
A Measurement-Based Analysis of the Real-Time Performance

of the Linux Kernel

Luca Abeni�, Ashvin Goel, Charles Krasic, Jim Snow, Jonathan Walpole

luca@sssup.it, fashvin, krasic, jsnow, walpoleg@cse.ogi.edu

Department of Computer Science and Engineering

Oregon Graduate Institute, Portland

Abstract

This paper presents an experimental study of the latency behavior of the Linux kernel. We

identify major sources of latency in the kernel with the goal of providing real-time performance

in a widely used general-purpose operating system. We quantify each source of latency with a

series of micro-benchmarks and also evaluate the e�ects of latency on a time-sensitive application.

Our analysis shows that there are two main causes of latency in the kernel: timer resolution and

non-preemptable sections. Our experiments show that in the standard Linux kernel, the timer

resolution latency is predominant, and generally hides the non-preemptable section latency. We

use accurate timers to reduce timer resolution latency and then analyze the non-preemptable

section latency for several variants of Linux.

Paper Category: Research Paper

1 Introduction

In the last several years, there has been an explosive growth in interest in supporting multimedia ap-

plications such as video streaming programs, software audio mixers, etc., on general-purpose operating

systems. These multimedia applications, and soft real-time applications in general, are characterized

by implicit temporal constraints that must be satis�ed to provide the desired QoS. We thus call these

applications time-sensitive applications.

To support time-sensitive applications, a general-purpose kernel must respect the application's

temporal constraints and hence a predictable schedule is needed. Unfortunately, general-purpose

kernels often generate a schedule that is di�erent from the expected one due to various reasons such

as the implementation speci�cs of the kernel. This paper, evaluates, measures, and characterizes the

temporal behavior of a widely used general-purpose kernel through an extensive set of experiments

with the goal of supporting real-time applications on such operating systems (OSs).

�Luca Abeni is also aÆliated with ReTiS Lab, Scuola Superiore S. Anna, Pisa, Italy.
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In particular, we de�ne a metric called kernel latency that quanti�es the di�erence between the

actual schedule produced by the kernel and the ideal schedule. Based on this de�nition, we perform a

comprehensive, quantitative evaluation of latency in the Linux kernel [22]. We chose Linux because it

is widely used, supports most commonly available hardware and is distributed under an open source

license [7] which enables researchers to easily experiment with it.

We identify several sources of kernel latency, the two most important sources being timer resolution

and non-preemptive sections in the kernel. We designed a set of micro-benchmarks and have used

these benchmarks to systematically quantify each source of latency in the Linux kernel. In addition,

we compare the latency behavior of the standard Linux kernel with the behavior of some modi�ed

versions of the kernel. We show that the application of some well known real-time concepts such as

full kernel preemptability can greatly improve the real-time performance of Linux.

We also quantify the e�ects of kernel latency at the application-level by instrumenting a well-

known audio/video application and thus experimentally evaluate how well a general-purpose Linux

kernel can support the real-time performance needs of multimedia applications.

The main contribution of this paper is a characterization of the temporal behavior of a general-

purpose kernel. We believe that this study is important because it enables using real-time analysis

for such systems. The results contained in this paper complement many of the results obtained in

real-time research, in that they help focus attention on the major sources of latency in practice, and

hence help us move towards the goal of realizing real-time behavior in a widely used operating system

such as Linux.

The rest of the paper is organized as follows. Section 2 formally de�nes kernel latency and investi-

gates the factors that contribute to it. In Section 3, we describe the experimental setup for evaluating

the various components of kernel latency. Section 4 presents the experimental results, and in Section

5 we show how kernel latency a�ects a media application running on Linux. Finally, in Section 6 we

present related work and in Section 7 we state our conclusions.

2 The Kernel Latency

The main focus of the Linux kernel is to provide high throughput, i.e., minimizing the average exe-

cution time experienced by concurrently executing processes. Until now, Linux has not focused on

time-sensitive applications, which are characterized by temporal constraints. Such applications may

require periodic execution where, for example, the period is derived from the frame rate of an au-

dio/video stream, or they may require response in a short time to external events such as the arrival

of a network packet.
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In this paper, we use kernel latency as a metric to evaluate kernel support for time-sensitive

applications. We de�ne kernel latency as follows:

De�nition 1 Let � be a task1 belonging to a time-sensitive application that requires execution at time

t, and let t0 be the time at which � is actually scheduled; we de�ne the kernel latency experienced by

� as L = t0 � t.

Examples of tasks that need to execute at time t are, for instance, periodic tasks (the task wakes up at

time t in response to a periodic event), or tasks that must react in a short time to external interrupts.

2.1 Causes of Kernel Latency

Kernel latency can be caused by several factors. We have identi�ed three major causes of kernel

latency: timer resolution, scheduling jitter, and non-preemptable sections in the kernel.

Timer resolution latency occurs because kernel timers are generally implemented using a periodic

tick interrupt. For example, consider a periodic task � that needs to execute every T�s. Typically,

the task will be woken up by a kernel timer that is triggered by the periodic tick interrupt with say,

period T tick. Hence, a task that sleeps for an arbitrary amount of time T can experience some timer

resolution latency Ltimer if its expected activation time is not on a tick boundary.

Scheduling jitter is caused because � may not be scheduled immediately even if accurate timers

ensure that � enters the ready queue at the correct time. The scheduling jitter experienced by a task

� can be easily eliminated by assigning the highest real-time priority to it.2 Since real-time scheduling

algorithms that reduce scheduling jitter have been widely studied in the literature we will not address

this problem in this paper. For the purpose of our experiments we will simply use the highest real-time

priority to eliminate the latency caused by scheduling jitter.

Non-preemptable section latency is caused by non-preemptable sections in the kernel that can keep

a high priority task from being scheduled. For example, if interrupts are disabled at time t, task �

can only enter the ready queue later when interrupts are re-enabled. In addition, even if � enters

the ready queue at the correct time t and has the highest real-time priority in the system, it may

still not be scheduled if another task is running in the kernel in a non-preemptable section. In this

case, � will be scheduled when the kernel exits the non-preemptable section at time t0, contributing a

non-preemptable section latency Lnp = t0 � t.

1In this paper, we use the word \task" to denote either a thread or a process.
2Note that using Linux real-time priorities, it is very easy to implement a rate-monotonic policy.
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2.2 Analysis of the Latencies

In our experiments, � is scheduled using the highest real-time priority to eliminate kernel latency

caused by scheduling jitter. Thus, the maximum latency L that � can experience is equal to the

sum of the maximum latencies due to timer resolution and non-preemptable sections (maxfLtimerg+

maxfLnpg). We analyze these two terms separately.

2.2.1 Timer Resolution

Standard Linux timers are triggered by a periodic tick interrupt, which on x86 machines is generated

by the Programmable Interval Timer (PIT) and has a period T tick = 10ms. As a result, the maximum

latency due to the timer resolution maxfLtimerg is T tick = 10ms. Thus, this value can be reduced by

reducing T tick. However, decreasing T tick increases system overhead because more tick interrupts are

generated. In addition, there is a lower bound on Ltimer which is equal to the execution time required

for servicing the tick interrupt.

The fact that a periodic timer interrupt is not an appropriate solution for a real-time kernel is

well known in the literature, and thus most of the existing real-time kernels provide high resolution

timers based on an aperiodic interrupt source[18]. In an x86 architecture, the PIT or the CPU

APIC (Advanced Programmable Interrupt Controller present in many modern x86 CPUs) can be

programmed to generate aperiodic interrupts for this purpose. We expect that high resolution timers

will reduce Ltimer to the interrupt service time without signi�cantly increasing the kernel overhead,

because these interrupts are generated only when a timer expires. In this paper, we consider the

timer resolution latency in two di�erent kernels: 1) the standard Linux kernel, 2) a high-resolution

timer Linux kernel that we have implemented at OGI. Our experiments in Section 4.2.1 show that

the resolution of our high-resolution timers lies between 4�s to 6�s.

2.2.2 Non-Preemptable Sections

The second term contributing to the maximum kernel latency is the maximum size of a kernel non-

preemptable section, maxfLnpg. This value depends on the strategy that the kernel uses to guarantee

the consistency of its internal structures, and on the internal organization of the kernel. In this paper,

we consider kernel latencies due to non-preemptable sections of 4 di�erent variants of the kernel.

These kernels use di�erent strategies for protecting their internal structures. These kernels are 1) the

standard Linux kernel, 2) the Low-Latency Linux kernel, 3) the Preemptable Linux kernel, and 4) the

Preemptable Lock-Breaking Linux kernel.

Standard Linux: The standard kernel is based on the classical monolithic structure, in which the
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consistency of kernel structures is enforced by allowing at most one execution 
ow in the kernel

at any given time. This is achieved by disabling preemption when an execution 
ow enters the

kernel, i.e., when an interrupt �res or when a system call is invoked. In a standard Linux kernel,

maxfLnpg is equal to the maximum length of a system call plus the processing time of all the

interrupts that �re before returning to user mode. Unfortunately, this value can be as large as

100ms as shown in Section 4.

Low-Latency Linux: This approach \corrects" the monolithic structure by inserting explicit pre-

emption points (also called rescheduling points) inside the kernel. In this approach, when a

thread is executing inside the kernel it can explicitly decide to yield the CPU to some other

thread. In this way, the size of non-preemptable sections is reduced, thus decreasing Lnp. In

a low-latency kernel, the consistency of kernel data is enforced by using cooperative scheduling

(instead of non-preemptive scheduling) when the execution 
ow enters the kernel. This ap-

proach is used by some real-time versions of Linux, such as RED Linux [16], and by Andrew

Morton's low-latency patch [15]. In a low-latency kernel, maxfLnpg decreases to the maximum

time between two rescheduling points.

Preemptable Linux: The preemptable approach, used in most real-time systems, removes the con-

straint of a single execution 
ow inside the kernel. Thus it is not necessary to disable preemption

when an execution 
ow enters the kernel. To support full kernel preemptability, kernel data must

be explicitly protected using mutexes or spinlocks. The Linux preemptable kernel patch [12] uses

this approach and makes the kernel fully preemptable. Kernel preemption is disabled only when

a spinlock is held.3 In a preemptable kernel, maxfLnpg is determined by the maximum amount

of time for which a spinlock is held inside the kernel.

Preemptable Lock-Breaking Linux: The kernel latency can be high in Preemptable Linux when

some spinlock is held for a long time. Lock breaking addresses this problem by \breaking"

long spinlocks, i.e., by releasing spinlocks at strategic points. Breaking spinlocks into smaller

non-preemptable sections is similar to the approach used by Low-Latency Linux.

As a �nal note, we would like to point out that the preemption patch has been recently accepted

in the development (unstable) branch of the Linux kernel, and is now present in version 2.5.4 of the

kernel.

3There is also a di�erent patch, from Timesys [10], based on mutexes and priority inheritance instead of on spinlocks.
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3 Experimental Setup

The goal of this paper is to evaluate Linux kernel latency. One method for experimentally measuring

the latency is to use a task that invokes usleep to sleep for a speci�ed amount of time and then

measures the time that it actually slept. The latency L, as de�ned in Section 2, is then the di�erence

between these two times. Unfortunately, this approach measures the sum of all the latency components

and thus does not give us an insight into the causes of latency.

We investigate the individual latency components by measuring each of them in isolation, i.e.,

measure each source of latency while eliminating the others. First, the scheduling jitter is easily

eliminated by running the test program at the highest real-time priority. Next, we need to measure

timer resolution latency Ltimer and non-preemptable section latency Lnp in isolation. To measure

Ltimer, we eliminate Lnp by running the experiment on an unloaded system. To measure Lnp, we

eliminate Ltimer by using high resolution timers. The following sections describe this approach in

more detail.

3.1 Measuring Timer Resolution Latency

The latency due to non-preemptable sections Lnp can be reduced signi�cantly by running experiments

on a lightly-loaded system. In this case, few system calls will be invoked and a limited number of

interrupts will �re and thus long non-preemptable execution paths are not likely to be triggered.

The latency Ltimer can be measured by using a typical periodic time-sensitive application. We

implemented this application by running a process that sets up a periodic signal (using the itimer()

system call) with a period T ranging from 100�s to 100ms. The process measures the time when it is

woken up by the signal and then immediately returns to sleep. We measured the di�erence between

two successive process activations, which we call the inter-activation time. Note that in theory the

inter-activation times should be equal to the period T . Hence, the deviation of the inter-activation

times from T is a measure of Ltimer. Since Linux ensures that a timer will never �re before the correct

time, we expect this value to be 10ms is a standard Linux kernel, and to be close to the interrupt

processing time with high resolution timers.

3.2 Measuring Non-Preemptable Section Latency

Once the timer resolution latency is eliminated with high resolution timers, we can measure Lnp in

isolation. Unfortunately, a periodic process is not suitable for measuring this latency. For example, to

measure the e�ects of a non-preemptive section of size S, the latency must be sampled with a period

T � S or else the non-preemptive code could execute between two consecutive measurements. Hence,
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to reliably measure Lnp, the test task should have a period T such that T << Lnp. In practice, this

requirement is hard to achieve and thus we use an aperiodic test application that uses the usleep()

call.

The test task is based on a loop that:

1. reads the current time t1

2. sleeps for a time T

3. reads the time t2, and computes Lnp = t2 � (t1 + T )

We investigated how various system activities contribute to Lnp by running various background

tasks. The following tasks are known to invoke long system calls or cause frequent interrupts and thus

they trigger long non-preemptable sections (as explained in Section 2).

Memory Stress: One potential way to increase kernel latency involves accessing large amounts of

memory so that several page faults are generated in succession. The kernel invokes the page

fault handler repeatedly and can thus execute long non-preemptable code sections.

Caps-Lock Stress: A quick inspection of the kernel code reveals that when the num-lock or caps-lock

LED is switched, the keyboard driver sends a command to the keyboard controller and then

spins while waiting for an acknowledgement interrupt. This process can potentially generate

long non-preemptable latencies.

Console-Switch Stress: The console driver code also seems to contain long non-preemptable paths

that are triggered when switching virtual consoles.

I/O Stress: When the kernel has to transfer chunks of data, it generally moves this data inside

non-preemptable sections. Hence, system calls that move large amounts of data from user space

to kernel space (and vice-versa) and from kernel memory to a hardware peripheral, such as the

disk, can cause large non-preemptable latencies.

Procfs Stress: Other potential latency problems in Linux are caused by the /proc �le system. The

/proc �le system is a pseudo �le system used by Linux to share data between the kernel and

user programs. Concurrent accesses to the shared data structures in the proc �le system must

be protected by non-preemptable sections. Hence, we expect that reading large amounts of data

from the /proc �le system can increase kernel latency.
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Figure 1: Inter-Activation times for a task that is woken up by a periodic signal with period 11ms on

a standard Linux kernel. Note that the task period is greater than T tick = 10ms.

Fork Stress: The fork() system call can generate high latencies for two reasons. First, the new

process is created inside a non-preemptable section and involves copying large amounts of data

including page tables. Second, the overhead of the scheduler increases with increasing number

of active processes in the system.

Experience and careful code analysis by various members of the Linux community (for example,

see Senoner [19]) con�rms that the above list of latency sources is comprehensive, i.e., it triggers a

representative subset of long non-preemptable sections in the Linux kernel.

4 Evaluation of the Kernel Latencies

In this section, we present an evaluation of the various kernel latency components. We ran our

experiments on a 450 Mhz Pentium II processor with 512 MB of memory.

4.1 Timer Resolution Latency

The �rst set of experiments measures Ltimer and shows that it can be easily eliminated from kernel

latency by using high resolution timers. We ran these experiments using a periodic task as described

in Section 3. We compared two di�erent kernels, the standard Linux kernel and the high-resolution

timer Linux kernel, as described in Section 2.2.1.

Figure 1 shows the inter-activation times on a standard Linux kernel when T = 11ms. We expect

that if the task period is not a multiple of T tick then the di�erence between the inter-activation times

and T is not 0 but close to T%T tick. In the �gure above, we notice as expected that this di�erence is
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Figure 2: Inter-Activation times for a task that is woken up by a periodic signal with period 100�s

on a high resolution timer Linux. Note that the task period is much smaller than in Figure 1.

T (�s) 100 200 300 400 500 600 700 800 900

L(�s) 47 51 43 44 49 53 50 52 50

T (�s) 1000 2000 3000 4000 5000 6000 7000 8000 9000

L(�s) 46 47 52 48 51 49 55 50 57

T (�s) 10000 20000 30000 40000 50000 60000 70000 80000 90000

L(�s) 52 46 51 49 54 50 43 47 51

Table 1: The table shows L, the maximum di�erence between the inter-activation times and the task

period, for di�erent values of the task period T on a high resolution timer Linux.

close to 9ms.

Next, we repeated the experiments using the high-resolution timer kernel. As expected, high

resolution timers greatly reduce latency. For example, Figure 2 shows the inter-activation times

measured for T = 100�s. Note that this period results in a much tighter latency requirement as

compared to the one in Figure 1 and that after 1000 activations the maximum di�erence between

the period and the actual inter-activation time is less that 25�s. Hence, we conjecture that the 9ms

latency shown in Figure 1 is almost completely due to the timer resolution.

Table 1 shows the maximum absolute value of the di�erence between the period and the inter-

activation times for various values of T on a high resolution timer kernel. Each of these maximum

values has been measured over 1; 000; 000 activations. The table shows that the maximum di�erence

does not signi�cantly depend on the period T and its maximum value is about 57�s. We hypothesize

that this value is due to the non-preemptable section latency Lnp. However, we do not know the

precise cause of this latency since we did not speci�cally control the background task set.

Hence, we performed a new set of experiments to measure the latencies due to the various activities
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Figure 3: Latency measured on a standard Linux kernel. This test is performed with background

load. Note that the Ltimer component dominates the latency.

that can trigger long non-preemptable paths.

4.2 Non-Preemptable Section Latency

In this set of experiments, we used the usleep() test program described in Section 3 with T = 100�s to

measure and identify the causes non-preemptable section latency. This test program was started on an

unloaded machine 4 and then the load-generating tasks described in Section 3.2 were run sequentially

in the background to trigger long non-preemptable paths. We performed these experiments on four

di�erent kernels: 1) 1) the standard Linux kernel, 2) the Low-Latency Linux kernel, 3) the Preemptable

Linux kernel, and 4) the Preemptable Lock-Breaking Linux kernel.

The background load is generated in the following way:

1. The memory stress test allocates a large integer array with a total size of 128 MB and accesses

it sequentially. This test starts at 1000ms, and �nishes around 5000ms.

2. The caps-lock stress test runs a program that switches the caps-lock LED twice. This test turns

on the LED at 7000ms and then turns it o� at 8000ms.

3. The console-switch stress test runs a program that switches virtual consoles on Linux twice, �rst

at 9000ms and then at 10000ms.

4. The I/O stress test uses the read() and write() system calls and accesses 2 MB of data. This

test starts at 11000ms and �nishes around 13000ms.

4The tests were performed in single user mode to minimize the number of system activities.
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Figure 4: Latency measured on a Linux kernel with high resolution timers. This test is performed

with background load. Now, Lnp is visible.

5. The procfs stress test reads a 512 MB �le in the /proc �le system. It runs from 17000ms to

around 19000ms.

6. The fork test forks 512 processes. This test starts at 20000ms and continues until the end of

the experiment.

4.2.1 Standard Linux

Figure 3 shows the latency measured on a standard (monolithic) Linux kernel (version 2.4.16). Due

to the implementation of the usleep() call on Linux, Ltimer is around 19:9ms instead of 9:9ms. The

memory access test, starting at t = 1000ms does not seem to create any additional latency. However,

we notice a small spike at the end of the test around t = 5000ms (explained in the next experiment).

In this experiment, we do not notice any variation in the latency during the caps-lock stress test or the

console-switch test. On the other hand, there are some large spikes (up to 100ms) from t = 11000ms

to t = 13000ms during the the I/O stress test. Note that the Y axis is shown on a logarithmic scale.

None of the other tests present any signi�cant contribution to kernel latency. Hence, we conclude that

in a standard Linux kernel, the timer resolution latency Ltimer is generally larger than Lnp and hides

the e�ects of non-preemptable sections. We believe that this is one reason why latency problems have

not been previously addressed by the Linux community. These results show that we need to use a

high resolution timers mechanism to investigate Lnp.

Figure 4 reports the results obtained when high resolution timers are used in the usleep() imple-

mentation. It shows that in this case Ltimer is almost completely removed. Hence, the e�ects of long

non-preemptable sections are more visible. For instance, when the system is unloaded (t < 1000ms)
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the latency lies between 4�s and 6�s. This latency is due to the resolution of the timing mechanism

and it matches the expected value of the interrupt service time on the Pentium II processor. It in-

creases to 20�s during the memory stress test. This result is surprising because contrary to common

belief it shows that page faults of other processes in Linux are not a serious problem for real-time

performance. However, the end of the memory stress test generates a spike of about 20ms in kernel

latency. We found that the source of this latency is the munmap() system call when large memory

bu�ers are unmapped.

The caps-lock shift signi�cantly increases kernel latency. During the caps-lock stress test (t =

7000ms and t = 8000ms) the latency rises to 7ms. On the other hand, the console switch test

(t = 9000ms and t = 10000ms) only increases the latency to 900�s. Again, the longest critical paths

seem to be triggered by the I/O stress test between t = 11000ms and t = 13000ms when the latency

increases to 100ms, similar to the previous experiment. Finally, the procfs stress test can contribute

about 4ms to latency, whereas the fork test contributes up to about 300�s. Again, note that in a

standard Linux kernel, the 10ms resolution of the timers hides most of these values except the latency

caused by �le accesses.

From Figure 4, we expect reduction in the latency if the length or granularity of the kernel

non-preemptable sections is reduced. As explained in Section 2, there are several ways in which

non-preemptable kernel sections can be shortened. First, preemption points can be manually placed

to break long non-preemptable paths, such as in the low-latency kernel. Second, the kernel can be

made fully preemptable, where preemption is disabled only when spinlocks are held. Finally, the �rst

technique can be used to reduce the length of spinlocks in a preemptable kernel. These techniques

are explored in the next sections.

4.2.2 Low-Latency Linux

We evaluated Andrew Morton's patch [15] as an example of a low-latency kernel. Figure 5 shows the

latency measured on a high resolution timers kernel with the Andrew Morton low-latency patch.

First, we note that the latency experienced during the memory stress test does not change signif-

icantly, but the 20ms spike caused by unmapping the large memory bu�er has been removed. Now

the munmap() latency is about 200�s. However, the latency caused by the caps-lock and console stress

tests is not changed, and in this experiment the worst latency is caused by toggling the caps-lock key!

We see that the latency spikes between t = 11000ms and t = 13000ms have disappeared and thus

the I/O stress test does not cause serious problems for real-time performance anymore. However, the

latency caused by the procfs stress test and by the fork stress test is unchanged as compared to the
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Figure 5: Latency measured on a Low-Latency Linux kernel with high resolution timers. The munmap()

and I/O latencies are reduced.
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Figure 6: Latency measured on a Preemptable-Linux kernel with high resolution timers. The procfs

latency is reduced, but the munmap() latency becomes high again.

monolithic kernel.

In summary, the latency caused by all the activities except the procfs stress test and the caps-lock

stress test is under 1ms.

4.2.3 Preemptable Linux

Figure 6 shows the results obtained using a Preemptable-Linux kernel [12]. The big di�erence we

notice as compared to the Low-Latency kernel is that the munmap() system call causes high latency

once again (about 20ms around time t = 5000ms). The latency caused by the I/O stress test is also

increased with spikes up to 1ms. On the other hand, the procfs stress test does not cause signi�cant

latency. In particular, the big spike in latency at time t = 17000ms has been removed. In this
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Figure 7: Latency measured on a Lock-Breaking Preemptable-Linux kernel with high resolution timers.

Note that most of the latencies are under 1ms.

experiment, the worst latency is caused by the munmap() system call and is due to the kernel holding

a spinlock for a long time. We will see that the lock-breaking approach described below will solve this

problem.

4.2.4 Lock-Breaking Preemptable Linux

Figure 7 shows the results obtained when the lock-breaking preemptable kernel is used. We see that

breaking long spinlocks solves the munmap() problem. The kernel behavior during the memory stress

(and during the �nal unmap()) is similar to the behavior of the low-latency kernel. Moreover, this

kernel also has the bene�ts of the preemptive kernel. For instance, compared to the low-latency kernel,

there are improvements in the latency caused by the console switch stress test and by the procfs stress

test.

In summary, the largest latency is caused by the caps-lock stress test and all other latencies are

within 1ms.5 Also, we would like to stress that in the previous experiments we have tried to generate

the \worst case" kernel latency. We do not expect that latencies larger than the ones reported can be

easily generated.

5 E�ects on a Real Application

In this section, we examine the e�ects of kernel latency on a real Linux application. As a test

application, we selected mplayer [1], an audio/video player that can handle several di�erent media

5File accesses are still not as low as in Figure 5. We suspect this latency is caused by heavy interrupt loads and long

non-preemptable interrupt processing times. We plan to study this issue further in the future.
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Figure 8: Audio/Video Skew on standard Linux. Heavy kernel load is run in the background.

formats.

Mplayer synchronizes audio and video streams by using timestamps that are associated with the

audio and video frames. The audio card is used as a timing source, i.e., audio samples are put in the

audio card bu�er, and when a video frame is decoded, its timestamp is compared with the timestamp

of the currently played audio sample. If the video timestamp is smaller than the audio timestamp then

the program is late (i.e., a video deadline has been missed) and the video is immediately displayed.

Otherwise, the system sleeps until the video timestamp and the audio timestamp are equal and then

displays the video.

Assuming no kernel latency and a fast enough CPU, audio/video synchronization can be achieved

by simply sleeping for the correct amount of time (and in fact mplayer sleeps using the Linux usleep()

call). Unfortunately, if kernel latency is high, mplayer will not be able to sleep for the correct amount

of time leading to poor audio/video synchronization.

To verify this hypothesis, we instrumented mplayer to measure the time when a video frame is

displayed and the di�erence between the audio and video timestamps at display time. Using this

instrumented version of mplayer, we performed some experiments on a standard Linux kernel (high

kernel latency) and on a lock-breaking preemptable Linux kernel with high resolution timers (reduced

kernel latency). To show the e�ects of kernel latency, we ran the I/O stress test as a competing load

while running mplayer at the highest real-time priority. This test spends about 90% of its execution

time in kernel mode. As described in Section 4.2, the I/O stress test performs intensive disk accesses

and exacerbates the kernel preemptability problem.

Figure 8 shows the di�erence between the audio and the video timestamps when the video frame

is displayed for mplayer running on the Standard Linux kernel. On standard Linux, the maximum
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Figure 9: Audio/Video Skew for lock-breaking preemptable Linux with high resolution timers. Heavy

kernel load is run in the background. Figure a) shows that the Audio/Video skew is clustered around

0, and Figure b) zooms the plot to show that the maximum skew is less than 400us.

0

20000

40000

60000

80000

100000

120000

140000

0 500 1000 1500 2000 2500 3000

In
te

r 
F

ra
m

e 
T

im
e 

(u
se

c)

Video Frame Number

Video Inter Frame Times

Standard Linux

Figure 10: Inter-Frame times for standard Linux. Heavy kernel load is run in the background.

di�erence between audio and video timestamps is more than 80000us, and the �gure qualitatively

shows there is a large variance in this di�erence. Note that the audio/video skew in mplayer can be

negative (by as much as 5ms) due to the 10ms resolution of the kernel timers.

Figure 9 presents the results obtained using the lock-breaking preemptable Linux kernel with high

resolution timers. In this case, the di�erence between audio and video timestamps is signi�cantly

lower and the maximum di�erence is less than 400�s.

The second set of results show the inter-frame times, i.e. the di�erence between the display times

of a video frame and the previous frame. The expected inter-frame time is the process period 1=F

where F is the video frame rate. In our experiments, we used an MPEG movie with a video frame
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Figure 11: Inter-Frame times for lock-breaking preemptable Linux with high resolution timers. Heavy

kernel load is run in the background. Figure a) shows that inter-frame times are clustered around

33:3ms, and Figure b) zooms the plot to show that the inter-frame times lie between a 1ms interval.

We are not sure why there are two clustered lines of inter-frame times. We plan to investigate this

issue.

rate of 30 frames per second. Thus the expected inter-frame time is 33:3ms. Figure 10 shows the

inter-frame times obtained using the standard Linux kernel. Since Ltimer can be up to 10ms, we

expect the inter-frame times to cluster around 30ms and 40ms. However, the Lnp component due

to the background load introduces additional variation in the inter-frame times and increases these

times to more than 100ms (or 100000us).

In contrast, Figure 11 shows the inter-frame times obtained using the lock-breaking preemptable

kernel with high resolution timers. The inter-frame times are clustered around the correct value of

33:3ms and their variation is very low.

These experiments show that the Linux kernel latency can be suÆciently reduced to support time-

sensitive applications, such as multimedia applications, that have have latency requirements of 1ms

or more.

6 Related Work

Although we are not aware of any previous systematic study of the Linux kernel latency, some of

the issues highlighted in this paper have been addressed in the past during the design of real-time

operating systems and real-time extensions to Linux.

In particular, many di�erent real-time algorithms have been implemented in Linux and in other

general purpose kernels. For example, Linux/RK [16] implements Resource Reservations in the Linux

kernel, and RED Linux [26] provides a generic scheduling framework for implementing di�erent real-
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time scheduling algorithms. Severl proportional share scheduling mechanisms have been implemented

[21, 23, 8, 25] in the FreeBSD, Linux, or Solaris kernels and DSRT [9] is a user-level scheduling solution.

While implementing real-time scheduling in general purpose kernels, the authors of the previous

work noticed the latency problems, and some of the previous systems address them. For example,

RED Linux inserts preemption points in the kernel (transforming it to a Low-Latency kernel), and

Timesys Linux/RT (based on RK technology) uses full kernel preemptability for reducing kernel

latency. Kernel preemptability is also used by MontaVista Linux [24] whose preemptable kernel patch

has been recently accepted in the 2.5.4 kernel. It is worth noting that the advantages of a preemptable

kernel were already well known in the real-time community [14].

A di�erent approach for reducing latency is used by other systems, such as RTLinux [6], RTAI

[13], and KURT [20], which decrease the latency by running Linux as a background process over a

small real-time executive. In this case, real-time tasks are not Linux processes, but run on the lower-

level real-time executive, and the Linux kernel runs as a non real-time task. This solution provides

good real-time performance, but does not provide it to Linux applications. Linux processes are still

non real-time, and cannot support time-sensitive applications. Also, native real-time threads use a

completely di�erent, and less evolved, ABI compared to the Linux one, and do not have access to

Linux device drivers.

As shown in Section 4, the latency Ltimer due to the timer resolution can be eliminated by using

high resolution timers. For this reason, most of the existing real-time kernels or real-time extensions to

Linux provide high resolution timers. The high resolution timers concept was proposed by RT-Mach

[18] and has subsequently been used by Rialto [11], RED Linux [26], RTLinux [6], and Linux/RK [16]

just to cite some examples. Moreover, MontaVista provides a patch for the standard Linux kernel

implementing high resolution timers [4].

A problem that has been observed with high resolution timers is that they can lead to high interrupt

processing overhead when used frequently. This problem is solved by the soft timer mechanism [5]

and in our high-resolution timer implementation.

7 Conclusions and Future Work

In this paper, we have evaluated the real-time behavior of Linux by measuring the kernel latency

of various Linux kernel variants. This evaluation is important because it enables the application of

real-time guarantees to the Linux system, where latencies are modeled as blocking times.

We identi�ed the twomost important sources of kernel latency: timer resolution and non-preemptable

sections inside the kernel. Our experiments showed that in a standard Linux kernel the timer resolu-
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tion latency is predominant (about 10 ms), and generally hides the non-preemptable section latency.

However, when a high-resolution timer mechanism is implemented in the kernel, the latency due to

kernel non-preemptable sections becomes visible. We compared the non-preemptable section latency

of four readily available Linux variants: a standard (non-preemptable) kernel, a low-latency kernel,

a preemptable kernel and preemptable lock-breaking kernel. Our results show that the preemptable

lock-breaking kernel has the lowest overall kernel latency (ignoring the caps-lock problem, the worst

case is less than 1 ms) and can thus provide reasonable real-time performance. Finally, we evaluated

the e�ects of reduced kernel latency on a real application, and showed that it can signi�cantly improve

real-time performance.

In the future, we plan on using preemptable lock-breaking Linux (with a high resolution timers

mechanism) to implement a reservation-based system that provides predictable scheduling. In addi-

tion, we plan to extend our analysis of non-preemptable latency to include interrupt processing over-

head. For example, in the Linux kernel, an intensive interrupt load can cause long non-preemptable

latencies due to the design of the interrupt processing mechanism. Preliminary results show that the

e�ects of interrupt processing can be mitigated by using resource reservations together with some

adaptation strategy [17, 3, 2].
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