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ABSTRACT
The Internet’s ubiquity amply motivates us to harness it for
video distribution, however, its best-effort service model is in
direct conflict with video’s inherent timeliness requirements.
Today, the Internet is unrivaled in its rich composition, con-
sisting of an unparalleled assortment of networks and hosts.
This richness is the result of an architecture that empha-
sizes interoperability over predictable performance. From
the lowest levels, the Internet architecture prefers the best
effort service model. We feel current solutions for media-
streaming have yet to adequately address this conflict be-
tween timeliness and best-effort service.

We propose that streaming-media solutions targetted at
the Internet must fully embrace the notion of graceful degra-
dation, they must be architected with the expectation that
they operate within a continuum of service levels, adjusting
quality-resource trade-offs as necessary to achieve timeliness
requirements. In the context of the Internet, the continuum
of service levels spans across a number of time scales, ranging
from sub-second timescales to timescales as long as months
and years. We say sub-second timescales in relation to short-
term dynamics such as network traffic and host workloads,
while timescales of months and years relate to the continu-
ous deployment of improving network, compute and storage
infrastructure.

We support our thesis with a proposal for a streaming
model which we claim is simple enough to use end-to-end,
yet expressive enough to tame the conflict between real-
time and best-effort personalities of Internet streaming. The
model is called Priority-Progress streaming. In this pro-
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posal, we will describe the main features of Priority-Progress
streaming, which we have been implemented in a software-
based streaming video system, called the Quasar pipeline.

Our work is primarily concerned with the class of stream-
ing applications. To prevent confusion, we now clarify the
important distinction between streaming and other forms
of distribution, namely download. For a video, we assume
download is defined so that the transfer of the video must
complete before the video is viewed. Transfer and view-
ing are temporally sequential. With this definition, it is a
simple matter to employ Quality-adaptive video. One algo-
rithm would be to deliver the entire video in the order from
low to high quality components. The user may terminate
the download early, and the incomplete video will automat-
ically have as high quality as was possible. Thus, Quality-
adaptive download can be implemented in an entirely best-
effort, time-insensitive, fashion. On the other hand, we as-
sume streaming means that the user views the video at the
same time that the transfer occurs. Transfer and viewing
are concurrent. There are timeliness requirements inherent
in this definition, which can only be reconciled with best-
effort delivery through a time-sensitive adaptive approach.

1. PRIORITY-PROGRESS STREAMING
The central notion of Priority-Progress streaming is to

decompose application data into units of work, application
data units (ADUs), each labeled with timestamp and pri-
ority. The timestamp is meant to capture the timeliness
requirements of each ADU, and is expressed in units of the
normal play time of the media stream. As ADUs are pro-
cessed end-to-end, the timestamps and priorities provide vi-
tal information necessary to regulate work so as to ensure
proper real-time progress. The priority exposes the layered
nature of the media, where quality can be progressively im-
proved given more of the limiting resource: network, pro-
cessing, or storage.

We use the priorities to achieve graceful degradation. Al-
though a threshold priority-drop approach could be applied
rather directly to match quality to available resources, there
remains an issue that the resource-quality relationship may
vary rapidly, and a user will likely be annoyed by the un-
stable quality. Our own experience implementing a Quality-
Adaptive video system has shown us that streams can have
non-smooth and highly dynamic quality-rate relationships,
which are inconsistent across resource types[3]. Further-
more, the experience of others indicates to us that predict-



ing available network bandwidth is equally problematic[4].
We are thus motivated to reformulate the problem to avoid
explicitly predicting either priority-rate relationship or re-
source availability. The unique aspect of Priority-Progress
streaming presented here is that it uses ADU-reordering in
its buffers to do just that.
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Figure 1: Priority-Progress Control

Figure 1 depicts the structure of Priority-Progress con-
trol within a media pipeline. A pair of re-ordering buffers is
employed around each bottleneck pipeline component. For
example, in the Quasar pipeline we have one such element
responsible for streaming across a network transport. Sim-
ilarly, the software-decompression element is considered a
bottleneck, as it has unpredictable progress rates due both
to data dependencies in MPEG and to external influences
from competing tasks in a multi-tasking environment. The
capacities of the re-ordering buffers are managed in terms of
time, making use of the timestamp labels on ADUs1. The al-
gorithm for Priority-Progress Streaming contains three sub-
components, for the upstream buffer, downstream buffer,
and progress regulator respectively.

The upstream and downstream buffer algorithms operate
as follows. The upstream buffer admits all ADUs within the
time boundaries provided by the progress regulator, these
boundaries delimit the adaptation window. Each time the
regulator advances the window forward, the unsent ADUs
from the old window position are expired and the window
is populated with ADUs of the new position. ADUs flow
from the buffer in priority-order through the bottleneck to
the downstream adaptation buffer, as fast as the bottleneck
will allow. The downstream adaptation buffer collects ADUs
and re-orders them to timestamp order. ADUs are allowed
to flow out from the downstream buffer when it is known
that no more ADUs for a timestamp are coming.

To explain how the progress regulator works, it is impor-
tant to understand how the flow of ADUS relates to the
presentation timeline, as shown in Figure 2. The timeline
is based on the usual notion of normal play time, where a
presentation is thought to start at time zero (epoch a) and
run to its duration (epoch e). Once started, the presentation

1For simplicity, we consider the buffers unbounded in terms
of space, although space constraints can be enforced without
difficulty.
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Figure 2: Priority-Progress Timeline

time (epoch b) advances at some rate synchronous with real-
time. The ADUs within the adaptation window in the time-
line correspond to the contents of the upstream and down-
stream re-order buffers; ADUs within the adaptation win-
dow that are sent are either in the bottleneck or the down-
stream buffer, while ADUs still eligible are in the upstream
buffer. The interval spanned by the adaptation window is
the key to our ability to control the responsiveness-stability
trade-off of quality adaptation. The larger the interval, the
less responsive and the more stable quality adaptation will
be. A highly responsive system is generally required at times
of interactive events (start, fast-forward, etc.), while stable
quality is generally preferable. We transition from respon-
siveness to stability by progressively expanding the adapta-
tion window. The regulator can manipulate the size of the
window through actuation of the ratio between the rate at
which the adaptation window is advanced and the rate at
which the presentation clock advances. By advancing the
timeline faster than the presentation clock (ratio > 1), the
regulator can expand the window with each advancement,
skimming some current quailty in exchange for more stable
quality later.
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