
Quality-Adaptive Media Streaming by Priority Drop∗

Charles Krasic, Jonathan Walpole, Wu-chi Feng
OGI/OHSU

Beaverton, Oregon

krasic,walpole,wuchi@cse.ogi.edu

ABSTRACT
This paper presents a general design strategy for streaming
media applications in best effort computing and network-
ing environments. Our target application is video on de-
mand using personal computers and the Internet. In this
scenario, where resource reservations and admission control
mechanisms are not generally available, effective streaming
must be able to adapt in a responsive and graceful manner.
The design strategy we propose is based on a single sim-
ple idea, priority data dropping, or priority drop for short.
We evaluate the efficacy of priority drop as an adaptation
tool in the video and networking domains. Our technical
contribution with respect to video is to show how to ex-
press adaptation policies and how to do priority-mapping,
an automatic translation from adaptation policies to prior-
ity assignments on the basic units of video. For the net-
working domain, we present priority-progress streaming, a
real-time best-effort streaming protocol. We have imple-
mented and released a prototype video streaming system
that incorporates priority-drop video, priority mapping, and
priority-progress streaming. Our system demonstrates a
simple encode once, stream anywhere model where a single
video source can be streamed across a wide range of network
bandwidths, on networks saturated with competing traffic,
all the while maintaining real-time performance and grace-
fully adapting quality.

Categories and Subject Descriptors: C.2.2 [Computer
Systems Oraganization]: Network Protocols
General Terms: Algorithms, Measurement, Experimen-

tation
Keywords: Quality Adaptive Streaming, Priority Map-

ping, Internet

∗This work was partially supported by DARPA/ITO under
the Information Technology Expeditions, Ubiquitous Com-
puting, Quorum, and PCES programs and by Intel.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
NOSSDAV’03, June 1–3, 2003, Monterey, California, USA.
Copyright 2003 ACM 1-58113-694-3/03/0006 ...$5.00.

1. INTRODUCTION
The Internet is a best-effort environment, where users

come and go without resource reservations or admission con-
trol. The Internet relies on a model of voluntary coopera-
tive sharing, the foundation of which is congestion control in
transport protocols, mainly TCP. It is widely acknowledged
that the use of congestion control has been an essential part
of the Internet’s stability to date [7]. If streaming traffic is
to avoid threatening the overall stability, then it too must
employ congestion control. Congestion control adapts the
sending rate of a flow to share with other flows on the path,
changing rates as traffic from other flows comes and goes.
As a result, Internet traffic is very bursty. Numerous studies
of Internet traffic patterns have shown that traffic rates ex-
hibit significant variation over the full range of time scales,
exhibiting so-called self-similar behavior [5, 30]. Given this
burstiness, it follows that it is highly unlikely that a single
target bitrate will suffice for Internet streaming. If the rate
estimate is too conservative, the video stream will under
utilize the network, and the resulting video quality will be
lower than necessary. On the other hand, if the rate esti-
mate is too aggressive, then the transfer can not complete in
real-time and so there will be a streaming failure. For longer
duration streaming, the chances are good that a single rate
will be too conservative at some times and too aggressive at
others. Several researchers have recognized these issues, and
proposed quality-adaptation instead of single-rate streaming
[31].

There have been many proposed techniques for the adap-
tive delivery of compressed video data over networks. The
common idea of quality-adaptive streaming techniques is to
adapt dynamically to environmental changes through ad-
justments in the rate-distortion ratio of the video. Adapting
quality over best-effort networks is extremely difficult given
the bit-rate changes that occur over time in both.

In this paper, we describe a design strategy for quality-
adaptive streaming software. Our strategy revolves around
the idea of using priority data dropping, priority drop for
short, as the primary means of adaptation. In priority drop,
the basic data units of the media are explicitly exposed and
appropriately prioritized, with the goal that priority-order
dropping of data units will yield a graceful reduction in me-
dia quality, as we will show in the experimentation section.
Our contributions are in two areas, video adaptation and
network streaming.

The video component of our system makes compressed
video streaming friendly through support of priority drop.
We describe a video format, called SPEG (Scalable MPEG),

to illustrate how current video compression techniques can
be extended to support priority drop1. In contrast to ran-
dom dropping, which results in unusable video at dropping
levels of just a few percent, priority drop is informed and
can achieve graceful degradation, over more than an order
of magnitude in rate. One of the main questions that arises
when considering such a range of target rates is what aspect
or aspects of video to degrade? The answer can be influ-
enced by several factors, such as the nature of the content,
the nature of the viewing device, the personal preferences of
authors, viewers, etc. For example, a sports program might
benefit most from preserving fidelity of motion, perhaps at
the expense of color fidelity. A user with a PDA may place
low relative importance on spatial resolution, compared to
a user with a full sized screen.

The scalable coding aspects of SPEG are not our main
focus, but rather our main contribution to video entails
efficient support for tailorable adaptation. We describe a
simple method to specify adaptation policies and an associ-
ated priority-mapping algorithm. The priority-mapping al-
gorithm translates the policy specifications into appropriate
priority assignments on data units of priority-drop video.
With this approach, video compression is decoupled from
the final adaptation, which opens the possibility that each
piece of content may be adapted in different ways for dif-
ferent scenarios, with far lower complexity than actually re-
compressing or transcoding the content during streaming.
This added flexibility makes content more re-usable. The
ideal streaming-friendly media format would have the char-
acteristics of “encode-once, stream anywhere.”

The second component of our contribution is in network
streaming. We present an algorithm for real-time best-effort
streaming called Priority-Progress streaming (PPS). PPS
combines data re-ordering and dropping to maintain time-
liness of streaming in the face of unpredictable throughput.
The data units of the priority-drop video are sent in prior-
ity order. The algorithm is best effort in that it allows the
congestion control mechanism to decide appropriate sending
rates. When this sending rate is low, the timeliness of the
stream is maintained by dropping low-priority data units
at the sender, before they would otherwise reach the net-
work. In this way, the amount of higher-priority data sent
automatically matches the rate decisions of the congestion-
control mechanism.

We have implemented a streaming system which inte-
grates SPEG, priority-mapping, and PPS, with the follow-
ing results. First and foremost, it maintains timeliness of
the stream in the face of rate fluctuations in the network.
Second, PPS makes full use of available bandwidth, and
achieves full goodput from that bandwidth, thereby max-
imizing the average video quality. The bandwidth used is
limited by the congestion control of the underlying trans-
port, in our case TCP, so the usage represents a fair share,
in friendly consideration of the Internet’s existing traffic
mix [7]. Third, it starts quickly when the user initiates
the stream, avoiding a long pre-buffering period. Finally,
it limits the number of quality changes that occur, by using
bandwidth skimming to increase client-side buffering con-
current during normal playout. The overall message of our
results is that priority drop is very effective: a single video
can be streamed across a wide range of network bandwidths,

1SPEG is similar to MPEG FGS, but easier to implement
with publicly available software

on networks heavily saturated with competing traffic, while
maintaining real-time performance and gracefully adapting
quality.

The remainder of this paper is organized as follows. In
the next section we discuss problem background and related
work. In Section 3, we describe priority-drop video and pri-
ority mapping. In Section 4 we describe the details of the
PPS algorithm. Section 5 presents experiments and results
from our prototype streaming video system. Finally, discus-
sion and conclusions are in Section 6.

2. BACKGROUND
Most streaming content on the Internet today is provided

using one of three streaming platforms: Microsoft’s Win-
dows Media, Real Networks RealSystem, and Apple’s Quick-
Time. To various degrees, these systems adhere to a suite
of standards related to streaming such as RTP, RSTP, SIP,
and SMiL. [9, 8, 26, 27]. Quality adaptation algorithms are
outside the scope of any of these standards. In particular,
while adaptation might be layered on RTP, RTP does not
provide any direct algorithm for quality adaptation. These
commercial systems all employ proprietary quality adapta-
tion. Although these proprietary adaptation mechanisms
are largely secret, we make some high level observations in
the following paragraphs based on published information.

In addition to commercial activity, there has been exten-
sive academic research related to video streaming over the
Internet. The research spans several distinct domains, in-
cluding video compression, real-time systems, and network-
ing. A spectrum of adaptive strategies have been proposed
to deal with the consequences of best effort service [31]. One
of the most commonly used strategies is one-time adapta-
tion, where the user chooses between a small set of pre-
determined rates before streaming begins. Once started,
streaming is fixed at this single-rate regardless of compet-
ing traffic, hence this approach retains the basic problems of
single-rate streaming mentioned earlier, where it is prone to
yield lower quality than necessary when more bandwidth is
available and prone to complete failure when less bandwidth
is available. Both problems are more probable for longer du-
ration content. Apple’s Quicktime uses one-time adaptation
and in addition it adjusts the amount of client-side buffer-
ing based on measured rate volatility during startup [29].
Startup time, while initial buffering is established, can be
quite high—on the order of tens of seconds. Windows Me-
dia and RealSystem based systems are often configured in
this mode also, even though they do support more advanced
mechanisms, which we’ll describe below. In the remainder
of this section, we expand on the basic performance issues
for quality-adaptive streaming, in light of some of the ap-
proaches proposed in the literature and in terms of the com-
mercial streaming systems.

The related work to this paper falls into four main cat-
egories. Multi-version techniques store a single video at a
range of pre-selected bitrates (e.g. Windows Media Intel-
liStream and Real’s SureStream) [4, 1]. While simple to
implement, multi-version supports only coarse adaptation
and under utilizes storage. Online scaling techniques sup-
port changing the target rate parameter of the encoder or
the transcoder on the fly. While these support fine-grained
adaptation, the computational time required to recode limits
scalability of these approaches. Scalable video coding tech-
nologies focus on creating compression formats that allow

adaptation of the rate-distortion relationship without ex-
plicitly re-coding (e.g. MPEG-2 scalability, MPEG-4 FGS).
These techniques are complementary to the work we de-
scribe here. Advances in these areas can be directly incor-
porated into our framework. While the first three categories
are concerned mainly with video representation and coding,
the fourth category is adaptive streaming which concerns the
mechanics of actual network delivery.

Ideally, a quality-adaptive streaming system will select
video quality to match the average available network band-
width. In practice, adaptation tends to be limited to dis-
crete steps, and consequently the rate match is only approx-
imate. A system that supports steps with finer-granularity
generally results in a better match, which manifests itself in
higher quality and better reliability of streaming. The type
of video compression, especially whether the compression is
scalable or not, is a major factor influencing the granularity
of quality-adaptive streaming.

Because many of the compression formats in common use
are not explicitly scalable [15, 14, 16, 13], the target rate is
a required parameter for encoding. These formats do not
provide explicit support for adapting rate after encoding.
Frame dropping is a well known work-around, and is prob-
ably the most popular video adaptation mechanism, having
been used since the first quality-adaptive Internet streaming
systems appeared [2].

Online-scaling techniques, which include live encoding,
transcoding, and data-rate shaping (DRS), allow changing
the target rate parameter of the encoder or transcoder on
the fly [17, 32]. Transcoding and DRS can have significantly
lower computational complexity than encoding. The main
advantage of online scaling is very fine granularity. However,
even the most efficient DRS is very computationally inten-
sive relative to non-adaptive streaming, or adaptive stream-
ing through frame dropping or multi-coding. This extra
computational cost poses a major obstacle to supporting
very large numbers of independently adaptable streams in
servers and edge devices.

In contrast, scalable compression aims to support low-
complexity adaptation that will scale to large numbers of
streams. Scalable compression schemes explicitly support
multiple quality levels, exposing two or more layers in the
encoded video. The layers are progressive, the higher layers
depend on the lower layers, and the higher layers are used to
refine quality. The various scalable compression approaches
differ in terms of granularity, ranging from very coarse, as
in the work in Layered Multicast [23] and MPEG-2 Scala-
bility [10], to very fine, such as in recent work in MPEG-4
and H.26L Fine Granularity Scalability [22, 11]. With the
current state of the art, scalable video compression comes
with a compression efficiency penalty, in that video quality is
lower compared to the results of non-scalable compression
at the same rate, but this penalty is getting smaller [11].
Fine granularity scalability through layering makes it possi-
ble to begin streaming without even knowing the target rate,
by sending lower layers before higher layers and truncating
higher layers if time runs out. Contrast this approach with
online-scaling, where the quality adaptation must commit
to a target rate before encoded data is ready to transmit. In
exchange for the small efficiency penalty, scalable compres-
sion offers a significant boost in freedom for the design of
adaptive streaming mechanisms.

A principal concern with streaming is the potential im-

pact of video traffic on existing Internet traffic. Many re-
search projects have studied quality adaptive streaming in
relationship with TCP-friendly congestion control [31, 25,
3, 6, 17, 28, 19]. A common idea among them is to let
the transport protocol and its congestion control dictate
the appropriate sending rate. The main differences are in
the details of deciding what to send and what to drop, and
what information are used to inform these control decisions.
For example, Rejaie et al describe their algorithms for op-
timal streaming [25], where optimal means minimal client-
side buffering, and thus a minimal associated contribution to
end-to-end latency. The role of their algorithm is to control
adding and removing quality layers, where the control deci-
sions are based on a rate-driven feedback control. The de-
sign of their control is based on analysis of additive-increase
multiplicative-decrease (AIMD) congestion control2 and an
assumption of apriori knowledge of video rate requirements
[25]. Feamster et al extend this work to more general con-
gestion control mechanisms [6]. In contrast to these systems
that explicitly attempt to match rates, Feng et al describe
an adaptive streaming algorithm that uses a sliding window
over video frames, sending data from low to high quality, in
best effort fashion [3]. Feng’s algorithm gains simplicity be-
cause it does not attempt to absolutely minimize client-side
buffering, and has the advantage of working without direct
assumptions about the design of the underlying congestion
control. Kang et al. [18] propose a priority-driven adapta-
tion, but assuming fixed bandwidth channels. The question
of how to link scalable video encoding and tailorable adap-
tation policies to TCP-friendly streaming is open, and is the
topic of this paper.

We use scalable compression and TCP in this paper. One
of the contributions of our approach is to demonstrate the
benefits of using the priority-timestamp packet as the ba-
sic unit of media abstraction, as opposed to video frames,
or layers in a stream. Through priority-mapping, we extend
scalable video compression to support tailorable adaptation,
so that compromises made in quality better reflect the in-
fluence of specific content, viewing devices, and user prefer-
ences. Our Priority-Progress Streaming algorithm extends
TCP-friendly adaptive streaming to support direct control
over quality compromises in streaming, such as latency lim-
its, and limits on the number of quality changes, while pre-
serving the goals of high utilization and video quality.

3. STREAMING-FRIENDLY VIDEO
In this section we will describe how scalable video com-

pression can support tailorable adaptation through priority
drop. This consists of a scalable video format and a Pri-
ority Mapper. We have implemented an adaptive stream-
ing system based on our approach, called the Quasar Video
Pipeline. In lieu of a freely available implementation of the
more recent scalable compression systems [22, 11], we have
developed a minimal scalable compression format we call
SPEG (Scalable MPEG), derived from MPEG-1 video. Our
purpose in implementing SPEG was to test priority map-
ping and PPS using real video. Priority mapping is the
main subject of this section, but we first give a brief de-
scription of SPEG for the benefit readers not familiar with
scalable compression formats such as MPEG-4 FGS.

2TCP’s congestion control uses an instance of AIMD after
it reaches steady state.

3.1 Scalable Video
In MPEG video, each frame is broken down into 8x8 pixel

blocks, which are converted to corresponding 8x8 blocks
of coefficients using the discrete-cosine transform (DCT).
Quantization, strategic removal of low order bits from these
coefficients, is the primary basis for compression gains in
MPEG and very many other similar compression schemes.
SPEG transcodes MPEG coefficients to a set of levels, one
base level and three enhancement levels as follows. If we
denote the original MPEG coefficients X[i, j], then SPEG
partitions this coefficient data according to the following
equations3:

Xbase[i, j] = X[i, j] >> 3
Xe0[i, j] = (X[i, j] >> 2) & 1
Xe1[i, j] = (X[i, j] >> 1) & 1
Xe2[i, j] = X[i, j] & 1

The coefficients from each level are grouped to form layers,
four per original MPEG frame, which are the basic applica-
tion level data units (ADUs) in SPEG. The above steps can
be reversed to return SPEG back to the original MPEG. Al-
ternatively, we can drop some or or all of the enhancement
layer ADUs (from high to low) substituting zero values for
the missing data. The effect of such dropping is analogous to
having used higher quantization parameters during MPEG
encoding, yielding lower bitrate in exchange for less spatial
fidelity. We present SPEG because it suffices to demonstrate
the essential properties of scalable compression and because
it is readily available to us. Our techniques would apply to
most scalable formats, e.g. MPEG-4 FGS.

We expect future scalable codecs will expose even more
scalability mechanisms. One example is spatial-size scala-
bility, where the number of pixels of height and width are
scalable. Another example is chroma scalability which might
allow a range of color fidelities, from 4:4:4 to 4:2:2 to 4:1:1
to greyscale to monochrome. The object based compression
techniques might allow content adaptation through addition
and removal of objects[16]. These possibilities raise the is-
sue of tailorable adaptation. In order to take full advantage
of all of these scalability options, there would need to be a
good way to control how they are used together. To explore
tailorable adaptation, we use SPEG’s spatial scalability in
combination with frame dropping to provide a minimal ex-
ample of a compression scheme with more than one scala-
bility mechanism.

3.2 Priority Mapping
Having more than one quality dimension leads to the is-

sue that choosing how to best adapt the multiple dimensions
may depend on the usage scenario. For example, the tar-
get device may have a small screen, so preserving frame-rate
may make more sense than spatial detail. A user may want
to repeat a scene in slow motion, which looks smoother if
more frames are inserted. Conversely, skipping frames is
harder to notice when doing fast-forward scan. We have de-
signed a priority-mapper with the intent of providing a gen-
eral and flexible approach to tailoring quality adaptation to
such specific quality preferences. The priority-mapper auto-
matically assigns priorities to the units of a media stream,

3The >> denotes the right bitwise shift operator, and the
& denotes the bitwise and operation.

Priority
Mapper

ADUs SDUs

Adaptation
Policy

Figure 1: Priority Mapper

so that priority drop yields the most graceful degradation,
as appropriate to the viewing scenario.

Figure 1 depicts the mapper used in the Quasar Video
Pipeline. The mapper’s inputs are application data units
(ADUs) and the quality adaptation policy. The mapper’s
output are streaming data units (SDUs) which are aggre-
gates of prioritized ADUs, where the aggregation is based
on ADUs which have the same priority and timestamp value.
The purpose of the aggregation is to isolate the PPS algo-
rithm from low level details of the video format, particularly
the data dependencies that exist between ADUs.

ADU
length: ...
timestamp: 66
type: B
level: enh
... payload ...

5

ADU
length: ...
timestamp: 0
type: I
level: enh
... payload ...

1ADU
length: ...
timestamp: 0
type: I
level: base
... payload ...

0 ADU
length: ...
timestamp: 33
type: P
level: base
... payload ...

2

ADU
length: ...
timestamp: 66
type: B
level: base
... payload ...

4ADU
length: ...
timestamp: 33
type: P
level: enh
... payload ...

3

Figure 2: ADUs

Figure 2 shows a sequence of ADUs. The ADUs have a
packet like form, consisting of a fixed-length header, and a
variable length payload. The header contains basic infor-
mation needed by the mapper, such as the length of the
payload, a timestamp, and payload specific flags. For ex-
ample, with SPEG these flags indicate the type of MPEG
frame the ADU is part of (I, B, or P), and to which spatial
scalability layer the ADU belongs4.

3.2.1 Specification of Adaptation Policies

lost quality

utility

unacceptable

excessive

quality

quality
threshold

threshold

Figure 4: A utility function with thresholds

qmax qmin

1

0

Figure 3: A utility function with thresholds

4To simplify our examples, figure 2 depicts only two spatial
layers, although our SPEG implementation has four.

We use utility functions as declarative specifications for
the adaptation policy. A utility function is a simple and
general means for users to specify their preferences. Figure
3 depicts the general form of a utility function. The hor-
izontal axis describes an objective measure of lost quality,
while the vertical axis describes the subjective utility of a
presentation at each quality level. The region between the
qmax and qmin thresholds is where a presentation is accept-
able. The qmax threshold marks the point where lost quality
is so small that the user considers the presentation “as good
as perfect.” The area to the left of this threshold, even if
technically feasible, brings no additional value to the user.
The rightmost threshold qmin demarks the point where lost
quality has exceeded what the user can tolerate, and the pre-
sentation is no longer of any use. The utility levels on the
vertical axis are normalized so that zero and one correspond
to the “useless” and “as good as perfect” thresholds. In the
acceptable region of the presentation, the utility function
should be continuous and monotonically decreasing, reflect-
ing the notion that decreased quality should correspond to
decreased utility. In the case of priority mapping for SPEG,
the adaptation policy consists of two utility functions, one
for spatial quality and one for temporal quality.

3.2.2 Automatic Translation from Policy to Priorities
The mapping algorithm subdivides the timeline of the me-

dia stream into intervals called mapping windows. The size
of the interval is a parameter to the mapping algorithm, but
may be adjusted in order to meet alignment requirements;
for example, the mapping window is a sequence of one or
more complete GOPs for SPEG. The mapping algorithm
prioritizes the ADUs within each window separately. For all
ADUs in a given mapping window, the mapping algorithm
finds the order in which ADUs may be dropped that has
the minimum impact, given the data dependency rules of
the video and the preferences specified via the given util-
ity functions. The final priority assignment will be used by
the streaming algorithm to guide quality adaptations, while
accurately reflecting user preferences.

We use the ADUs from figure 2 as an example mapping
window, which consists of a single GOP and spans the in-
terval 0–66 ms. The priority mapping algorithm processes
the ADUs within a window in two phases.

In the first phase, the ADUs are partially ordered, accord-
ing to a drop before relationship5, based on video data de-
pendencies. For example, the spatial layering requires that
base layer ADUs should not be dropped before their cor-
responding enhancement layer ADUs, which applies to the
ADUs of figure 2 as follows:

ADU1 => ADU0 ADU3 => ADU2 ADU5 => ADU4

Similarly, MPEG’s predictive coding rules (for I,P,B frames)
are expressed as follows:

ADU4 => ADU2 => ADU0

These first two sets of ordering constraints represent hard
dependency rules, in that they simply reflect SPEG seman-
tics. The mapper adds some other soft dependency rules
which improve adaptation results. With video, for example,
the mapper would add soft-dependencies so to ensure that

5This is really drop no-later than, since dropping is always
optional.

frame dropping be as evenly spaced as possible6. After the
first mapping phase, there still remains significant freedom
for adaptation. For example, figure 4 contains two very dif-
ferent mappings for the ADUs of figure 2, yet both mappings
adhere to the phase one constraints above.

SDU
length: ...
timestamp: 0
priority: 0

ADU0

ADU1

0 SDU
length: ...
timestamp: 0
priority: 1

1

ADU3

ADU2

SDU
length: ...
timestamp: 0
priority: 2

2

ADU4

ADU5

(a) Frame drop

SDU
length: ...
timestamp: 0
priority: 0

ADU0

ADU2

0 SDU
length: ...
timestamp: 0
priority: 1

1

ADU3

ADU1

ADU4 ADU5

(b) Spatial drop

Figure 4: SDUs: prioritized and grouped ADUs

The second phase of the priority mapper algorithm is
where the adaptation policy is used to refine the partial or-
dering from the first phase, generating the (totally ordered)
prioritized SDUs.

The algorithm works through an iterative process of elim-
ination over the ADUs. We say an ADU is alive if it is still
in the set of unprioritized ADUs, and dead otherwise. Each
iteration considers the set of candidate ADUs which are not
yet dead, initially all ADUs from the mapping window, and
have no living dependents, based on the constraints gener-
ated by the first phase. For each of these candidate ADUs,
and each quality dimension (spatial and temporal in SPEG),
the mapper computes the presentation quality would result
if the candidate ADU were dropped, that is, the quality is
computed based on all ADUs that are still alive, less the
current candidate. For the temporal quality dimension, the
mapper computes the frame rate, and for spatial quality the
spatial level. At this point the mapper is ready to apply the
adaptation policy. The utility functions are used directly to
convert the computed quality values to corresponding utili-
ties. The “overall utility” for each ADU is just the minimum
of its per dimension utilities. The candidate ADU that has
the highest utility is selected as the next victim; i.e. drop-
ping this ADU next has the smallest impact on utility. The
priority value for the victim ADU is a linear (inverse) fitting
of the utility into the range of priority values. For example,
in the Quasar pipeline this fit goes from a utility range of
0 to 1 to a priority range of 15 to 07. The iterations stop
when all ADUs have been assigned a priority.

Once all the ADUs have priorities, they are then grouped
into SDUs, one per priority level. The SDUs are all set to

6If half the frames are to be dropped, then it is best to drop
every other frame, as opposed to more clustered dropping
such as keeping even GOPs and dropping odd GOPs
7Maximum priority is 15

Video Resolution Length GOP
(frames) length

Giro d’Italia 352x240 1260 15
Wallice and Grommit 240x176 756 3
Jackie Chan 720x480 2437 8
Apollo 13 720x480 864 6
Phantom Menace 352x240 4416 16

Figure 5: Movie Inputs. The movies were coded
with several different MPEG encoders. A variety
of content types, movie resolutions, and GOP pat-
terns were chosen to verify our techniques perform
consistently.

have the timestamp of the first ADU in the window. This
grouping simplifies matters for later stages, like the PPS
algorithm and the video decoder8.

3.3 Mapping Results
We now present some the results of mapping for several

test movies. Figure 5 describes the set of movies used, which
were prepared with a variety of encoders and encoder param-
eters. In figure 6(a) and (b) we set a quality adaptation pol-
icy consisting of equal linear utility functions for temporal
and spatial quality. Figures 6(c) and (d), show the priority-
assignment produced by the mapper. At each threshold, the
quality corresponds to when all packets with priority lower
than the threshold are dropped. For example, at priority
threshold 6, 20 fps is achieved at SNR level 3.

0 5 10 15 20 25

Temporal Resolution (fps dropped)

0.0

0.2

0.4

0.6

0.8

1.0

U
til

ity

(a) Temporal Utility

0 1 2 3

Spatial Resolution (levels dropped)

0.0

0.2

0.4

0.6

0.8

1.0

U
til

ity

(b) Spatial Utility

0 5 10 15

Drop Threshold

0

10

20

30

Fr
am

e
R

at
e

(f
ps

)

(c) Temporal Quality

Giro d’Italia
Wallace and Gromit
Jackie Chan
Apollo 13
Phantom Menace

0 5 10 15

Drop Threshold

0

1

2

3

4

SN
R

 le
ve

l (
av

er
ag

e)

(d) Spatial Quality

0 5 10 15

Drop Threshold

0

20

40

60

80

100

B
an

dw
id

th
 (%

)

(e) Bandwidth Resource Consumption

0 5 10 15

Drop Threshold

0

20

40

60

80

100

C
PU

 ti
m

e
(%

)

(f) CPU Resource Consumption

Preferences Presentation QoS Resource QoS

Figure 6: QoS Mapping Applied to SPEG

Ideally, the presentation quality graphs would look the
same as the utility functions they were derived from. In
particular, the range of acceptable presentation QoS would
be covered, and the shape of adaptation would follow the
shapes of the utility functions. Figure 6(c) shows the rela-

8Otherwise there can be pathological cases during streaming
where low priority ADUs for one timestamp are kept even
though higher priority ADUs with different timestamps, but
belonging to the same mapping window, are dropped. For
example, a P frame (low priority) might be kept when it’s
I frame (high priority) was dropped, however the P frame
can not be decoded properly without the dropped I frame.

tionship between presentation-QoS for temporal resolution
(frame rate) and priority-drop threshold. It should be noted
that figure 6(c) contains lines for each of the test movies,
but they overlap very closely because the mapper is able
to label packets to follow the utility function policy closely.
Although desirable, this result was not entirely expected be-
cause MPEG’s inter-frame dependencies constrain the order
in which frames can be dropped, and some GOP patterns
are particularly poorly suited to frame dropping. On the
spatial resolution side, in figure 6(d), we note that the map-
per drops resolution levels uniformly across all frames, re-
sulting in a stair-shaped graph, since there are only 4 SNR
levels in SPEG. In as much as the SPEG format allows, the
presentation-QoS matches the specified user preferences.

The resource side of the adaptation profiles are shown in
the third pair of graphs in Figures 6(e) and (f). We show the
average bandwidth of the movies at each drop threshold, as a
percentage of the bandwidth when no packets are dropped.
Similarly, we show the CPU time required for client side
processing (decoding) of the video at each drop threshold,
where the values are normalized to the CPU cost when no
packets are dropped. A good shape for these graphs would
be smooth and linear over a wide range of resource levels.
We see that bandwidth in Figure 6(e) does indeed range all
the way down to only a few percent. What this means is that
the quality-mapper can prioritize the video to operate in
extremely diverse networking and computing environments.
CPU time in Figure 6(f) is very nice and smooth, although
it does not cover as much range as bandwidth, and reaches a
minimum of about 10 percent. We also note that the movies
are closely clustered in their resource-QoS graphs, indicating
that adaptation is independent from differences in encoders
or encoder parameters. Further results for other policies are
presented in [21].

4. PRIORITY PROGRESS STREAMING
In this section, we present an overview of the PPS al-

gorithm. While the priority-drop video encoding and the
priority-mapper described in the previous section do a sub-
stantial amount of preparation for delivery, the streaming
algorithm still plays a key role in realizing the benefits of
adaptive streaming.

The objective of our streaming algorithm is to take the
SDUs produced by the Priority Mapper, and using their
timestamp and priority labels, perform real-time adaptive
streaming over a TCP-friendly transport. As it happens,
our implementation of the algorithm works quite well over
an unmodified TCP protocol.

The PPS algorithm works by subdividing the timeline of
the video into disjoint intervals called adaptation windows.
Adaptation windows are distinct from the mapper windows
described in the previous section, an adaptation window
consists of one or more mapper windows.

Figure 7 shows the conceptual outline of Priority-Progress
Streaming. A pair of re-ordering buffers is employed around
a bottleneck, which in our case is the TCP session. The
buffers contain the SDUs of an adaptation window. The al-
gorithm for Priority-Progress Streaming contains three sub-
components, the upstream buffer, downstream buffer, and
progress regulator respectively. The upstream buffer admits
all SDUs within the time boundaries of an adaptation win-
dow, these boundaries are chosen by the progress regulator.
Each time the regulator advances the window forward, the

Upstream Downstream

Progress
Regulator

Regulator Clock

Phase Adjust/
Downstream

Clock

ADUs
(timestamp

order)

Regulator Clock

SDUs
(priority
order)

Bottlneck

Figure 7: Priority-Progress Conceptual Architec-
ture

unsent SDUs from the old window position are expired and
the window is populated with SDUs of the new position.
SDUs flow from the buffer in priority-order through the bot-
tleneck to the downstream adaptation buffer, as fast as the
bottleneck will allow. In order to sort into priority order,
the buffer is implemented via a priority queue data struc-
ture. Similarly, the downstream adaptation buffer collects
SDUs and re-orders them to timestamp order. When SDUs
arrive late because of unexpected delays through the bottle-
neck, the progress regulator is notified so that it may avoid
late SDUs in the future. The downstream buffer receives as
many SDUs as the bandwidth of the bottleneck will allow
and the rest, which are of lowest priority, are dropped at the
server. In this way, the dropping will adapt video quality to
match the network conditions between the sender and the
receiver.

Window Prepare Transmit Display
Number Start End Start End Start End

1 0 1 1 2 2 3
2 1 2 2 3 3 4
3 2 3 3 4 4 5
4 3 4 4 5 5 6
5 4 5 5 6 6 7

Table 1: Priority Progress Example

As described in the paragraph above, each adaptation
window goes through three distinct processing phases. The
first phase is window preparation, which includes retrieval
from the source (file or live capture), prioritization, and
re-ordering from timestamp to priority order. The second
phase is window transmission, where the SDUs are trans-
mitted in priority order. The third phase is decoding and
display. Table 1 gives a simple example for a sequence of
five adaptation windows, where each row describes the tim-
ing of the phases for the nth adaptation window.

4.1 Responsiveness and Consistency
The basic premise of streaming is to start display as soon

as possible relative to the start of transmission. Quality
adaptive streaming has the added objective to adjust video
quality so as to make full use of the available bandwidth,
both to increase average quality and to prevent long term
rate fluctuations from disrupting the stream entirely. How-

Figure 8: Adaptation Window Transmission: There
are at most two quality levels per window.

ever, it is also true that it is preferable to avoid exposing
the user to visible quality changes. The size of adaptation
windows in PPS determine important trade-offs between
streaming latency, buffer space requirements, robustness to
rate changes, and the consistency of quality. Smaller win-
dows have the advantage of shorter startup delay, because
the algorithm does not allow display of a window until trans-
mission is fully completed. Larger windows have the ad-
vantage that quality will change less often, and larger rate
fluctuations can be smoothed out.

In Priority-Progress, the sizes of the adaptation windows
have a direct effect on the number of quality changes. Figure
8 shows how the final quality level, for a given adaptation
window, is determined by the transmission order used in Pri-
ority Progress. The SDUs for the window are transmitted
primarily in priority-order, and secondarily in timestamp
order, as in the figure. So the transmission pattern is like
filling the rectangle from left to right, bottom to top. In
the end, there are (upto) two priority levels that have been
reached, hence two quality levels, as shown by the dashed
line9. Then in the limit, the total number of changes for the
whole video is two times the number of adaptation windows
in the video timeline. In this way, longer adaptation win-
dows directly ensure more consistent quality, in that longer
windows decrease the number of possible quality changes.

4.2 Window Scaling
The fact that shorter and longer adaptation windows each

have their benefits reflects what is likely an inherent trade-off
between responsiveness and consistency in adaptive stream-
ing. However, it is not necessary to restrict all window sizes
to the same value. The Priority-Progress algorithm includes
the option to adjust the window size during the streaming
process, which we call window scaling. With window scal-
ing, the window duration starts out minimal, so that startup
latency is minimal, and then the window duration grows
with each new window as the stream plays. As the win-
dow durations get larger, the quality changes become less
frequent. Compared to a fixed window duration, we will
see that window scaling yields dramatically better balance
between responsiveness and consistency.

Window scaling is possible because Priority Progress can
transmit the video at a faster (or slower) rate than it will

9This assumes that quality for a single priority level is uni-
form, which is true for our priority mapper algorithm.

Window Prepare Transmit Display
Number Duration Start end Duration Start End Duration Start End

1 1 0 1 0.5 1 1.5 1 1.5 2.5
2 2 1 3 1 1.5 2.5 2 2.5 4.5
3 4 3 7 2 2.5 4.5 4 4.5 8.5
4 8 7 15 4 4.5 8.5 8 8.5 16.5
5 16 15 31 8 8.5 16.5 16 16.5 32.5

Table 2: Window Scaling Example: windows grow at 100% rate

be consumed at the receiver. The consumption rate at the
receiver is naturally fixed to the videos “real time” rate, but
transmission schedule is not so constrained. The priority
dropping mechanism is what affords flexibility in this re-
spect. Sending a window faster just means that more SDUs
may be dropped. In altering the transmission schedule, the
Priority Progress algorithm can create (or reclaim) worka-
head in the streaming schedule, which is what allows subse-
quent adaptation windows to be larger (or smaller). Worka-
head accumulates whenever the duration of the transmission
phase is shorter than the display phase. By definition, the
transmission of the first adaptation window is a preroll win-
dow which establishes the initial workahead. With the ex-
ception of the preroll window, the accumulated workahead is
the upper bound on duration of each step of the transmission
phase. We call the ratio between duration of a transmission
phase step and the duration of the corresponding display
phase step the window scaling growth ratio.

Table 2 describes a timeline for five adaptation windows,
where the growth ratio is fixed at 2. As in table 1, each
row in the table describes processing for a single adaptation
window. The columns show when the timing of the three
phases for each window. We use a growth ratio of 2 here
as it results in relatively simple numbers, but in practice we
use more modest ratios. The results in the next section are
based on a ratio of 1.1.

4.3 Priority-Progress Streaming Results
In this section, we describe experiments and results for

PPS using our Quasar pipeline implementation. Our ex-
perimental setup consists of a group of Linux based PCs
acting both as end hosts and as a router in a dedicated
network testbed that implements a saturated network path.
The router runs the NISTNet wide area network emulation
package [24], which allows us to introduce artificial delay and
bandwidth limitations. For the experiments presented here,
we set the delay to produce a 50ms round-trip-time. We also
set a bandwidth limitation of approximately 25Mbps and
impose a queue length limit that matches the bandwidth
delay product. For the entire duration of the experiments,
the network is saturated with competing traffic.

We have written a synthetic traffic generator, called mxtraf

[20], that we use to generate the various levels and mixes of
competing traffic. The mix is made up of non-responsive
UDP traffic (10%), short-lived (20Kb) TCP flows (~60%),
and long-lived infinite-source TCP flows (~30%), similar to
measurements reported in [12] . Our experiments consist
of streaming a two hour video through this saturated net-
work path. To provide baseline performance references, we
simulate two existing streaming algorithms assuming they
are given the same video and available bandwidth from our

experiments. The first algorithm is based on the Berkeley
CMT, and the second on Feng’s technique[3]. We then show
the performance of PPS in two cases, the first using a fixed
adaptation window, and the second with the PPS adapta-
tion window scaling feature enabled.

Figure 9(a) shows the transmission rate of the TCP ses-
sion used to transport the video. Figure 9(b) shows the
maximum rate requirement of the video, which is signifi-
cantly above the rate achieved by our TCP stream in the
given conditions. For each streaming algorithm we show
the frame-rate and SNR level achieved over the course of
the whole stream10. Figures 9(c) and 9(d) show that the
CMT algorithm has great difficulty with the conditions of
our experiment. Video quality is extremely volatile, and
there are several instances where the algorithm is not able
to deliver even the minimum quality. Figures 9(e) and 9(f)
show the sliding window algorithm fares much better, with
fewer quality changes and no failures. Figures 9(g) and 9(h)
show PPS with a fixed adaptation window behaves quite
similarly to the sliding window approach. It would be pos-
sible to improve the consistency of PPS in the fixed window
case by increasing the size of the window, but that would
come at the direct expense of startup latency. The major
benefits of PPS arise the adaptive window scaling is enabled,
shown in figures 9(g) and 9(h), where quality gets more con-
sistent over the course of the stream. In the majority of
the movie, quality changes are several minutes apart, even
though startup latency is in the range of 1 second.

5. CONCLUSIONS AND FUTURE WORK
Streaming video over the Internet remains a compelling

and challenging problem. While video compression addresses
the issue of limited bandwidth, it is only recently that scal-
able compression has addressed the extra problem of highly
variable bandwidth as on the Internet. Also recently, there
has been consensus that video traffic should employ TCP
friendly congestion control if it is to avoid threatening ex-
isting traffic and stability. In this paper, we presented a
framework for adaptive video streaming centered around the
simple concept of priority drop. We showed how, through
priority-drop, to combine scalable compression and adaptive
streaming in to form a very effective, tailorable, adaptive
streaming system, supporting an encode-once, stream any-
where model. For future work, we are considering several
extensions of the Quasar pipeline, including incorporating
Priority-Progress streaming to an Application Level Mul-
ticast Overlay, extending Priority-Progress to inter-stream
adaptation, and incorporating video compression with bet-
ter and more scalability options.

10Recall SPEG has four SNR levels

 0
 0.5

 1
 1.5

 2
 2.5

 0 20 40 60 80 100 120

M
bi

ts
/s

Minutes

(a) Video stream TCP Transmission Rate
(smoothed to 1s intervals)

 0
 2
 4
 6
 8

 10
 12
 14
 16

 0 20 40 60 80 100 120

M
bi

ts
/s

Minutes

(b) Maximum Video Rate

 0
 5

 10
 15
 20
 25

 0 10 20 30 40 50 60 70 80 90 100 110 120

fp
s

Minutes

(c) CMT (2s buffer)

 0

 1

 2

 3

 4

 0 10 20 30 40 50 60 70 80 90 100 110 120

SN
R

 le
ve

l

Minutes

(d) CMT (2s buffer)

 0
 5

 10
 15
 20
 25

 0 10 20 30 40 50 60 70 80 90 100 110 120

fp
s

Minutes

(e) Sliding Window Smoothing (60s window)

 0

 1

 2

 3

 4

 0 10 20 30 40 50 60 70 80 90 100 110 120

SN
R

 le
ve

l

Minutes

(f) Sliding Window Smoothing (60s window)

 0
 5

 10
 15
 20
 25

 0 10 20 30 40 50 60 70 80 90 100 110 120

fp
s

Minutes

(g) PPS (10s window fixed)

 0

 1

 2

 3

 4

 0 10 20 30 40 50 60 70 80 90 100 110 120

SN
R

 le
ve

l

Minutes

(h) PPS (10s window fixed)

 0
 5

 10
 15
 20
 25

 0 10 20 30 40 50 60 70 80 90 100 110 120

fp
s

Minutes

(i) PPS with adaptive window scaling (10%)

 0

 1

 2

 3

 4

 0 10 20 30 40 50 60 70 80 90 100 110 120

SN
R

 le
ve

l

Minutes

(j) PPS with adaptive window scaling (10%)

Figure 9: Sub-figure (a) shows the transmission rate in a saturated network over a two hour period. Sub-
figure (b) shows the maximum rate of the video. Sub-figures (c)-(j) show the resulting video quality with
each of four streaming algorithms.

6. REFERENCES
[1] B. Birney. Intelligent Streaming.

http://msdn.microsoft.com/, October 2000.

[2] S. Cen, C. Pu, R. Staehli, C. Cowan, and J. Walpole.
A Distributed Real-Time MPEG Video Audio Player.
In Network and Operating System Support for Digital
Audio and Video, pages 142–153, 1995.

[3] W. chi Feng, M. Liu, B. Krishnaswami, and
A. Prabhudev. A Priority-Based Technique for the
Best-Effort Delivery of Stored Video. In SPIE/IS&T
Multimedia Computing and Networking 1999, San
Jose, California, January 1999.

[4] G. Conklin, G. Greenbaum, K. Lillevold, and
A. Lippman. Video Coding for Streaming Media
Delivery on the Internet. IEEE Transactions on
Circuits and Systems for Video Technology, 11(3),
March 2001.

[5] M. E. Crovella and A. Bestavros. Self-similarity in
World Wide Web traffic: evidence and possible causes.
IEEE/ACM Transactions on Networking,
5(6):835–846, 1997.

[6] N. Feamster, D. Bansal, and H. Balakrishnan. On the
Interactions Between Layered Quality Adaptation and
Congestion Control for Streaming Video. In 11th
International Packet Video Workshop (PV2001),
Kyongiu, Korea, April 2001.

[7] S. Floyd and K. Fall. Promoting the Use of
End-to-End Congestion Control in the Internet.
IEEE/ACM Transactions on Networking, August
1999.

[8] S. M. W. Group. Synchronized Multimedia
Integration Language (SMIL) 1.0 Specification.
Technical report, World Wide Web Consortium, 1998.
http://www.w3.org/TR/REC-smil.

[9] M. Handley, H. Schulzrinne, E. Schooler, and
J. Rosenberg. SIP: Session Initiation Protocol. RFC
2543, March 1999.

[10] B. G. Haskell, A. Puri, and A. N. Netravali. Digital
Video: An Introduction to MPEG-2, chapter 9.
Chapman & Hall, 1997.

[11] Y. He, F. Wu, S. Li, Y. Zhong, and S. Yang.
H.26l-based fine granularity scalable video coding. In
ISCAS, 2002.

[12] G. Iannaccone, M. May, and C. Diot. Aggregate
Traffic Performance with Active Queue Management
and Drop from Tail. Computer Communication
Review, 31(3), July 2001.

[13] IEC. 61834 Helical-scan digital video cassette
recording system using 6,35 mm magnetic tape for
consumer use (525-60, 625-50, 1125-60 and 1250-50
systems). International Standard, 1999.

[14] ISO/IEC. 13818-2 Information technology — Generic
coding of moving pictures and associated audio
information: Video . International Standard, 1993.

[15] ISO/IEC. 11172-2 Information technology – Coding of
moving pictures and associated audio for digital
storage media at up to about 1,5 Mbit/s — Part 2:
Video. International Standard, 1994.

[16] ISO/IEC. 14496-2 Information technology — Coding
of audio-visual objects — Part 2: Visual. International
Standard, December 1999. First edition.

[17] S. Jacobs and A. Eleftheriadis. Streaming Video using

Dynamic Rate Shaping and TCP Flow Control. Visual
Communication and Image Representation Journal,
January 1998. (invited paper).

[18] S. H. Kang and A. Zakhor. Packet Scheduling
Algorithm for Wireless Video Streaming. In Packet
Video 2002, Pittsburgh, April 2002.

[19] J.-W. Kim, Y.-G. Kim, T.-Y. K. H.-J. Song, Y.-J.
Chung, and C.-C. J. Kuo. TCP-friendly Internet
Video Streaming employing Variable Frame-rate
Encoding and Interpolation. IEEE Transaction on
CSVT, 10, October 2000.

[20] C. Krasic, A. Goel, and K. Li. The MxTraf Network
Traffic Generator. http://mxtraf.sf.net/.

[21] C. Krasic and J. Walpole. QoS scalability for streamed
media delivery. CSE Technical Report CSE-99-011,
Oregon Graduate Institute, September 1999.

[22] W. Li, F. Ling, and X. Chen. Fine Granularity
Scalability in MPEG-4 for Streaming Video. In
Proceedings of IEEE International Symposium on
Circuits and Systems (ISCAS 2000), Geneva,
Switzerland, May 2000. IEEE.

[23] S. McCanne, M. Vetterli, and V. Jacobson.
Low-Complexity Video Coding for Receiver-driven
Layered Multicast. IEEE Journal on Selected Areas in
Communications, 16(6):983–1001, August 1997.

[24] NIST. The NIST Network Emulation Tool.
http://www.antd.nist.gov/itg/nistnet.

[25] R. Rejaie, M. Handley, and D. Estrin. Quality
Adaptation for Congestion Controlled Video Playback
over the Internet. In Proceedings of ACM SIGCOMM
’99 Conference, Cambridge, MA, October 1999.

[26] H. Schulzrinne, S. Casner, R. Frederick, and
V. Jacobson. RTP: A Transport Protocol for
Real-Time Applications. RFC 1889, January 1996.

[27] H. Schulzrinne, A. Rao, and R. Lanphier. Real Time
Streaming Protocol (RTSP). RFC 2326, April 1998.

[28] D. Sisalem and H. Schulzrinne. The Loss-Delay Based
Adjustment Algorithm: A TCP-Friendly Adaptation
Scheme. In Proceedings of NOSSDAV, Cambridge,
UK., 1998.

[29] Unknown. Fast-start vs Streaming.
http://www.apple.com/quicktime/.

[30] W. Willinger, M. S. Taqqu, R. Sherman, and D. V.
Wilson. Self-similarity through high-variability:
statistical analysis of Ethernet LAN traffic at the
source level. IEEE/ACM Transactions on Networking,
5(1):71–86, 1997.

[31] D. Wu. Streaming Video over the Internet:
Approaches and Directions, 2001.

[32] N. Yeadon. Quality of Service Filters for Multimedia
Communications. PhD thesis, Lancaster University,
Lancaster, May 1996.

