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Abstract. This paper uses analysis and experiments to study the minimal 
buffering requirements of congestion controlled multimedia applications. 
Applications in the Internet must use congestion control protocols, which vary 
transmission rates according to network conditions. To produce a smooth 
perceptual quality, multimedia applications use buffering and rate adaptations 
to compensate these rate oscillations. While several adaptation policies are 
available, they require different amounts of buffering at end-hosts. We study 
the relationship between buffering requirements and adaptation policies. In 
particular, we focus on a widely pursued policy that adapts an application’s 
sending rate exactly to the average available bandwidth to maximize 
throughput. Under this adaptation policy, at least a minimal amount of 
buffering is required to smooth the rate oscillation inherent in congestion 
control, and we view this minimal buffering requirement as a cost of 
maximizing throughput. We derive the minimal buffering requirement for this 
policy assuming that applications use an additive-increase-and-multiplicative-
decrease (AIMD) algorithm for congestion control. The result shows the 
relationship between parameters of AIMD algorithms and the delay cost. We 
show that the buffering requirement is proportional to the parameters of the 
AIMD algorithm and quadratic to the application’s sending rate and round-trip-
time. We verify this relationship through experiments. Our results indicate that 
adaptation policies that maximize throughput are not suitable for interactive 
applications with high bit rates or long round-trip-times.  

1. Introduction 

Interactive multimedia applications, such as videoconferencing and IP telephony, are 
becoming important components of the Internet. Unlike traditional broadcast 
networks, the modern Internet is highly dynamic and is characterized by rapidly 
changing conditions. Applications must use congestion control protocols to react to 
the dynamics of the Internet in order to maintain its stability [1]. 

 
TCP is the de-facto standard transport protocol for bulk data transfer in the 

Internet. However, it does not work well for interactive multimedia applications. Its 



 

retransmissions and drastic rate adjustments can cause significant delays for 
applications. In recent years, researchers have proposed various TCP-friendly 
congestion control protocols, such as equation-based congestion control [2] and 
general additive-increase-and-multiplicative-decrease (AIMD) based congestion 
control [3]. These have significantly improved the performance of multimedia 
applications over the Internet [4], and flows of these protocols interact well with other 
TCP traffic. However, using TCP-friendly congestion control reduces but does not 
remove the oscillations in the transmission rate. 

 
The rate oscillations of congestion control protocols are unavoidable because of the 

Internet dynamics and the nature of congestion control algorithms. The Internet 
dynamic is a result of the huge variation in applications, users, and usage patterns 
[5,6]. As a result, the Internet bandwidth share of an application varies with time. In 
addition, congestion control protocols must probe the network for available 
bandwidth. The process of probing for bandwidth and reacting to observed congestion  
induces oscillations in the achievable transmission rate, and is an integral part of the 
nature of all end-to-end congestion management algorithms. 
 

Multimedia applications often use buffering at the receiver side to smooth these 
rate oscillations because users prefer smooth playback rates to the variable rate of the 
network transmission. In addition to buffering, multimedia applications adjust their 
playback quality based on the available transmission rate. This mechanism is known 
as quality-of-service (QoS) adaptation, which can be performed to adjust an 
application’s sending rate (as well as playback rate) in a number of ways [7, 8,9].  
 

In this paper, we study the buffering requirements of different adaptation policies. 
An adaptation policy is an application’s way of estimating the network transmission 
rate and adjusting its transmission rate to match. Adaptation policies have significant 
impacts on buffering requirements. A sluggish adaptation policy that loosely tracks 
the network transmission rate requires a large amount of buffering to sustain the 
application’s playback rate when the network transmission rate drops. On the other 
hand, an aggressive adaptation that tracks the network transmission rate closely 
requires less buffering. 
 

We have noticed a trend of research toward adaptation policies that try to fully 
utilize the available bandwidth while preserves a smooth playback quality. Several 
existing papers [7, 10, 11] have described mechanisms, such as smart buffer 
management and fine-grained adaptation, to push the adaptation toward the direction 
of maximizing throughput. These works are mainly in the context of streaming media 
over the Internet, and aim to optimize bandwidth efficiency. Without inspecting the 
detailed effects of this adaptation policy, one might consider using it for interactive 
multimedia applications. However, we believe there is a cost associated with fully 
utilizing the achievable transmission rate. This cost is the buffering delay required to 
smooth the inherent rate oscillations of congestion control protocols. For interactive 
multimedia applications this cost may not be affordable. 

 



 

In this paper, we derive the minimal buffering required to smooth the inherent rate 
oscillations of a congestion control protocol. We assume applications use general 
AIMD (GAIMD) based congestion control protocols. GAIMD congestion control 
protocols use TCP’s AIMD algorithm but with an arbitrary pair of increase/decrease 
parameters (α,β). Throughout this paper, we use AIMD(α,β) to indicate a GAIMD-
based congestion-controlled flow with (α,β) as parameters. For example, TCP’s 
congestion control uses AIMD(1,1/2). 

 
Our result shows that the minimal buffering requirement is proportional to the 

increment parameter α when the AIMD-based congestion control is TCP-friendly1. 
And more importantly, the buffering requirement increases quadratically with 
increases in rate and round-trip-time (RTT). This result indicates that using a small 
increment parameter α can reduce the buffering requirement, but the effect is limited 
as rate or RTT increases.  

 
The rest of the paper is organized as follows. In Section 2, we describe the 

architecture of our target application, and explain how it adapts. In Section 3, we 
describe the general AIMD algorithm, and present an analytical derivation of its 
buffering requirement. In Section 4, we present our experimental architecture and 
results. Finally, Section 5 concludes the paper and outlines some future work. 

2. Buffering and Adaptations 

This section presents the structure of our target application, outlines how adaptation 
and buffering are used, and then describes the relationships between various 
adaptation policies and their minimal buffering requirements. 

2.1 Application Structure 

 
 
 
 
 
 
 
 
 
 
 
 

                                                           
1 The rule of choosing AIMD parameters for TCP-friendliness is presented in [12]. 

Fig.1. A QoS-Adaptive Application over the Internet 
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Figure 1 describes our target application’s structure2. It includes a data source 
(e.g., a video camera) and a data sink (e.g., a display) connected via the Internet. The 
sender side generates data on the fly and sends data to the congestion control protocol 
through a buffer. Data is transmitted over the Internet, with transmission rate limited 
by the congestion control protocol, and is put into a receiver side buffer. The data sink 
fetches data from the buffer and presents it to users. 
 

The transmission rate over the Internet oscillates over time. To achieve a stable 
playback quality at the data sink, receiver-side buffering and a sender-side adaptation 
mechanism are used. For simplicity, we assume that a constant playback quality (in 
application terms) maps to a constant bit rate (CBR). Thus, the users’  preference of 
constant playback quality maps to the preference of a constant draining rate from the 
receiver-side buffer. 
  

The receiver delays the start of playback at the data sink side until enough data has 
been accumulated in the receiver-side buffer, to allow the sink to keep playing for a 
while even when the network transmission rate drops below the playback rate. As 
long as the network transmission rate can catch up before the receiver-side buffer 
reaches empty, the user would not perceive any network rate oscillation. Once the 
transmission rate is higher than the playback rate, the buffer will start to fill again.  
 

Determining what data to send and how to fill the buffer is complex. Applications 
require smart buffer filling strategies so that all buffered data are useful to compensate 
for network rate reductions in the future. Since the buffer management is not the focus 
of our work, we simply assume that the application can fully utilize all the buffered 
data. Studies of smart buffer management strategies can be found in recent research 
work [10, 11]. 
 

To reduce the buffering requirements, the target application makes QoS adaptation 
to adjust its sending rate according to the network transmission rate. We assume that 
the adaptation is fine-grain layer-based, and the application can adapt its rate closely 
to the network transmission rate. Several research works have shown ways of 
matching application rates to network rates using fine-grained adaptations. For 
example, Jacobs et al. [7] adapt encoding parameters according to the available 
bandwidth, Krasic et al. [8] propose a priority-based encoding mechanism and make a 
scalable rate adjustment for video streams, and more recently, Byers et al. apply a 
fine-grained rate adaptation [9] to multicast environments.  

2.2 Adaptation Policies 

For layer-based adaptations, adaptation policies are rules determining when a layer 
should be added or removed. Buffering requirements are closely related to how the 

                                                           
2 We assume the application has only one-way traffic. A typical interactive application usually 

involves two-way traffic, which can be divided to two applications with one-way traffic but 
with tight dependency on each other.  



 

application adapts its rate. In this section, we use examples to show this relationship. 
Figure 2 shows four adaptation policies with the same saw-tooth shape transmission 
rate, which is typical of AIMD-based congestion control protocols.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Scenario (1) shows an aggressive adaptation policy that closely tracks the network 
transmission rate: whenever the instant transmission rate is one layer higher than the 
current application sending rate, a layer is added; whenever the instant transmission 
rate is lower than the current application sending rate, a layer is dropped until the 
sending rate is equal to or lower than the network transmission rate. This adaptation 
policy does not require any receiver side buffering but results in frequent quality 
variations.  
 

Scenario (2) illustrates an unresponsive (lazy) adaptation policy that is opposite to 
the aggressive one illustrated in scenario (1), and produces a very stable playback 
rate. The policy does not adjust the application’s sending rate according to the 
available network bandwidth. However, it requires a large amount of buffered data to 
compensate for the network rate variations, even when it chooses a playback rate that 
is close to the average network transmission rate.  
 

Scenario (3) shows a conservative adaptation policy that always sends data at a rate 
lower than or equal to the lowest transmission rate in the recent history. This policy 
makes a layer adjustment decision at every time the congestion control backs off its 
rate, and maintains a sending rate that equals the lowest rate of the recent saw-tooth 
shape. With this policy, applications require no receiver-side buffering, and give users 
a relatively stable playback rate. However, this policy doesn’ t let the application use 
all the achievable transmission capacity detected by the congestion control protocol.  
 

Scenario (4) presents an ideal adaptation policy. It is called ideal because it 
assumes advance knowledge of the network behavior, one saw-tooth ahead of time. 
Since it has future knowledge, it can choose the average of the next saw-tooth as its 
sending rate. Therefore it achieves a stable quality (in the next saw-tooth period) and 

Fig. 2. Buffering Requirements of Different Backing-off Scenarios 

Playback Rate Network Sending Rate Data Consumed from buffer 

Time 

Rate  (1) Aggressive Adaptation (2) Lazy Adaptation 

(3) Conservative Adaptation (4) Ideal Adaptation 



 

10; <<×←+ ββδ tt WW

maximizes throughput. The buffering requirement for this ideal adaptation policy is 
the amount of data needed to smooth one saw-tooth of the network transmission rate. 

2.3 Cost for the Ideal Adaptation  

This ideal adaptation is not a realistic adaptation policy for applications. However, it 
presents an interesting case for studying buffering since it exposes the minimal 
buffering requirement for maximizing throughput. We give a derivation for this 
buffering requirement in Section 3. 

3. Buffering Requirement for General AIMD Congestion Control 

An AIMD-based congestion control protocol uses a General AIMD algorithm to limit 
its sending rate in order to avoid congesting the network. It is a window-based 
congestion control protocol. That is, it uses a congestion window to limit the 
maximum amount of data sent out by the application within one round-trip-time. 

3.1 GAIMD Algorithm 

GAIMD generalizes TCP’s AIMD algorithm in the following way: 
  

  Additive Increase:     (1) 
 

Multiplicative Decrease:                (2) 
 
in which Wt is the congestion control’ s window size (in bytes) at time t, RTT is the 
round-trip-time, and MSS is the packet size3. α and β are parameters of the AIMD 
algorithm which control the paces of the additive increase and multiplicative back off 
respectively. The rate behavior of the GAIMD algorithm is similar to the saw-tooth 
shape of TCP congestion control, which uses an AIMD(1, ½). 

3.2 Minimal Buffering Requirement 

To determine the buffering requirement for smoothing the rate oscillations, we need 
to describe how the rate of an AIMD-based protocol evolves over time. Figure 3 
shows an AIMD flow with a playback rate R. For an AIMD flow, the achievable rate 
in a single RTT is its window size divided by the RTT. The window size is controlled 
by the GAIMD algorithm as follows. If the window size before a back off is W, the 
achievable network transmission rate for this flow periodically varies from β*W / 
RTT to W/RTT.  
 
                                                           
3 We assume the congestion control protocol uses a constant packet size and a constant RTT. 
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According to the ideal adaptation policy, R is the average of the achievable 
transmission rate. The application fetches data from the receiver-side buffer at this 
rate, but the network delivers data to the buffer at a rate of the saw-tooth shape. 
Therefore, the data buffering required to smooth the rate oscillations in one saw-tooth 
is equal to the area of triangle ∆abc in Figure 3, which is: 
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The details of the derivation are in the technical report [12]. 
 

From Equation (3), we see the buffering requirement is related to the selection of 
AIMD parameters (α,β). More importantly, this buffering requirement is in 
proportion to the square of the rate and RTT, which is significant for high rate and 
long RTT applications. This result indicates that interactive applications might not 
want to fully utilize all the available bandwidth in order to avoid this buffering cost. 
 

With the amount of buffering indicated by Equation (3), an application will have a 
stable playback quality within one saw-tooth period. If the bandwidth share is very 
stable and the saw-tooth shape is uniform over time, then the application keeps a 
stable quality all the time and utilizes its entire bandwidth share.  
 

However, in the Internet, even a relatively stable bandwidth share would not 
produce a uniform saw-tooth shape. Very often, back-offs come closely to each other 
for a while, and spread sparsely for another while. With the ideal adaptation, the 
application changes its playback quality at every saw-tooth period. If the application 
prefers a more stable playback quality, it should buffer more data for the rate 
oscillations caused by closely spaced back-offs. 
 

Figure 4 shows an example of two closely spaced back-offs. If an application 
wants to keep a stable playback quality when two back-offs happen continuously, the 
buffering requirement would be at most be the area of triangle ∆def, which is 
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Similar derivations can be applied to the buffering requirement that is used to smooth 
more than 2 continuous back-offs. 

3.3 Buffering Requirement for AIMD-based TCP-friendly Congestion Control 
Protocols 

Early research [13,3] has studied how to make AIMD-based congestion control 
friendly to TCP traffic in the Internet. A simplified result from the TCP-friendliness 
study can be expressed as a constraint on its α and β parameters: 

β
βα

+
−=

1

)1(3 . The 

derivation is available in [12]. With this α and β relationship, we can refine the 
buffering requirement in Equation (3) as: 

22

18
RTTR

MSS
abc ××=∆ α .     (5) 

4. Experiments 

We make several experiments to verify our derivation of minimal buffering 
requirements with various pairs of AIMD parameters. All these experiments are 
conducted in the ns simulator [14]. 
 
 
 
 
 

 
 

We use the simple topology shown in Figure 5, which has N nodes on each side of 
a bottleneck link. The bottleneck link uses RED queue management with ECN [15]. 
Every pair of nodes (Si,Ri) corresponds to a flow which is either an ECN enabled 
AIMD-based flow or a UDP flow. The number of flows, the values of the bottleneck 
link bandwidth and its delay are stated within each experiment. 
 

Each experiment includes two steps. First, we run a non-adaptive infinite source 
application over an AIMD flow to monitor available rate for the flow. Second, after 
we have the whole trace of the achievable rate by the AIMD congestion control, we 
simulate the application’s adaptation behavior with this available bandwidth, and 
compare the buffering requirement of different adaptation policies. In this step, we 
use a simulated adaptive application, which is a fine-grain layer-encoded application 
with a rate range of 100Kbps to 1.5Mbps, in constantly spaced layers of 50Kbps.  

Fig. 5. Basic Experiment Topology 
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4.1 Comparisons of Various Adaptation Policies 

The first experiment we conducted illustrates the buffering requirements and 
bandwidth efficiency for various adaptation policies. In this experiment, the 
bottleneck link bandwidth is set to 1Mbps with 40ms delay. To produce regularly 
behaved saw-tooth rate shape we run a single AIMD(1,1/2) flow with a 256B packet 
size. Parallel with this AIMD(1,1/2) flow, a UDP flow runs through this bottleneck 
link. We adjust the UDP flow’s rate to control the available bandwidth of the 
AIMD(1,1/2) flow. In this experiment, the UDP flow is set to 400Kbps CBR except 
for a short 10 seconds burst to 600Kbps.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figures 6 – 9 show the application rate together with the network transmission rate 
for each adaptation policy. We summarize the result of this experiment in Table 1. 
For the buffering requirement, both aggressive and conservative adaptation policies 
keep the application’s sending rate lower than the available network transmission rate, 
thus they don’ t need any receiver side buffering. The lazy adaptation has a relatively 
large buffering requirement, which is related to the duration of transmission rate 
degradation.  In this experiment, a 300KB buffer is about 5 seconds delay for the 
application. For the ideal adaptation, it requires 7.8KB to smooth its saw-tooth size, 
which is about 100ms for the AIMD flow with a 600Kbps sending rate. Any other 
adaptation policy that maximizes the throughput would experience a delay between 
the delays of the ideal and lazy adaptation policies. 

Fig. 7. Lazy Adaptation  

Fig. 8. Conservative Adaptation Fig. 9. Ideal Adaptation 

Fig. 6. Aggressive Adaptation  



 

 
Table 1 also summarizes the bandwidth efficiency and number of rate adjustments 

that happened during the experiment period shown in Figures 6 – 9. Clearly the 
conservative adaptation has a relatively stable playback quality, but a low bandwidth 
efficiency. All the other three policies have a high bandwidth efficiency. The reason 
for not using 100% bandwidth is that the application is layer-encoded, and its sending 
rate can only approximate the available bandwidth with a sum of its existing layer 
rates. 

Table 1. Comparison of Various Adaptation Policies 

Adaptation Policy Minimal Buffer 
Requirement 

Bandwidth 
Efficiency 

Number of Quality 
Adjustments 

Aggressive Adaptation 0 92% 105 
Conservative Adaptation 0 58% 5 
Lazy Adaptation > 300KB 92% 0 
Ideal Adaptation 7.8KB 92% 5 

4.2 Buffering Requirements of the Ideal Adaptation Policy  

In this experiment, we verify the buffering requirement relationship described by 
Equation (3). We use only one AIMD flow with a 256B MSS, and one UDP CBR 
flow. First, we set the bottleneck link bandwidth to 1.5Mbps with a 40ms one-way 
delay. We vary the rate of the UDP flow to produce available bandwidth from 
100Kbps to 1.5Mbps for the AIMD flow.  We run this experiment 3 times with 
different AIMD flow parameters: (1,1/2), (1/3, 4/5), and (1/5, 7/8). The measured 
buffering requirements are plotted in Figure 10. Second, we give a 1.2Mbps available 
bandwidth to the AIMD flow and vary the bottleneck propagation delay from 10ms to 
120ms. The result of the buffering requirement versus the RTT is in Figure 11. 
 
 
 
 
 
 
 
 
 
 
 
 

The experiment result shows AIMD parameters have an effect on the minimal 
buffering requirement. For example, a 1Mbps AIMD(1,1/2) flow on an 80ms RTT 
path requires more than 20KB buffering. This amount of buffering is equivalent to 
more than 160ms delay for this flow, which is too large for interactive applications 
[16]. Choosing a small AIMD parameter pair (α,β) allows the buffering delay 
experienced by the flow to be reduced. For example, by using AIMD (1/5,7/8), the 

Fig. 10. Rate versus Buffering Fig. 11. RTT versus Buffering 



 

buffering requirement can be reduced to 5KB, which maps to 40ms delay for this 
flow.  
 

However, the experiment result also shows that the buffering requirement increases 
quadratically with rate and RTT, which is problematic for interactive applications 
with high rate and long RTT. In Figure 10, even with AIMD(1/5,7/8), the buffering 
delay becomes significant as the application’s sending rate gets larger.  
 

RTT has a similar effect on the buffering size as flow rate does, but the case is 
worse because a large RTT for interactive applications usually corresponds to a small 
buffering delay budget. For flows with a small RTT, for example 20ms, the resulting 
buffering delay is less than 10ms for a 1.2Mbps data rate. This indicates that the 
required minimal buffering is not significant for interactive applications on a 
metropolitan area network or even a WAN between cities not far away. However, it is 
problematic for interactive applications across oceans or between coasts within a 
continent (e.g. 80ms RTT in US). For example, for a flow with 100ms RTT and 
1.2Mbps data rate, the required buffering delay is about 300ms, which is much more 
than most interactive applications can tolerant. 
 

The buffering requirement results measured in this experiment slightly differ from 
the ones predicted by Equation (3). We believe one reason is that RTT is not constant 
as we assumed in Equation (3). Another reason is that the implementation of AIMD 
actually increases its rate sub-linearly rather than linearly, where the derivation of 
Equation (3) assumes that the additive part of the AIMD algorithm behaves linearly.  
 

Even with this sub-linear increment, the buffering requirement is still quadratic to 
the application’s rate and RTT. This result confirms our claim that interactive 
applications may not always prefer to maximize their throughputs, since they may 
come at the expense of unacceptable end-to-end delay.  

5. Conclusion and Future Work 

In this paper, we have addressed the minimal buffering requirements of adapting the 
application data rate to the average available bandwidth, which maximizes a 
multimedia application’s throughput. The minimal buffering requirement is used to 
compensate for the rate oscillations of congestion control protocols. We derived the 
relationship between the minimal buffer requirements and congestion control’s AIMD 
parameters, application rate, and RTT. Our result indicates that choosing an AIMD-
based TCP-friendly congestion control with a small increment parameter can reduce 
the buffer requirement, because the buffer requirement is proportional to the 
increment parameter. However, the buffer requirement is also proportional to the 
square of the application’s sending rate and round-trip-time. Thus, adapting 
application sending rate closely to the average available bandwidth is not a preferable 
adaptation policy for interactive applications with high rate and long RTT. 
 



 

In this paper, we studied the buffering requirement of AIMD congestion control. 
Besides AIMD-based congestion control protocols, several other algorithms like 
binomial congestion control [17], Equation-based congestion control [2], and TCP 
emulation at receivers (TEAR) [18] have been proposed to reduce the oscillations in 
the application sending rate. Evaluation of the buffering requirements of multimedia 
applications using these protocols is one of our targets for future work. 

Reference 

1. Sally Floyd, and Kevin Fall. “Promoting the Use of End-to-End Congestion Control in the 
Internet”  IEEE/ACM Transactions on Networking, August 1999.  

2. Sally Floyd,  Mark Handley, Jitendra Padhye, and Jorg Widmer. “Equation-based 
Congestion Control for Unicast Applications.”  In Proceedings of ACM SIGCOMM 2000, 
August 2000. 

3.  Yang Yang, and Simon Lam. “General AIMD Congestion Control”  In Proceedings of ICNP 
2000, Osaka, Japan, Nov 2000. 

4. R. Rejaie, M. Handley, and D. Estrin. “An End-to-End Rate-Based Congestion Control 
Mechanism for Realtime Streams in the Internet” . In Proceedings of IEEE INFOCOM’99, 
Mar, 1999. 

5. Mark Allman, Vern Paxson. “On Estimating End-to-End Network Path Properties” , In 
Proceeding of SIGCOMM’99, pp. 263-274, 1999. 

6. K. Park, G. Kim, and M. Crovella. “On the Relatioinship Between File Sizes, Transport 
Protocols and Self-Similar Network Traffic” . In Proceedings of ICNP’1996. 

7.  S. Jacobs and A. Eleftheriadis. “Providing Video Services over Networks without Quality of 
Sevice Guarantees” . In Proceedings of World Wide Web Consortium Workshop on Real-
time Multimedia and the Web, 1996. 

8.  Charles Krasic and Jonathan Walpole. “QoS Scalability for Streamed Media Delivery” , OGI 
CSE Technical Report CSE-99-11, September, 1999 

9.  John Byers, Michael Luby, and Michael Mitzenmacher. “Fine-Grained Layered Multicast” , 
In Proceedings of IEEE INFOCOM 2001, April 2001. 

10. Charles Krasic, Jonathan Walpole, Kang Li, and Ashvin Goel. “The Case for Streaming 
Multimedia with TCP”, OGI-Tech-Report 01-003, March, 2001. 

11. R. Rejaie, M. Handley, and D. Estrin. “Quality Adaptation for Congestion Controlled Video 
Playback over the Internet” . In Proceedings of SIGCOMM’99, Oct., 1999. 

12. K. Li, C. Krasic, J. Walpole, M. H. Shor, and C. Pu, “The Minimal Buffering Requirements 
of Congestion Controlled Multimedia Applications” , OGI-Tech-Report 01-008, June, 2001. 

13. Sally Floyd, Mark Handley, and Jitendra Padhye. “A comparison of equation-based 
congestion control and AIMD-based congestion control.”  Under submission. Available at 
http://www.aciri.org/tfrc. 

14. ns: UCB/LBNL/VINT Network Simulator, http://www-mash.cs.berkeley.edu/ns/ns.html 
15. S. Floyd and V. Jacobson, “Random early detection gateways for congestion avoidance”, 

IEEE/ACM Transactions on Networking, vol.1, pp.397-413, August 1993. 
16. Stuart Cheshire. “Latency and the Quest for Interactivity” . White paper for the Synchronous 

Person-to-Person Interactive Computing Environments Meeting, San Francisco, November 
1996. Available at http://www.stuartcheshire.org. 

17. D. Bansal and H. Balakrishnan. “Binomial Congestion Control Algorithms”, In 
Proceedings of INFOCOM 2001, April 2001.  

18. I. Rhee, V. Ozdemir, and Y. Yi. “TEAR: TCP emulation at receivers - flow control for 
multimedia streaming” . http://www.csc.ncsu.edu/eos/users/r/rhee/WWW/export/tear_page. 


