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Abstract

In this paper we explore the use of Priority-progress
streaming (PPS) for video surveillance applications. PPS
is an adaptive streaming technique for the delivery of
continuous media over variable bit-rate channels. It is
based on the simple idea of reordering media components
within a time window into priority order before
transmission. The main concern when using PPS for live
video streaming is the time delay introduced by
reordering. In this paper we describe how PPS can be
extended to support live streaming and show that the
delay inherent in the approach can be tuned to satisfy a
wide range of latency constraints while supporting fine-
grain adaptation.

1. Introduction

Scalable video surveillance systems, where potentially
thousands of cameras are involved, will require the
underlying networking and coding mechanism to be
scalable, efficient, and adaptive. In particular, the video
cameras in these systems in aggregate can easily overload
the network that connects them. As a result, we expect that
in such systems small computing resources will be placed
with each camera that allows it to deal with the resource
constraints. We believe that such resources should be
used to help make the system as scalable as possible and
to provide the highest quality video.

Priority-progress streaming (PPS) is such an adaptive
streaming mechanism [5] [6]. It uses a time-window-based
approach in which all data packets with timestamps within
a certain period of time are placed in a window and
reordered into priority order before transmission. It then
transmits these packets for the time duration of the
window only. At the end of the window duration, it
discards unsent packets and moves on to the next window.
In this way, the available bandwidth is used to send the
most important elements of the stream and the least
important elements are dropped. Our implementation of
PPS in the Quasar video pipeline [5] shows that PPS is
good for streaming stored video.

The reordering window in PPS introduces latency,
however, and this latency might be problematic for video
surveillance applications, which stream live video. In live
video streaming, the Ilatency characteristics of the
streaming mechanisms partially determine the freshness of
the video content. The freshness of the video content,
which is measured by the end-to-end latency from a frame
being captured to its display, tends to be important for
video surveillance applications.

In this paper, we explore how much of a problem the
latency in PPS is for live video streaming and determine
the range of video surveillance applications it can support.
We describe how PPS can be extended to support live
video streaming, and evaluate the latency implications of
the approach. Our implementation of the live Quasar
pipeline shows that even with fairly rudimentary scalable
video encoding technology, the latency due to adaptation
in PPS can be reduced to as little as 400ms while
maintaining fine-grain adaptation. This means that
applications with a latency tolerance of a half second can
be supported using TCP-friendly protocols on a coast to
coast link in the US (where propagation delay is typically
less than 100ms).

This paper is organized as follows. Related work is
discussed in Section 2. Section 3 introduces the basic idea
of PPS and describes how it works for stored video
streaming. Section 4 discusses the problems of using PPS
for live video streaming. Section 5 outlines a series of
experiments for evaluating the latency and adaptation
granularity characteristics of PPS and presents results.
Finally, Section 6 concludes the paper and discusses
future work.

2. Related work

Streaming video adaptively involves many research
areas. Wu et al. have written a comprehensive survey of
video streaming approaches and directions in their paper
[11]. Vandalore et al. give a detailed survey of application
level adaptation techniques [10].

A common approach to adaptive live streaming is to
monitor network conditions wusing feedback-based



mechanisms such as RTCP receiver reports [1] and adjust
video encoding parameters on the fly [4][8] so that the
rate of the encoded video stream matches a dynamically
determined target bandwidth. A key advantage of this
approach is compression efficiency—the video encoder is
able to optimize video quality for the given target
bandwidth. Another advantage is its support for fine-grain
adaptation—the target bandwidth can be chosen from a
continuous range. A third advantage is low latency—
adaptation can be performed without reordering data. The
main disadvantages of the approach are its inability to
satisfy conflicting requirements of heterogeneous
receivers in a simulcast or multicast distribution network,
the difficulty of tuning encoding parameters to achieve
optimal video quality for a certain video rate, and the
difficulty of tuning the feedback control to determine the
suitable and accurate target video rate. If the target video
rate is chosen incorrectly it will either result in network
underutilization, congestion, or increased delay.

PPS takes an alternative approach based on scalable
video encoding and priority dropping. Without
dynamically manipulating encoding parameters, a scalable
encoding approach allows a wide range of video rates at
the expense of some compression efficiency. Adaptation
is supported in PPS by prioritizing data in the scalable
video stream and dynamically dropping data in priority
order in order to match the target bandwidth. PPS’s
sending strategy does not rely on complex control models
and is independent of receiver feedback. Instead, it allows
an underlying congestion control protocol, such as TCP or
any of the TCP-friendly streaming protocols [9] to
determine the appropriate sending rate. Whatever that rate
is, PPS sends video packets in priority order from a
window as fast as possible. In this way, a high-bandwidth
receiver gets more data than a low-bandwidth receiver for
each window. They both get the best possible video
quality under their bandwidth limitations because for
either receiver, the data packets received are more useful
than those discarded, and the maximum possible
bandwidth is wused while preserving TCP-friendly
behavior. A key advantage of this approach is the
simplicity of the mechanisms and the ability to support
heterogeneous simulcast distribution efficiently.

3. Priority-progress streaming

3.1. Basic streaming

PPS uses timestamps and priority labels to perform
adaptive streaming. A window in PPS contains all data
packets with timestamps within a certain period of time.
The window is called an adaptation window; and the
adaptation window size is the time duration, not the
number of packets or number of bytes in this window.

Figure 1 shows an ideal example of PPS streaming
with sufficient bandwidth and a constant delay. Data
packets with timestamps and priority labels are grouped
into windows in time order. Suppose the timestamps are in
milliseconds, and the window size is 100ms. Within each
100-ms window, packets are sorted and sent in priority
order, assuming that a small number represents a high
priority. Packets in a window are sent out as fast as
possible. Hence, when PPS runs over TCP, it can deal
with TCP’s burstiness. In this example, the bandwidth is
higher than the data rate, so there is spare time in the 100-
ms window. The spare time can be used for work-ahead or
bandwidth skimming [5].
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Figure 1. PPS streaming

3.2. Adaptation

As shown in Figure 2, PPS can adapt to the available
bandwidth. If the bandwidth is lower than the data rate,
some data packets are unsent when the window time
expires. These data packets, which have low priorities, are
dropped. PPS makes efficient use of the limited
bandwidth by transferring the data packets with highest
priority first.

Figure 3 (a) shows how PPS deals with increased delay
by asking the sender to send data earlier so that it has
more time to reach the receiver. If the delay decreases,
PPS could either change back to the old sending schedule
to keep the receiver buffer fill-level low, or keep the
current schedule so as to prime the receiver-side buffer in
anticipation of future delay and bandwidth variations.

In practice, the two adaptation mechanisms cooperate
to match the varying network conditions.
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3.3. Preparation for video streaming

PPS can be used to stream any data flow that can be
packetized such that each packet can be time-stamped and
prioritized. In this section, we discuss packetization,
timestamping, and prioritization for video streams.

A video stream consists of video frames; the video
frames could be the data packets for PPS. However, how
the video frames are encoded determines the space for
adaptation. Scalable encoding is preferred because the
video stream can work at different data rates and we can
achieve different quality levels under different network
conditions. The Quasar pipeline uses a scalable
compression format called SPEG (Scalable MPEGQG),
extending MPEG-1 video with SNR scalability [5]. Each
MPEG video frame is divided into four layers, in which
the base layer contains the most significant bits of the

DCT coefficients and the successive layers contain the
less significant bits. Each layer of an MPEG frame is
encapsulated in an SPEG packet.

Video frames have inherent timestamps: the play time.
SPEG packets are given the timestamps of the
corresponding MPEG frames.

Prioritization enables PPS to do wise adaptation
without understanding the complex semantics of video
encoding. In the Quasar pipeline, prioritization exposes
temporal scalability and SNR scalability by reflecting
dependencies among SPEG packets. For example, the
base layer of an I frame has higher priority than the base
layers of any P frames that depend on it, and a base layer
has higher priority than the enhancement layers in the
same MPEG frame. However, dependencies decide only a
partial order among SPEG packets. For the importance of
the base layer of a P frame over an enhancement layer of
an | frame, Quasar’s prioritization mechanism takes into
account how much a user prefers frame rate over picture
SNR. This mechanism does not simply assign a priority
according to the frame type and layer; instead, it uses a
window-based scheme resulting in many more priority
levels for a video stream than a one-frame-based
algorithm and hence supports much finer-grain adaptation.
The larger the window, the more priority levels can be
utilized. We combine some quality levels that are
indistinguishable by human eyes and we define at most 16
priority levels at any given time in the Quasar pipeline.
Details of the algorithm can be found in our earlier papers
[5]

SPEG is just an example scalable video format.
Subsequently new scalable video encoding approaches,
such as MPEG-4 FGS, have better compression efficiency
and finer-grain scalability than SPEG and hence offer an
even more favorable platform for PPS.

4. Live streaming

4.1. Adaptation for live video

Using PPS for live video introduces much more than
simply replacing the stored video file with a video camera.
A big difference between stored video and live video is
that live video has its own capture clock. Hence, live
video cannot be generated faster or slower than its capture
rate, while stored video can be read whenever it is needed.
This difference implies that the work-ahead mechanism
described in Section 3.2 for dealing with increased delay
cannot be used for live video. For live video, since it is
not possible to “read ahead”, it cannot be sent ahead; we
instead introduce delay at the receiver by pushing back the
receiving deadlines, as shown in Figure 3 (b).



Note that this mechanism is suitable for multicast
because each receiver can adjust its receiving deadlines to
compensate for its own network delay.

4.2. Latency for streaming

The capture clock introduces the notion of end-to-end
latency, which is the time from a frame being captured to
its being displayed. Reducing this end-to-end latency is a
goal specific to live video streaming. For stored video
streaming, applications do require that frames arrive on
time for display, but it does not matter when the frame is
read from a file or how long it stays in buffers as long as it
is on time for display.

There are two main sources of latency: the end
machines and the network. Latency from the end machines
includes the processing time and the buffering time. On
both the sender and the receiver, the processing time does
not vary much. For example, the time for encoding,
decoding, reordering, and prioritizing is fixed unless we
improve the algorithms or switch to faster computers.
Therefore we can assume that in general these times are
fixed.

Two types of buffers contribute to the total buffering
time. Some buffers enable asynchrony among pipeline
components. For example, the capture buffer keeps raw
video frames from being dropped while the CPU is
occupied by encoding or prioritizing; similarly the display
buffer allows a smooth playback when a complex frame
takes longer than its display duration to decode. These
buffers need only be large enough to prevent the pipeline
from stalling. The other type of buffer permits adaptation.
The time spent in these buffers is determined by the
adaptation window size, which is an adjustable PPS
parameter.

The latency of the network segment is something that
we adapt to and cannot control.

Ignoring the latency sources that are independent of
PPS, the end-to-end latency due to adaptation buffers is
the sum of the adaptation window size and the
transmission time, as shown in Figure 4. For PPS
adaptation, the last packet in the window is delayed on the
sender side for the whole window time but not delayed at
all on the receiver side. Similarly, the first packet in the
window is delayed on the receiver side but not at all on
the sender side. All of the frames in between are delayed
both on the sender and the receiver, but the total delay is
always one window time. The transmission time is related
to the window size in two ways. When the bandwidth is
higher than the data rate, the transmission time is
proportional to the amount of data in a window, which is
proportional to the window size. When the bandwidth is
lower than the data rate, the window size is the
transmission time for this window, according to the PPS

streaming algorithm (since transmission continues for the
entire duration of the window before data is dropped).
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Figure 4. End-to-end latency

In summary, for the normal case when bandwidth is
limited, the latency inherent in PPS is generally twice the
window size. Thus, tuning the adaptation window size is
the key to tuning the end-to-end latency. For low latency
streaming, a small window size is preferable. However, a
small window size makes fine-grain adaptation difficult
and eventually impacts video quality. This is because
adaptation happens within a window, ie. a smaller
window provides fewer droppable data units and fewer
priority levels for adaptation.

5. Experiments

We have implemented the live Quasar pipeline by
extending PPS for live streaming and substituting the
MPEG source and the SPEG transcoding components of
the pipeline with a camera, a capture card, and a software
SPEG encoder. The capture card we use is a WinTV card
from Hauppauge. The SPEG encoder is based on ffmpeg
[2], an open source encoder that can encode in real time.
We modified ffmpeg to implement SPEG’s SNR layering
strategy and to produce SPEG output directly to the live
Quasar pipeline.

The live Quasar pipeline runs on Linux Mandrake 8.1.
The sender and the receiver are two Pentium 111 930MHz
machines. The transport protocol we use is TCP. We run
the pipeline on a private LAN without any competing
traffic. We also maintain minimum buffer fill levels that
allow the pipeline to run smoothly. Thus the adaptation
window size is the main control variable in the
experiments.

Measurements are obtained through the gscope
software oscilloscope [3], which is a time-sensitive
visualization tool that shows the bandwidth usage, buffer
fill level, end-to-end latency, and other signals in real
time.

In the following subsections, we concentrate on the
relationships between end-to-end latency, the adaptation
window size, and the adaptation granularity. We use the
adaptation granularity as an indication of the effectiveness



of the adaptation. The adaptation granularity determines
how closely a pipeline can utilize a given level of resource
capacity, which is bandwidth in our experiments.

5.1. Latency vs. window size

Figure 5 shows the relationship between the latency
and the adaptation window size. As expected, the latency
grows with the window size. From Figure 5 we can see
that when the adaptation window size is less than 167ms,
the latency from adaptation, plus processing and necessary
buffering, is well below 400ms. In the real world, the end-
to-end latency also includes the network propagation
delay and transmission time.
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Figure 5. Latency vs. adaptation window size

The latencies shown in Figure 5 are measured for an
intra-encoded video stream. The latencies for inter-
encoded streams are very close to those shown in Figure 5
and the GOP size has little impact on the end-to-end
latency. The window size is the determinant factor.

5.2. Adaptation granularity vs. window size

Each window size can deliver a certain number of
possible quality levels. These quality levels range from
full quality, when all packets of the window are delivered,
to zero quality when none is delivered. Between these two
extremes lie a number of quality levels, one for each
priority, whose bandwidth requirements can be
represented as a percentage of the full quality video
bandwidth. As discussed in Section 2.3, the number of
priority levels and their corresponding bandwidth
percentages depend on the scalability of the video stream,
the window size, and the user preferences.

In Figure 6, Figure 7, and Figure 8, we show samples
of quality levels available for different window sizes and
user preferences. Each symbol + in the plot area
represents a quality level. The x value of the symbol is the
window size in which that quality level is available; the y

value of the symbol is the percentage of the full quality
video bandwidth for that quality level. Figure 6 shows the
available quality levels when a user prefers temporal
quality and SNR quality equally; Figure 7 shows the
available quality levels when a user prefers the maximum
temporal quality; and Figure 8 shows the available quality
levels when a user prefers the maximum SNR quality.

Ideally, for each window size there should be many
available quality levels and their bandwidth percentages
should be evenly distributed in order to closely match the
varying network bandwidth. However, the scalability of
video encoding and the window size determine how many
prioritizable and independently droppable units are in a
window and the sizes of these units determine the
distribution of bandwidth percentage for quality levels.
For the window size of 33.4ms, each window includes
only one MPEG frame at NTSC rate. If no scalability is
introduced, there is only one droppable unit in the window
and there is only one quality level whatever the user
preference is. If we double the frame rate (or double the
window length), we introduce some temporal scalability
and there are two MEPG frames in the window thus two
droppable units and two quality levels. If we introduce
SNR scalability into MPEG by using SPEG encoding
there are four quality levels hence four droppable units per
frame.
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Figure 6. Adaptation granularity vs. window Size
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In order to minimize latency, we need to minimize the
window size while maintaining a large enough number of
evenly distributed quality levels to enable fine-grain
adaptation. For SPEG, a window size of 133.6ms seems to
be a good choice, since it has more than 10 quality levels
and allows the pipeline to achieve relatively low, less than
400ms, total end to end latency. However, SPEG has only
two dimensions of quality adaptation, the temporal
adaptation and the SNR adaptation; and the SNR
adaptation is relatively coarse-grained. Thus, any results
obtained with SPEG could easily be improved with
scalable video encodings that provide finer granularity



scalability. With improved scalable video encoding, PPS
could easily support interactive streaming with a latency
requirement of under 200ms.
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6. Conclusion and future work

Priority progress streaming is a generic and efficient
mechanism for fine-grain adaptive streaming of stored
media. However, it implies increased latency for
reordering data into priority order prior to transmission
and for reordering back into time order after transmission.
In this paper we explored the real world impact of this
reordering latency for live-source video pipelines. We
showed that even using a coarse-grained scalable video
encoding approaches reordering latency can be reduced to
under 400ms, making the approach applicable to many
video surveillance applications. As finer granularity video
encodings become available, the same level of fine-grain
adaptivity will be available using even smaller reordering

windows, and interactivity will be easily supported using
PPS.

In the future, we plan to extend PPS for multicast
delivery and to build a many-to-many video surveillance
infrastructure using it.
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