when there are few 

intersections between edges. Since it would take 0{n  log n) to determine that 

there are no intersections between edges, it would be necessary to have a term 

of n log n in the running time. Therefore an “optimal” algorithm might have a 
running time of 0(n  log n +  k).

The next chapter discusses the algorithm of Nurmi in more detail. It was 

chosen for implementation because the data structures used in the algorithm are 

conceptually simple compared to the other algorithms. The time bound is the 

best for the algorithms which are intersection sensitive. It was felt that for
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practical scenes it would run faster than McKenna’s algorithm.

r
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A lg o rith m  D escr ip tio n
r

3.1. M V—trees

MV-trees were introduced in Swartz and Ladner [SwL], to allow trees to be 

copied in 0(1) time and to allow insertion, deletion and searches to be done in 

O(log n ) time. These are based on balanced binary trees that rely on balancing 

actions on the path of insertion or deletion. Examples of algorithms which 

maintain balanced trees in this manner are dichromatic trees, 2-3 trees, and 
AVL-trees [AHU].

In order to accomplish constant time copying of trees, only the pointer to 

the root of the tree is copied. On insertion of a node, each node on the path to 

the new node is copied, so that only the one tree is affected. Similarly, on 

deletion of a node, the nodes on the path to the deleted node are copied, so 

again only the one tree is affected. Usage counts for the nodes are maintained 

to reclaim storage which is no longer referenced by any of the trees. Since the 

standard insertion and deletion algorithms were originally 0(log n ), and we 

have only added a constant amount of work to be done at each step, the new 

tree algorithms remain 0(log n). For each insertion and deletion there will be 

0(log n) additional space used compared to the original tree. The additional 

space is less than copying the entire tree for a copy operation, but the total 

space used by MV-trees is currently an open problem. The changes in an 
MV-tree for insertion and deletion are shown in Figure 3.1.

MV-trees are used to maintain the polygonal depth information for each of 

the intervals in the active edge structure. This allows the algorithm to simply 

copy a pointer in order to copy the currently active polygons for the interval it 

is being inserted into, without copying the entire tree of polygons. Insertion and
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Insertion in an MV-tree

Deletion in an MV-tree

Figure 3.1
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deletion of polygons in this structure can be done in logarithmic time. At each 
step there are at most two of these operations to be performed.

3.2. N u rm i’s A lgorithm  r

The input to the algorithm is a set of clipped polygons, which have been 

projected onto a plane. The projection will normally be done by using a 

perspective transformation, although an orthographic projection could also be 

used. 3-D clipping in normalized coordinates ensures that there will only be 

positive ar-coordinates, ranging from 0 to 1. The input polygons may be 

concave, may have holes, and may even be non-connected, so that the output 

polygons of the algorithm could serve as input. This was done so that small 

changes in a scene could be made without re-solving the visibility of the entire 

scene, but only re-solving the portions of the scene which have changed.

The output of the algorithm will be a set of non-overlapping polygons 
which completely “tile” the clipping window. These polygons will maintain 

information on the original “master” polygon they are derived from, so that 

each polygon may be processed in its entirety for shading and texturing 
purposes.

A plane sweep algorithm is used to determine the intersections of the edges 

of the polygons. The active edge structure is implemented as an AVL tree and 

the nodes of the structure are used both for determining the intersection points 

and for maintaining the intervals of the sweep line. The operations of search, 
insert and delete can all be performed in 0 (log n ) time for AVL trees.

For each interval of the sweep line, a structure is kept with the faces that 

cover the interval. These structures are implemented as MV-trees, using a base 

tree type of AVL trees; these will be referred to as node—lists. The ordering of 

faces is according to 2-depth. The operations of search, insert and delete can be 

performed in O(log n) time as with normal AVL trees. Since these are
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MV-trees a copy operation will take 0(1) time.

The sweep line stops at each vertex of the input polygons and at any 

intersections of edges found during the sweep. At each of these points, the data
r

structures are updated and visibility tests are performed if necessary. The 

update operations maintain the data structures to ensure that the node-list of 

each active edge contains the face which covers the interval from that edge to 

the next edge on its right side along the sweep line. As well the visible portions 

of the polygons in the scene are being updated as the sweep progresses. By 
definition, the right-most edge’s node-list is empty.

Shadow edges are used as duplicate edges for the visible edges. This is done 
to enable quick testing of whether an edge is visible and to keep each edge in 

only one polygon. A shadow edge are always oriented in the opposite direction 

from its associated edge. This ensures that any visible polygons constructed will 
have the correct orientation. A polygon that has its edges in clockwise order is 

visible in the interior and a polygon that has its edges in counter-clockwise 
order defines a hole.

The update operations and visibility tests to be done at each point vary 

depending on the type of point encountered. The operators succ() and prev() 

give the successive and previous active edge on the sweep line, for an edge. In 

each case below edge el preceded e2 in the active edge list before the vertex was 
processed.

Case 1: Top vertex - insert the two edges (el, e2) from the vertex into the

active edge structure. The node-list for the first edge is a copy of 

the node-list of prev(el) with the polygon of el either deleted or 

added from the list, depending on whether el is part of a hole or 

not. The node-list for e2 is the same as the node-list for prev(el). 

Check for an intersection of el and prev(el) and add it to the 

priority queue if it exists. Check for an intersection of e2 and
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succ(e2) and add it to the priority queue if it exists. If the polygon 

of these edges is at the top of the node-list of el, start a new 

visible polygon and create a shadow edge for the previously visible 
polygon.

Figure 3.3
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Case 2:

Case 3:

Bottom vertex - delete the two edges (el,e2) from the active edge 

structure. Check for an intersection between prev(el) and succ(e2) 

and add it to the priority queue if it exists. If shadow edges are 

present for el and e2, join the shadow edges of el anQ e2. These 

two shadow edges will be part of the same master polygon, but 

they might not form a closed polygon.

Figure 3.4

Side vertex - replace edge el with the new edge e2 in the active 

edge structure, and the edge e2 gets edge e l’s node-list unchanged. 

The edge e2 keeps the same visibility as edge el had. Check for 

an intersection of e2 and prev(e2) and add it to the priority queue 

if it exists. Check for an intersection of e2 and succ(e2) and add it 

to the priority queue if it exists. If el has a shadow edge then a 

shadow edge must be created for e2. This shadow edge is joined 

with the shadow edge of el, in the opposite direction that el and 
e2 are joined.



Figure 3.5

Case 4: Intersection point - switch the two edges (el, e2) in the active

edge structure. If the interior of e l’s polygon lies to the left of the 

edge then add the polygon to e2’s node-list otherwise delete the 

polygon from e2’s node-list. If the interior of e2’s polygon lies on 

the right of the edge then add the polygon to e l’s node-list 

otherwise delete the polygon from e l’s node-list. If both edges are 

invisible then they will continue to be invisible. If both edges are 

visible then the closer edge at the intersection point continues to 

be visible and the other edge becomes invisible. If one edge is 

visible then it continues to be visible and the other edge becomes 

visible if its face is at the top of its node—list at the intersection 
point. This is explained in more detail in Section 3.4.

Each case involves at most two updating operations to the structures 

storing the active edges and the node—lists. Each of these operations takes 

O(log n) time and the priority queue updates also take O(log n). Since the 

sweep line visits 0 (n + k ) points (where k is the number of edge intersections), 

the algorithm requires 0((n+ k ) log n) time.
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The 0(1) copying time for MV-trees is necessary so that the trees do not 

need to be copied each time a node-list is copied. If standard AVL trees are 

used, it will require 0 (n ) steps to make a copy of the tree. This will affect the 

time bound on the algorithm so that it no longer runs in 0((n+ k) lorg n) time.

The space requirements for the algorithm cannot exceed the time bounds so 
the space required is at most 0((n+fc) log n). The possible increase in space 

from 0 (n + k)  is caused by the MV-trees which trade off time for space through 

the copying operation. The exact space bounds of MV-trees is not known at the 
current time, and remains an open problem.
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3.3. P suedo code for N urm i’s algorithm

In the following, E l  is the edge above the sweep point SP, arid E2 is the 

edge below the sweep point. At an intersection, E l  is the leftmost edge. The 

function prev(E) returns the previous edge in the active edge list and the 
function succ(E) returns the next edge.

for each polygon P insert all the vertices into priority queue Q 
initialize active edge list R to the background polygon’s edges 
while the priority queue is not empty do 

SP «— deletemin(Q) 
if SP is a side vertex then

replace E l with E2 in R
if E2 and prev(E2) intersect then add the intersection to Q 
if E2 and succ(E2) intersect then add the intersection to Q 
if E l has a shadow edge then

continue the shadow edge at SP with E2’s shadow edge
endif

elseif SP is a top vertex then 
insert E l and E2 into R
if E l and prev(El) intersect then add the intersection to Q 
if E2 and succ(E2) intersect then add the intersection to Q 
if SP’s polygon is frontmost then

create shadow edges for E l and E2 
create a hole in the previously visible polygon

endif
elseif SP is a bottom vertex then

if prev(El) and succ(E2) intersect then add the intersection to Q 
delete E l and E2 from R 
if E l has a shadow edge then

merge the shadow edges of E l and E2
endif

else { SP is an intersection }
if at least one of E l or E2 is visible

determine visibility after the intersection,
and update shadow edges as appropriate.

endif
switch E l and E2 in R
if E2 and prev(E2) intersect then add the intersection to Q 
if E l and succ(El) intersect then add the intersection to Q

endif
endwhile
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3.4. U pdating at intersections

During the sweep, visible edges have a “shadow” edge associated with them 

to define the border between two visible polygons. These are represented by 

dotted lines in the diagrams. These shadow edges are used to define holes and 

visible pieces of polygons to ensure that the final polygons are a set of 

non-overlapping polygons that completely tile the window. These edges are 

updated as necessary at each sweep point, and their existence on an edge defines 

the edge to be visible. This gives a fast method for determining if the edges at 

an intersection point are invisible. If they are both invisible before the 

intersection they will continue invisible after the intersection and the only 

processing to be done is to update the active edge list and to check for new 
intersections.

If at least one of the edges coming into an intersection is visible, then 

updates to the visibility status of the edges may be necessary. There are eight 

cases to consider at an intersection point, depending on the visibility of each 

edge coming into the intersection point, and which side of the edge the polygon 

is on. These cases are illustrated in Figure 3.6. Each of these cases will be 
discussed in turn.

3.4 .1 . Case 1

We have a shadow edge for P2 along e l ,  which must be joined to e2, and 

P2 is possibly closed off. The shadow edge of e2 for P3 continues along e l ,  

replacing the old shadow edge. e2 will no longer have a shadow edge since it is 
no longer visible.
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Case 2 Case 3

Figure 3.6

3.4 .2 . Case 2

The shadow edges of e l  and e2 are joined and P3 is possibly closed off. e l  

gets a new shadow edge for P2 and e2 loses its shadow edge.
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3.4 .3 . Case 3

The shadow edge of e2 is joined with e l  and P i is possibly closed off. The 

shadow edge of e l  for P3 continues as a shadow edge of e2 andte l  loses its 
shadow edge.

3.4 .4 . Case 4

The shadow edges of e l  and e2 are joined and P3 is possibly closed off. e2 

gets a new shadow edge for P i and e l  loses its shadow edge.

3.4 .5 . Case 5

The shadow edge of e l  for P2 continues as e2. Both e l  and e2 get shadow 
edges for P3.

3.4 .6 . Case 6

The shadow edge of e l  for P3 continues as the shadow edge of e2. e l  gets 
a shadow edge for P2.

3.4 .7 . Case 7

The shadow edge of e2 for P i continues as e l .  Both e l  and e2 get shadow 
edges for P3.

3.4 .8 . Case 8

The shadow edge of e2 for P3 continues as the shadow edge of e l .  e2 gets 
a new shadow edge for P i.
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M od ify in g  th e  G R  p ack age in ter fa ce
t

4.1. O verview

The GR package evolved from a set of programming assignments given in 

the introductory course on computer graphics. These assignments were 

originally in FORTRAN, and were changed to Pascal in 1979. The change of 

language allowed sophisticated data structures to be used in the package, and 

improved student productivity. The research package used by the Computer 

Graphics Laboratory (CGL) is an implementation of these assignments in the C 

language. The major functional difference between the two packages is that a 

larger number of input and output devices are supported by the research version 
of the package.

The GR package on CGL was modified to accommodate the plane sweep 

algorithm for solving the visible surface problem. A detailed description of the 

GR package is contained in [Lea]. Only an overview will be presented here. 
The GR package is split into five levels, each with its own function.

4.1 .1 . L evel 5

This level of the package is the application library. This level is used to 
read in scene files and to display the scene file by walking the directed acyclic 

graph which represents the scene file within this level and contains nodes for 

modeling transformations (rotate, scale, translate) and modeling primitives 

(polygons and text - only polygons are considered here). A routine called 

ReadScene is used to read in a file containing a description of the graph. This 
routine is used to input static scenes to the package.
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4.1 .2 . Level 4

This level forms the graphics interface module for the GR package. A 

number of graphics primitives are provided by this level to enable a user to do
t

drawing, colouring, and geometric transformations. Routines to handle the 

perspective transformation are also included. Input to this level is specified as 

non-homogeneous three-dimensional coordinates (x,y,z). The output of this 
level is specified as homogeneous coordinates (x,y ,z,w ).

4.1 .3 . L evel 3

This level of the package looks after clipping its input to a rectangular 
volume, so that 1 ^  x  ^  1, —1 <  y <  1 and 0 ^  z ^  1. Both line clipping 

and polygon clipping are supported. Conversion from homogeneous coordinates 

back to non-homogeneous normalized device coordinates is also performed at 
this level.

4.1 .4 . L evel 2

This level maps the (x,y,z) from floating point normalized device 

coordinates to virtual device coordinates, which are 15-bit unsigned integers. A 

viewport may be defined to be a portion of these virtual device coordinates, so 
that the picture is mapped to a portion of the virtual screen.

4.1 .5 . L evel 1

This level contains all of the device-dependent code for input and output 

devices. Coordinates are translated to/from the actual device coordinates by 

the level 1 routines. A number of devices are supported by level 1 of the 

package, including the Ikonas frame buffer, the Tektronix 4027 and 4010 display 

terminals, the Hewlett Packard 2648A terminal, and a Summagraphics Bitpad 
One tablet.
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4.2. P lane Sweep

The plane sweep algorithm fits between levels two and three of the GR 

package, making it effectively level 2.5. The current implementation modifies 

the standard package so that all of the Level 3 routines now call Level 2.5 
routines instead of Level 2 routines for output related tasks that could affect 

the plane sweep. The master polygon and all of its pieces and holes are clipped 

for input into the sweep. Polygon clipping is used rather than line clipping 

because the plane sweep assumes that its input is a collection of polygons. The 

calculations for the sweep are carried out in floating point arithmetic and the 

polygons are then either written to a file for subsequent processing or passed 

down to level 2, where the coordinates are converted to integer virtual device 

coordinates. The output file is passed through a conversion program to convert 

the polygons into the format acceptable to the standard GR ReadScene routine.

4.3. M aster Polygons

Every input polygon is either a master polygon or is associated with a 

master polygon. The master polygons are processed with their subservient 

polygons through the transformations of level 4 of the GR package and through 

the clipping in level 3. Currently this relationship does not continue to the 

lower levels for rendering, but the software could be extended to maintain the 
polygon together for processing at the rendering stage.

The master polygons keep all of the information on the polygon, such as 
normals at vertices, the plane equation, and any texture mapping parameters. 

Each of the subservient polygons keeps a pointer to the master polygon and the 

master polygon keeps a pointer to a linked list of its subservient polygons. Each 

master polygon must have at least one subservient polygon defining a 

potentially visible portion, or else the whole polygon is considered to be visible. 

In order to allow holes to be represented, a hole is transversed in the opposite
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direction to that of the master polygon, so that the order of vertices for both 

holes and regular polygons determines which side of an edge is on the interior of 
the polygon.

The master polygon concept is used to ensure that shading and texturing 

can be done correctly. Linear interpolation is the usual method for determining 

normals or shading values at points other than a vertex. This is not rotationally 

independent, so the order in which operations are performed can give different 

values for the same point. This can cause shading values for pieces of a polygon 

which abut to be different. A similar problem occurs with textures not lining up 
properly for the various pieces of a polygon.

4.4 . R eadScene Changes

The format of the ReadScene was modified to allow master polygons to be 

distinguished from the subservient polygons. If a polygon is subservient to 

another polygon, then the number of that polygon is added as an additional field 

on the scene node description. If this field is missing or is zero, then the 

polygon is assumed to be a master polygon, so Poly in Level 4 of the GR 

package was modified to create a subservient polygon consisting the the entire 

master polygon if there are no subservient polygons given as input. By 

implementing the input in this manner, old definitions can be read in, and all of 

the input polygons will be considered as master polygons. The ReadScene files 

will be upward compatible, but files output from the plane sweep must have the 

master polygons deleted before the files can be used by the standard GR 
package.
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C onclusions
t

5.1. C urrent Im plem entation

The integration of a plane sweep algorithm as a new level of the GR 

package is in progress. The output from the algorithm may be run through a 

conversion program to create a new ReadScene file which can be read in by the 

standard package or the new version. If this file is to be used with the standard 

package, a second step is necessary in order to remove the master polygons from 

the file, and to interpolate the normals at the vertices of the subservient 

polygons so that the standard package has the information necessary to render 

the scene. This allows the scene to be rendered using the standard package 
without modifying the lower levels of the package to accommodate the master 
polygon representation.

A background polygon is defined to cover the window to ensure that there 

is a polygon covering the whole window. This ensures that the window can be 

“tiled” with no holes. This polygon is positioned at maximum 2-depth so that 

other polygons in the scene will always obscure it. The input polygons to the 

plane sweep have the vertices of their edges put into the priority queue after the 

master polygon and its subservients have been clipped. When all of the 

polygons have been processed the plane sweep is started.

During the plane sweep the visible polygons intersecting the sweep line are 

kept as an oriented collection of edges. When these polygons are closed they are 

added to a linear list of visible polygons. These are the polygons which are 

output as the tiling of the plane. All of the master polygons are output, 

together with the visible portions of each polygon. This output file is processed 
by a conversion program to create a new ReadScene file.
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5.2. P ossib le extensions

The lower levels of the GR package should be modified to process the 

master polygons and the subservients together. This would Tbe done in 

conjunction with rewriting the rendering software to take advantage of having 

all the parts of a polygon available, so that shading and texturing can be done 
correctly on the visible portions of the scene.

Currently the information on polygon colours is not retained by the plane 
sweep. The colour nodes read by ReadScene should be included in the output 
file generated by the plane sweep.

5.3. A pplications

This software will be used to generate images for use by the Department of 

Psychology for cognitive experiments. These experiments consist of static 

images which will be used on the DY-4 workstations and the Amiga personal 

computer. Because the plane sweep solves the visible surface problem 

independent of the resolution of the display, the same scene files can be used for 
both display systems.

The output from the plane sweep has the advantage of being compact 

compared to a raster image. This allows it to be sent to the display systems 

quickly. Usually the rendering speed is limited by the display system 
capabilities.
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