Protecting Free Expression Online with Freenet

Tan Clarke', Theodore W. Hong?, Scott G. Miller!, Oskar Sandberg!, and
Brandon Wiley!

! The Freenet Project, 2554 Lincoln Blvd. #712, Venice, CA 90291, USA
{ian,scgmille,oskar,brandon}@freenetproject.org
2 Department of Computing, Imperial College of Science, Technology and Medicine,
180 Queen’s Gate, London SW7 2BZ, United Kingdom
Tel +44 20 7594-8233 / Fax +44 20 7581-8024

t.hong@doc.ic.ac.uk

Introduction

Freedom of expression in the digital age is coming increasingly under threat with
the growth of censorship and the erosion of privacy on the Internet. Govern-
ments around the world, including those of Australia, France, Germany, China,
Saudi Arabia, and Singapore, have undertaken a range of efforts to force Inter-
net service providers to block access to content deemed unsuitable or to make
them liable for such material hosted on their servers, as documented by Human
Rights Watch (http://www.hrw.org/advocacy/internet/) and the Global Inter-
net Liberty Campaign (http://www.gilc.org/). In several cases, bans extend to
cultural and political content. The United States itself recently mandated the
installation of content filters in public libraries receiving federal funds.

In addition, various state and corporate actors have gone further and tried
not just to block but to destroy certain materials altogether: from the Church
of Scientology’s lawsuits against websites hosting copies of their religious texts,
to the Motion Picture Association of America’s efforts to halt dissemination of
the DeCSS cryptographic algorithm, to the British government’s attempts to
suppress the revelations of former MI6 agent Richard Tomlinson.

Privacy, too, is threatened as personal information flows are increasingly sub-
ject to monitoring and surveillance. The Electronic Privacy Information Center
(http://www.epic.org) has raised important civil liberties questions about the
FBI’s Carnivore system, which can reportedly scan in real time all email passing
through an ISP, and the EU’s new Convention on Cybercrime, which gives Eu-
ropean authorities broad powers to intercept and record digital communications.
Recent incidents such as the dismissal of the dean of the Harvard Divinity School
for downloading pornography to his home computer, the publication of Monica
Lewinsky’s deleted personal emails in a Congressional report, and the move by
DoubleClick to link names and addresses to profiles of individual web browsing
activity, all point to an unprecedented level of intrusion into private life[12].

These trends are of serious concern not only to whistleblowers or political
dissidents, but to anyone disturbed by the thought of others reading her mail
or watching her do a web search for, say, “Aids support groups.” Indeed, free

2 I. Clarke, T.W. Hong, S.G. Miller, O. Sandberg, and B. Wiley

expression and privacy are closely entwined in the process of communication:
controversial information may need to be published anonymously to protect its
author against retaliation; it must be preserved against removal or blocking at
the locations where it is held; and it may need to be retrieved anonymously to
protect its readers from adverse consequences.

Fortunately, concurrent advances in the power of personal computers have
made possible the development of new peer-to-peer technologies to respond to
these challenges. For this reason, we are developing Freenet[5], a distributed
information storage system designed to address concerns of information privacy
and survivability. The system operates as a self-organizing peer-to-peer network
that pools unused disk space across hundreds of thousands of desktop computers
to create a collaborative virtual file system.

Our main design goals are:

— Privacy for producers, consumers, and holders of information

— Resistance to censorship of information

High levels of availability and reliability through decentralization
Efficient, scalable, and adaptive storage and routing

Privacy for producers and consumers means the ability to create and retrieve
files anonymously. Since this means little without protecting the survival of the
files themselves, we also seek privacy for information holders, meaning concealing
the identities of which computers are storing which files. Together with redun-
dant replication of data, holder privacy makes it extremely difficult for censors
to block or destroy files on the network.

To increase the robustness of the network itself, Freenet strives for a com-
pletely decentralized architecture free from any single points of failure that might
be attacked or overloaded, while maintaining efficiency and scalability. The peer-
to-peer environment is inherently untrustworthy and unreliable, and we must
assume that participants may operate maliciously or fail without warning at
any time. Therefore, Freenet implements strategies to protect data integrity and
prevent privacy leaks in the former instance, and provide for graceful degrada-
tion and redundant data availability in the latter. The system is also designed
to adapt to usage patterns, automatically replicating and deleting files to make
the most effective use of available storage in response to demand. These charac-
teristics additionally help prevent server overload under sudden demand spikes
(the so-called “Slashdot effect”).

Freenet does not, however, explicitly seek to guarantee permanent data stor-
age. Since disk space is finite, a tradeoff exists between publishing new documents
and preserving old ones. The typical solution is to require payment (e.g. in disk
space or money) for publishing, but we would like to encourage publishing, rather
than keep out authors who might be unable to run peer nodes themselves or too
poor to pay for storage. On the other hand, we need to guard against flooding
by junk documents. These considerations have led to a probabilistic storage pol-
icy discussed in more depth later. We hope, however, that Freenet will attract
sufficient resources from participants for most files to last indefinitely.

Protecting Free Expression Online with Freenet 3

The software is currently under open-source development, and a beta version
can be downloaded from http://www.freenetproject.org/.

Freenet Architecture

On an abstract level, Freenet works like this: Each file (or piece of a file) in the
system is assigned a location-independent globally unique identifier (GUID) by
its creator. Everyone who wants to participate in Freenet runs a node which
provides some storage space to the network. To add a new file, a user finds a
node to store it on and sends that node an insert message containing the file and
its GUID. During a file’s lifetime, it may migrate to or be replicated on other
nodes. To retrieve a file, a user sends a request message containing its GUID key
to some node where it is stored, and receives the data back.

Keys

Freenet GUID keys are calculated using SHA-1 hashes. Two main types of keys
are used, signed-subspace keys and content-hash keys.

Signed-Subspace Keys. The signed-subspace key (SSK) sets up a personal
namespace that can only be written to by its owner. A user creates a subspace
by randomly generating a public/private key pair to identify it. To add a file, she
first chooses a short text description. For example, a user inserting a Vietnam
War archive might assign it the description, politics/us/pentagon-papers.
She then hashes the public half of the subspace key and the descriptive string
independently, concatenates them, and hashes again to yield the SSK. The pri-
vate half of the subspace key is used to sign the file as an integrity check. Every
node that handles a signed-subspace file will verify its signature before accepting
it.

To retrieve a file from a subspace, you only need to know the subspace’s public
key (perhaps stored on your keyring) and the descriptive string, from which you
can recreate the signed-subspace key. Adding or updating a file requires the
private key, however, which is kept secret by the owner. In this way, even though
a subspace is not tied to a real-world identity, it enables trust by guaranteeing
that all the files in it were created by the same person. This mechanism can
be used for example to send out a newsletter under a pseudonym, to publish a
website, or (operated in reverse) to receive email.

Various layers can be built on top of signed-subspace keys. For example, a
hierarchical structure can be created using directory files containing hyperlinks
to other files. A directory under the key politics/us might contain a list of
keys such as politics/us/pentagon-papers, politics/us/mcintyre-v-ohio,
and politics/us/constitution, plus recursive pointers to other directories.
Another use for SSKs is to implement an alternative Domain Name System for
nodes that change addresses frequently. Each such node would have its own
subspace, regularly updated with its current location. The subspace’s public

4 I. Clarke, T.W. Hong, S.G. Miller, O. Sandberg, and B. Wiley

key—an address-resolution key—would take the place of a fixed address. To
contact one of these nodes, you would simply look up its key to retrieve its
current address.

Content-Hash Keys. The content-hash key (CHK) is the primary data-storage
key. As the name suggests, a content-hash key is generated by hashing the con-
tents of the corresponding file. This has the useful property of giving every file
a unique absolute identifier that is easy to authenticate. If you send someone
a CHK reference, you know that they will see the exact file you intended (un-
like the behavior of URLs). Content-hash keys can also automatically coalesce
identical copies of the same file inserted by different people, since the file will be
assigned the same key each time.

To retrieve a file stored under a content-hash key, the full binary key is
needed, making CHKs inconvenient for human use. Hypertext links solve this
problem, but content-hash keys can also be used in direct communication by
combining them with signed-subspace keys. To do this, a user first inserts a
file under its content-hash key. She then inserts an indirect file under a signed-
subspace key that points at the content-hash key. This enables others to retrieve
the file from the signed-subspace key in two steps.

Indirect files are useful because they support updating in a convenient way.
First the owner inserts a new version of the data under a content-hash key,
which should differ from the old key since the contents are different. The signed-
subspace key can then be updated to point to the new version, while the old
version will still remain accessible by content-hash key to anyone who wants it.

Content-hash keys can also be used to split large files into multiple parts. A
split file can be inserted by inserting each part under its own content-hash key
and creating an indirect file to point to all the parts.

Messaging and Privacy

Privacy in Freenet is maintained using a variation of Chaum’s mix-net[4] scheme
for anonymous communication. In this scheme, messages are not sent directly
from sender to recipient, but travel through chains in which node A sends a
message to node B, node B passes it on to node C, and so on, until the message
finally reaches its recipient. Fach node-to-node link is individually encrypted.
Since each node in the chain only knows about its immediate neighbors, the
endpoints of the chain could be anywhere among hundreds of thousands of nodes
in the network continually exchanging indecipherable messages. Even the node
immediately after the sender can’t tell whether its predecessor was the true
originator of the message or was merely forwarding a message from someone
else. Similarly, the node immediately before the receiver can’t tell whether its
successor was the true recipient or continued to forward it on. This arrangement
is intended to protect not only information producers and consumers (at the
beginnings of chains), but also information holders (at the ends of chains). It is
important to protect the latter in order to prevent an adversary from destroying
a file by attacking all of its holders.

Protecting Free Expression Online with Freenet 5

Routing

Ensuring privacy is not enough, of course; queries must actually find the data
as well. The routing of messages is the key element that defines the Freenet
protocol.

The simplest routing method, used by services like Napster, is to maintain a
central index of all files so requests can be sent directly to information holders.
Apart from the obvious lack of security, centralization creates a single point of
failure that is easy to attack. For example, if you were trying to phone George
Clooney, calling directory assistance would be the most direct way to get his
number, but you’re stuck if the service goes down or someone removes his entry.

Systems like Gnutella broadcast queries to every connected node within some
radius. Using this method, you would ask all of your friends if any of them knew
Clooney’s number, and get them to ask their friends, and their friends’ friends,
and so on. Within a few steps, the entire country would be looking for him,
which would find the answer but is clearly wasteful and unscalable.

Freenet avoids both problems by using a steepest-ascent hill-climbing search.
Each node forwards queries to the node that it thinks is closest to the target.
For example, you might start searching for Clooney by asking a friend studying
film, who might pass you on to someone she knows in L.A., who might pass you
on to Clooney’s agent, who could put you in touch with the man himself.

Requesting Files. The way this works is as follows: Every node maintains a
routing table listing the addresses of other nodes together with the GUID keys
it thinks they hold. When a node receives a query, it first checks its own store
for the file, and if found, returns the file with a tag identifying itself as the data
source. If not found, it looks up the numerically-closest key in its table to the
key requested and forwards the request to the corresponding node. That node
then checks its store, and so on. If the request successfully finds the data, each
node in the chain will pass the file back upstream and create a new entry in
its routing table associating the ultimate data source with the requested key.
Each node may also cache a copy locally, depending on its distance from the
source. Security can be enhanced by preceding chains with a random mix-net
route before routing normally.

To limit resource usage, queries are given a time-to-live (T'TL) limit that is
decremented at each node. If the TTL expires, the query fails and an error is
returned indicating that the key could not be found within the specified distance.
(The user can try again with a higher TTL, up to some maximum.) If a node sees
a query looping back, it rejects the message and the sender tries its next-closest
key instead. If a node runs out of candidates to try, it reports failure back to its
predecessor in the chain, which will then try its second choice, and so on.

Figure 1 depicts a typical request sequence. The user initiates a request at
a. Node a forwards the request to b, which forwards it to ¢. Node ¢ is unable
to contact any other nodes and returns a “request failed” message to b. Node b
then tries its second choice, e, which forwards the request to f. Node f forwards
the request to b, which detects a loop and rejects the message. Node f is unable

6 I. Clarke, T.W. Hong, S.G. Miller, O. Sandberg, and B. Wiley

7= pata R t
/2/) a Reques
start 64 1127=@/ = Data Reply

X "= Request Fail ed
This request failed N 1 / O(Iata

because a node wil | 6 1
1V
/9
l /

refuse a Data Request 7
4———‘5/®
@ /8—/'

that it has already
seen

Fig. 1. A typical request sequence.

to contact any other nodes and backtracks one step further back to e. Node
e forwards the request to its second choice, d, which has the file. The file is
returned from d via e and b back to a, which sends it to the user. The file may
also be cached on e, b, and a.

The idea is that the request homes in closer with each hop until the key is
found. A subsequent query for the same key will tend to approach the path that
the first request took; once the two converge, the query can be satisfied by a
locally-cached copy without going all the way to the original source. Subsequent
queries for similar keys will also be speeded up by jumping over intermediate
nodes to a node known to have previously supplied similar data. Hence nodes
that reliably answer queries will gain routing table entries and be contacted more
often than nodes that do not.

Inserting Files. Inserts work in a very similar way to requests. To insert a file, a
user first assigns it a GUID key as previously described. She then sends an insert
message containing the new key with a TTL value that represents the number
of copies she wants to store. When a node receives an insert, it first checks its
datastore to see if the key already exists. If so, the insert fails. For CHKs, since
SHA-1 collisions are extraordinarily unlikely, this means that the file is already
in the network and does not need to be inserted. For SSKs, this means that the
user previously inserted another file with the same description. The user should
either choose a different description, or perform an update rather than an insert.
(Updates are not yet implemented because we are still working on a mechanism
to make sure all old copies get replaced.)

Otherwise, the node looks up the closest key and forwards the message to the
corresponding node in the same way as for queries. If the TTL expires without
collision, an “all clear” result will be returned upstream. The user then sends the
data down the path established by the initial insert message. Each node along

Protecting Free Expression Online with Freenet 7

the path will verify the data against its GUID, store it, and create a routing
table entry for it that sets the data source to be the final (farthest downstream)
node in the chain. If a loop or a dead end is encountered, the insert backtracks
to the second-nearest key, then the third-nearest, and so on, in the same way as
for requests.

The idea here is that an insert follows the same path that a query for the
same key would take, sets the routing table entries in the same way, and stores
the file on the same nodes. Thus, the new file will be placed in precisely the
places that a request would look for it in.

Data Encryption

For political or legal reasons, it may be desirable for node operators to remain
ignorant of the contents of their datastores. To this end, users are strongly en-
couraged to encrypt all data before insertion. The network proper knows nothing
about this level of encryption; it only ships around already-encrypted bits. In
particular, data encryption keys are not used in routing and are not included in
any network messages. They are only distributed directly to end users by insert-
ers at the same time as the corresponding GUIDs. This arrangement makes it
impossible for node operators to read their own files while still permitting users
to decrypt them after retrieval. Node operators cannot gain any information by
looking at GUIDs, either, since the hashes used to generate them scramble any
identifying characteristics. From a node operator’s point of view, her datastore
consists only of random GUIDs attached to opaque data.

Network Evolution

Over time, the network evolves, both through new nodes joining the network
and through existing nodes creating new connections following queries. As more
requests are handled, local knowledge about other nodes in the network improves
and routes adapt to become more accurate without needing global directories.

Adding Nodes

A node is logically identified by a public/private key pair, which is used to sign a
physical address reference. It may move from one physical address to another, but
will be recognized as the same node from its public key. The address-resolution
key mechanism previously described can be used to inform other nodes of a
physical move. Note that nodes’ public keys are not certified; this is unnecessary
since we don’t need to link a key to a real-world identity—the public key is
the node’s identity. Certification may of course become useful in the future for
deciding whether or not to trust a new node, but for now there is no trust
mechanism.

To join the network, a new node first generates a public key for itself. It must
then find an existing node through some out-of-band means, to which it sends an

8 I. Clarke, T.W. Hong, S.G. Miller, O. Sandberg, and B. Wiley

announcement message giving its key and physical address. When a node receives
such an announcement, it notes the new node’s identifying information and
forwards the announcement to another node chosen randomly from its routing
table. The announcement continues to propagate until its TTL runs out. At that
point, the nodes in the chain collectively assign the new node a random GUID
in the keyspace using a cryptographic fair coin flip. This enables the new node
to become responsible for a consistent region of keyspace while ensuring that no
participant can bias the choice. In particular, a malicious node cannot influence
the assignment of responsibility for a specific key that it might want to attack.

The announcement procedure also induces a small-world topology in the
network, as described later. Small-world topologies frequently occur in nature
and permit highly scalable routing even in very large networks.

Training Routes

The network’s routing should train itself as more requests are processed, for two
reasons. First, each node’s routing table should become specialized in handling a
cluster of similar keys as time goes by. Whatever key a node is associated with in
others’ routing tables—even if randomly assigned at first—will make it receive
mostly requests for keys similar to that key. When those requests succeed, the
node will learn about previously-unknown nodes that can supply such keys and
create new routing entries for them. As it gains more “experience” in handling
queries for those keys, it will succeed in answering them more often—and hence
get asked about them more often, in a positive feedback loop. For example, if
people kept asking you where to find bowling alleys, you would start to learn
about them even if you knew nothing at first. As more people found out that
you could answer bowling-related questions, you’d get asked about bowling more
and more until you became an expert on the subject.

Second, nodes’ datastores should also become specialized in storing clusters
of files having similar keys. Because inserts of similar keys follow the same paths,
similar keys will tend to cluster in the nodes in those paths. Files cached by nodes
after requests should likewise be clustered since most requests will be for similar
keys.

Taken together, the twin effects of clustering in routing tables and datastores
should improve the effectiveness of future queries in a self-reinforcing cycle, as
nodes begin to focus on particular clusters of keys that are precisely the keys
that they are asked about. While we do not yet have a good mathematical model
to analyze the training and convergence of the Freenet algorith, simulations
show that the networkis in practice able to locate files quickly, with a median
pathlength of just 8 hops in a 10,000-node network.

Key Clustering

Since keys are derived from hashes, the closeness of keys in a datastore will be un-
related to the closeness of the corresponding files’ contents. This lack of semantic

Protecting Free Expression Online with Freenet 9

closeness is unimportant, however, since the routing algorithm is based on know-
ing where particular keys are located, not where particular topics are located. For
example, suppose a descriptive string such as politics/us/pentagon-papers
yields the key AF5EC2. Requests for this file can be satisfied by creating clusters
containing the keys AF5EC1, AFSEC2, and AFBEC3, as opposed to creating clusters
containing works about U.S. politics. In fact, hashes are useful because political
works will be scattered across the network, since this lessens the chances that
the failure of a single node will make all politics unavailable. Similarly, the con-
tents of any given subspace will be scattered across different nodes, increasing
robustness.

Searching

One issue that remains open is how users can search for keys relevant to their
needs. In many ways this is similar to the problem of searching the web, and the
same solutions are possible. Like the web, Freenet can be spidered, or individuals
can publish lists of bookmarks. One simple possibility for a native Freenet search
would be to create a special public subspace for indirect keyword files. When an
author inserted a file, she could also insert a number of indirect files pointing
at the original file, whose names corresponded to search keywords. For example,
the Pentagon Papers archive might have indirect files named keyword:politics,
keyword:united-states, and keyword:vietnam pointing at it. These keyword
files would differ from normal files in that multiple files having the same key
would be permitted to coexist, and requests for such keys could return multiple
matches. A search for “politics” might return a keyword file keyword:politics
pointing to the Tiananmen Papers as well as one pointing to the Pentagon
Papers. However, managing a large number of indirect files for common keywords
would be difficult, since all the files having the same name would be attracted to
the same nodes. A more sophisticated approach might use a distributed search
over detailed metadata descriptors inserted along with the original files. Much
work still needs to be done in this area.

Managing Storage

To encourage publishing, Freenet does not require payment for inserts or impose
restrictions on the amount of data a publisher can insert. However, as a result the
system may have to decide which files to keep, given finite disk space. The current
system prioritizes space allocation by popularity, as measured by the frequency
of requests per file. Within each node’s datastore, files are kept ordered by time
of last access. When a new file arrives that cannot fit in the free space available,
the least-recently-accessed (i.e. most unpopular) files are deleted until there is
room.

Evicted files do not completely disappear right away, since their associated
routing table entries are smaller and will stay around for longer. If an evicted

10 I. Clarke, T.W. Hong, S.G. Miller, O. Sandberg, and B. Wiley

file is requested at a later date, the node can use the routing table to fall back
to the original data source, which may be able to supply another copy.

Why would the original source be any more likely to have it? Data source
pointers in Freenet, considered as graphs, have a tree-like structure. Nodes at
the leaves may only see a few local requests for a file, but nodes higher up the
tree receive requests from a larger part of the network, making their copy more
popular.

The distribution of files is therefore determined by two competing forces.
When files are requested from one part of the network, the query-routing mech-
anism automatically creates more copies there and the tree grows in that di-
rection. This improves response time and prevents Slashdot-type overloading.
When files go unrequested in another part, they become subject to deletion and
that part of the tree shrinks, freeing up space for other files. The net effect is
that the number and location of copies of each file adjusts to the demand for it.

An important problem that still needs further work is defending against
a denial-of-service attack that floods the system with junk data in order to
fill up all available space or to overwrite existing data. Although the eviction
mechanism works to eliminate files that are never requested, if it does not act
quickly enough important files may be pushed out. On the other hand, reducing
the priority of new data may result in files being deleted too soon before they have
had a chance to be requested. Various modifications to the caching policy are
being explored to balance these considerations, such as caching less aggressively
farther down the data source pointer tree.

Performance Analysis

Simulations were used to test the performance of Freenet. Here we summarize
the most important results; for full details, see [9)].

Scalability

To test Freenet’s scalability, we created a simulated network of 20 nodes con-
nected initially in a ring topology. Inserts of randomly-generated files were sent
to random nodes in the network, interspersed with random requests for files that
had been inserted so far (all with TTL 20). After every five inserts/requests, a
new node was created and announced itself to a random existing node. After
every hundred inserts/requests, the network’s performance was measured by is-
suing a set of test requests for previously-inserted files and recording the resulting
distribution of pathlengths (the number of hops actually taken to find the data).
This continued until the network reached 200,000 nodes.

Figure 2 shows the evolution of the first, second, and third quartiles of the
request pathlength versus network size, averaged over ten trials. We can see
that the median pathlength strongly fits a sublinear power law with exponent
k=0.28, in line with recent mathematical modelling of peer-to-peer networks
done by Adamic et al.[1]. Extrapolating to larger sizes, it appears that Freenet

Protecting Free Expression Online with Freenet 11

filrst quartile E .
median .
third quartile [)
100 | /]

Request pathlength (hops)

1 1 1 1 1

100 1000 10000 100000 1e+06
Network size (nodes)

Fig. 2. Request pathlength versus network size.

should be capable of scaling to one million nodes with a median pathlength of
just 30.

Fault Tolerance

Next, we examined Freenet’s fault tolerance. After repeating the previous train-
ing procedure to 10,000 nodes, we progressively removed random nodes from the
network to simulate node failures. Figure 3 shows the resulting evolution of the
request pathlength, averaged over ten trials. The network is surprisingly robust
against quite large failures. The median pathlength remains below 20 even when
up to 30% of nodes fail. (Note that requests were capped at 500 hops before
giving up.)

The Small-World Model

These characteristics of Freenet can be explained in terms of a small-world net-
work model[15]. Small-world networks are characterized by a power-law distri-
bution of graph degree in which the majority of nodes have only relatively few,
local connections to other nodes but a significant small number of nodes have
large, wide-ranging sets of connections. The small-world topology enables effi-
cient short paths even in very large networks because of the shortcuts provided
by the well-connected nodes.

12 I. Clarke, T.W. Hong, S.G. Miller, O. Sandberg, and B. Wiley

700 T T T T T) T
first quartile -
median
third quartile -------

600 E

500 E
@
Q.
o !
5 I
£ 400 ; g
[=2
IS i
<@
5
© i
(=% /
% 300 F ; g
[i
3 1
o
Q 1
14 /

200 i

100 | i

0 . 1 o i e ! !
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Fraction of nodes failing

Fig. 3. Change in request pathlength under random failure.

Is Freenet a small world? Figure 4 shows the average distribution of graph
degree (i.e. number of routing table entries) in a 10,000-node trained network.
We see that the distribution closely approximates a power law with ¢=1.5, except
for an outlier resulting from the maximum routing table size cutoff (250 in this
simulation). This is not surprising, as power-law distributions tend to arise nat-
urally through the interaction of network growth with preferential attachment
(that is, new nodes prefer to connect to nodes that already have many links)[2].
The new-node announcement protocol initially creates a preferential attachment
effect because following random links gives a higher probability of arriving at
nodes that have more links. During normal operation, the effect continues be-
cause nodes that are well-known tend to see more requests and become even
better connected (“the rich get richer”).

In addition to creating short paths, the power-law distribution also gives
small-world networks a high degree of fault tolerance[2]. Random failures are
most likely to knock out nodes from the poorly-connected majority, whose loss
will not greatly affect routing. It is only when the number of failures becomes
high enough to knock out a significant number of well-connected nodes that per-
formance will be noticeably affected. On the other hand, if the well-connected
nodes are specifically targeted first, a small-world network falls apart much more
quickly. This can be seen in Figure 5, which shows the size of the largest con-
nected component in a 10,000-node network as nodes are removed, both ran-
domly and in order from most-connected to least-connected. Under random fail-

Protecting Free Expression Online with Freenet 13

ooOLF e " o

Fraction of nodes
?

0.001 | ""‘:'.- E

0.0001 L .
10 100 1000

Number of links

Fig. 4. Degree distribution among Freenet nodes.

ure, the vast majority of the network remains connected until almost the very
end. Under targeted attack, however, the network undergoes a percolation transi-
tion near 60% removal, when it abruptly falls apart into disconnected fragments.

Related Work

The most well-known similar systems are Napster (http://www.napster.com/)
and Gnutella (http://gnutella.wego.com/), which both implement large-scale
pooling of disk space among individual users. The major difference is that they
provide a file sharing service rather than a file storage service—that is, partic-
ipants make their own files available to others but do not push files to other
nodes for storage. Hence data is not persistent in the network; files are only
available when their originators (or subsequent requesters) are online. Neither
does either system attempt to provide anonymity. Gnutella is also extremely
inefficient, broadcasting thousands of messages per request.

The paradigm followed by Freenet more closely resembles the proposal for the
Eternity service[3], which set out a broad vision of a highly-survivable network for
archiving information permanently and anonymously, though lacking in specifics
on how to efficiently implement such a service. Another Eternity-like system is
Free Haven[7], an anonymous peer-to-peer publication system that uses trust

14

—

. Clarke, T.W. Hong, S.G. Miller, O. Sandberg, and B. Wiley

10000 T T T T T T

T T
random failure -------
targeted attack

9000 1

8000 | g
7000 -]
6000 |- \‘*\\\\ i
5000 | \\\\\\ .
4000 |- \\\\\\\ 4

3000 |- i

Size of largest connected component

2000 | .

1000 | .

0 1 1 1 1 1 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Fraction of nodes removed

Fig. 5. Network connectivity under random failure and targeted attack.

mechanisms and file trading to enforce server accountability as well as user
anonymity; however, it can take days to retrieve files from it.

A number of peer-to-peer file storage systems have been developed recently
that focus on efficient location of data rather than issues of privacy and secu-
rity against malicious participants: these include OceanStore[11], CFS (based on
Chord)[6], and PAST[13]. All are based on routing models in which each node
is assigned a fixed identity and maintains some knowledge of those nodes whose
identities vary in specified ways from their own. (OceanStore additionally uses a
probabilistic routing algorithm based on Bloom filters.) Data is deterministically
placed on nodes whose identities most closely match the data’s GUID. In these
systems, data can be located by progressively visiting nodes whose identities
match more and more bits of the desired GUID. Their main advantage is that
they can provide strong guarantees that data will be located within certain time
bounds (generally logarithmic) if it exists. In turn, this permits better handling
of issues like storage management.

The main disadvantage of these systems relative to Freenet is that they are
more difficult to secure against attack. It is easier for a malicious node to ma-
nipulate its identity so as to gain responsibility for a particular piece of data and
suppress it. Links and routing are also more deterministically structured and
visible to all, making it easier to trace messages, and harder to avoid malicious
nodes that sabotage requests by pretending data could not be found. PAST as
currently constituted also requires users to trust external smart cards.

Protecting Free Expression Online with Freenet 15

Freenet was designed from the ground up under the assumption of hostile
attack from both inside and out. Therefore it intentionally makes it difficult
for nodes to direct data towards themselves and keeps its routing topology dy-
namic and concealed. Unfortunately, these considerations have had the side effect
of hampering changes that might improve Freenet’s routing characteristics. To
date, we have not discovered a way to guarantee better data locatability without
compromising security.

Systems focusing on privacy for information consumers include browser proxy
services such as the Anonymizer (http://www.anonymizer.com/) and SafeWeb
/ Triangle Boy (http://www.safeweb.com/). Both provide anonymity by prox-
ying requests for Web content on the user’s behalf, although users are vulnerable
to logging by the services themselves. Crowds[10] improves anonymity over sim-
ple proxying through a request-chaining technique similar to the one we use.
None of these systems directly store information themselves; they only provide
anonymized access to information available on the Web.

On the producer/holder side, the Rewebber (http://www.rewebber.de/)
provides some privacy for information holders with an encrypted URL service
that is the inverse of a browser proxy, but is similarly vulnerable to logging by
the service operator. TAZ[8] extends this idea with chains of nested encrypted
URLs that point to successive Rewebber-type servers to be contacted. Neither
protects information producers and both rely on a single server as the ultimate
source of information. Publius[14] enhances robustness and protects producer
anonymity by distributing files as redundant partial shares among many holders;
however, since the identity of the holders is not anonymized, an adversary could
still destroy information by attacking a sufficient number of shares. None of
these systems protect information consumers, although Rewebber also operates
a browser proxy service.

Conclusions

Freenet provides an effective means of anonymous information storage and re-
trieval to help combat the growth of censorship and the erosion of privacy online.
By using cooperating nodes spread over many computers in conjunction with an
efficient adaptive routing algorithm, it keeps information anonymous and avail-
able while remaining highly scalable. Initial beta deployment is underway, and is
so far proving successful, with hundreds of thousands of copies downloaded and
many interesting files in circulation. Because of the anonymous nature of the sys-
tem, it is impossible to tell exactly how many users there are or how well inserts
and requests are working, but anecdotal evidence is positive. We are working on
implementing a simulation and visualization suite that will enable more rigorous
tests of the protocol and routing algorithm. More realistic simulation and formal
modelling are necessary to explore the effects of nodes joining and leaving, vari-
ations in node capacity and bandwidth, and larger network sizes. Finally, more
work is needed to develop search mechanisms and to provide more protection
against denial-of-service attacks.

16

I. Clarke, T.W. Hong, S.G. Miller, O. Sandberg, and B. Wiley

Acknowledgements

The second author thanks the Marshall Aid Commemoration Commission for
their support. This material is partly based upon work supported under a Na-
tional Science Foundation Graduate Research Fellowship.

Additional information about Freenet, including author contact information

and software downloads, is available at http://www.freenetproject.org/.

References

1.

2.

10.

11.

12.

13.

14.

15.

L.A. Adamic, R.M. Lukose, A.R. Puniyani, and B.A. Huberman, “Search in power-
law networks,” Physical Review E 64(4), 046135 (2001).

R. Albert, H. Jeong, and A. Barabdsi, “Error and attack tolerance of complex
networks,” Nature 406, 378-382 (2000).

R.J. Anderson, “The Eternity service,” in Proceedings of the 1st International
Conference on the Theory and Applications of Cryptology, CTU Publishing House,
Prague (1996).

. D.L. Chaum, “Untraceable electronic mail, return addresses, and digital pseudo-

nyms,” Communications of the ACM 24(2), 84-88 (1981).

I. Clarke, O. Sandberg, B. Wiley, and T.W. Hong, “Freenet: a distributed anony-
mous information storage and retrieval system,” in Designing Privacy Enhancing
Technologies, LNCS 2009, ed. by H. Federrath. Springer: New York (2001).

F. Dabek, M.F. Kaashoek, D. Karger, R. Morris, and I. Stoica, “Wide-area cooper-
ative storage with CFS,” in 18th ACM Symposium on Operating System Principles
(SOSP ’01), ACM Press (2001).

R. Dingledine, M.J. Freedman, and D. Molnar, “The Free Haven project: dis-
tributed anonymous storage service,” in Designing Privacy Enhancing Technolo-
gies, LNCS 2009, ed. by H. Federrath. Springer: New York (2001).

I. Goldberg and D. Wagner, “TAZ servers and the Rewebber network: enabling
anonymous publishing on the world wide web,” First Monday 3(4) (1998).

T. Hong, “Performance,” in Peer-to-Peer: Harnessing the Power of Disruptive
Technologies, ed. by A. Oram. O’Reilly: Sebastopol, CA, USA (2001).

M.K. Reiter and A.D. Rubin, “Anonymous web transactions with Crowds,” Com-
munications of the ACM 42(2), 32-38 (1999).

S. Rhea, C. Wells, P. Eaton, D. Geels, B. Zhao, H. Weatherspoon, and J. Kubi-
atowicz, “Maintenance-free global data storage,” IEEE Internet Computing 5(5),
40-49 (2001).

J. Rosen, The Unwanted Gaze: The Destruction of Privacy in America, Vintage
Books (2001).

A. Rowstron and P. Druschel, “Storage management and caching in PAST, a large-
scale, persistent peer-to-peer storage utility,” in 18th ACM Symposium on Operat-
ing System Principles (SOSP ’01), ACM Press (2001).

M. Waldman, A.D. Rubin, and L.F. Cranor, “Publius: a robust, tamper-evident,
censorship-resistant, web publishing system,” in Proceedings of the Ninth USENIX
Security Symposium, Usenix Association (2000).

D. Watts and S. Strogatz, “Collective dynamics of ‘small-world’ networks,” Nature
393, 440-442 (1998).

