
A Service Platform for On-Line Games

Debanjan Saha Sambit Sahu Anees Shaikh

Network Services and Software
IBM TJ Watson Research Center

Hawthorne, NY 10598

{dsaha,sambits}@us.ibm.com, aashaikh@watson.ibm.com

ABSTRACT
Providing a satisfying experience for players of on-line first-
person and multiplayer role-playing games is greatly influ-
enced by the distribution and scalability of the game server
infrastructure. Deploying a large, dedicated server infras-
tructure to support a single game title, however, is an ex-
pensive approach that does not make the best use of avail-
able resources. In this work-in-progress report, we propose
a shared, on-demand service platform for hosting on-line
games based on grid technology. A standards-based grid in-
frastructure provides economies of scale and high availabil-
ity, necessary prerequisites for a successful on-line gaming
service. We give an overview of the service architecture,
and a detailed description of a number of middleware ser-
vices that comprise the game hosting platform. In addition,
we describe existing standards in grid technology and show
how standard grid toolkit services can be leveraged to realize
a gaming grid.

1. INTRODUCTION
On-line gaming is a rapidly growing segment of the video

games industry and has the potential to be a killer Inter-
net application. There are three primary classes of on-line
games: first-person shooters (FPS), massively multiplayer
on-line role-playing games (MMORPG), and peer-to-peer
games. On-line FPS games provide a virtual world in real-
time. A central server maintains the global state of the
world and periodically distributes updates to the clients,
and clients frequently communicate their own local state to
the server. The frequency of state update is about 50ms.
On-line FPS games stress both the server and the network
infrastructure due to their strict interactivity requirements.
Consequently, FPS game servers can support a fairly small
number of players, typically no more than a few tens [3].
MMORPG games also make use of central servers, which are
each responsible for a portion of the overall game world (i.e.,
realms). These games do not have as strict interactivity re-
quirements as FPS games, and a single server can support

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
NetGames 2003May 22–23, 2003, Redwood City, California, USA.
Copyright 2003 ACM 1-58113-734-6/03/0005 ...$5.00.

hundreds of players at a time. However, in order to maintain
persistence across large numbers of players, the server has
to process a large number of database transactions that ul-
timately limit the number of players that a given server can
support. Peer-to-peer games, as the name suggests, do not
need any servers except for a directory service for players to
locate opponents.

It is readily apparent that FPS and MMORPG games re-
quire a significant amount of computing and networking re-
sources. During the nascent phases of the gaming industry,
many of the FPS and MMORPG games were hosted on in-
dividual servers with virtually no global management. This
resulted in a fragmented gaming community with no guaran-
tees on server or network performance and often led to poor
game-playing experience. Over the last several years, there
has been a shift in the on-line gaming landscape in which
a number of vendors and service providers have recognized
the huge commercial potential of on-line games. They have
also recognized that in order to make a successful business
out of on-line games, they need to create an infrastructure
that consistently provides a superior game playing experi-
ence. Consequently, we have seen a move from individu-
ally hosted game servers to full production gaming services
hosted by game publishers (e.g., EA.com), game console
manufacturers (e.g., Xbox Live), and third-party infrastruc-
ture providers (e.g., Butterfly.net).

In this paper, we propose to use on-demand grid tech-
nology as the underlying infrastructure for hosting on-line
games. While our architecture is geared initially toward
FPS games, several of the gaming services are applicable
to MMORPG games as well. FPS games require a tremen-
dous amount of server resources, and, due to interactivity
requirements, they also require that the server resources be
placed closed to the players. Since concentration of player
populations can vary dramatically (e.g., with time of day),
intelligent on-demand allocation of computing resources is
critical to optimize server utilization while maximizing game
playing satisfaction. We believe that grid technology pro-
vides a standards-based platform well-suited for such an on-
demand computing infrastructure. In addition, a grid-based
shared infrastructure provides economies of scale and indus-
trial scale resiliency, necessary prerequisites for a successful
on-line gaming industry.

Our specific objective is to develop middleware based on
existing grid components that will facilitate an on-line games
hosting platform. The middleware targets the following ser-
vices:

• Player services, including service provisioning, player

ISP #1

ISP #2
ISP #3

Players

Players

Players

Storage cluster

Storage cluster

Storage cluster

Gaming server cluster

Gaming
server cluster

Gaming
server cluster

Peering point

Figure 1: Service architecture for hosting on-line games

authentication, account management, game news, game
statistics, player ranking, expert advice, chat rooms,
etc.

• Game publisher services, including different modes of
billing, self-service game publishing, game software up-
date distribution, performance monitoring, and service
level management.

• System services, including player communication ser-
vices, on-demand server resource management, and di-
rectory services to help players find each other.

Note that we are primarily interested in services that min-
imize alterations to the way game developers architect and
write their games (in contrast to recent middleware propos-
als, e.g. [1, 2, 5, 8]). Our objective is to develop “control
and management plane” services to facilitate on-line game
hosting on an Internet scale.

Though our intent is that this middleware layer is as trans-
parent to game developers as possible, there are admittedly
some functions that would likely require developer aware-
ness of the service platform. For example, proposed APIs
to support data management for MMORPG realms spread
across multiple servers may require knowledge about game
servers as they are dynamically provisioned. Our approach
is to focus on the services described above and include, if
possible, support for data management middleware as it be-
comes standardized and gains wide adoption among game
developers.

In Section 2 we describe the service architecture in more
detail, along with details of the specific gaming-related ser-
vices provided by the platform. Section 3 provides some
background on grid technologies and standards. We also de-
scribe specific middleware components available in a widely-

used grid implementation, and how they can be leveraged
to support the game hosting architecture. Section 4 sum-
marizes the paper and discusses next steps in realizing the
architecture.

2. ARCHITECTURE AND SERVICES
In this section we describe the gaming service platform

architecture and the middleware services that it provides.
We propose three sets of services to allow players, game
publishers, and service providers the ability to deploy games
in a grid-based architecture. These are described in more
detail below.

2.1 Architecture
Figure 1 shows an example of a gaming grid. As shown

in the figure, the gaming grid consists of a number of server
clusters located in geographically distributed data centers.
The data centers are connected to the Internet via one or
more ISPs. This federation of server clusters is a resource
that is shared across a number of game publishers and is
used to host different games. In the figure, different shades
in the server clusters represent server resources allocated to
different publishers or game titles at a certain point in time.
Note that a given publisher may have server resources allo-
cated at different clusters in order to handle players located
in different geographic locations. Furthermore, the alloca-
tion of server resources may change over time as the number
and distribution of players change. In fact, one of the pri-
mary reasons for using a shared grid infrastructure is to take
advantage of statistical multiplexing gains by exploiting dy-
namic changes in player population.

As mentioned before, one of our objectives is to develop
software services that hide the complexity of managing this

shared grid infrastructure from the publishers and players
of on-line games. In order to achieve this goal, we do make
use of standard grid services such as resource monitoring,
scheduling, and task dispatching. However, we also develop
more advanced features specifically for the on-line gaming
environment on top of these basic grid services. For exam-
ple, the decision to spawn a new instance of a game server in
a specific server cluster may depend on a number of game-
specific inputs such as maximum number of players a server
can handle, location of the players, and player preferences
regarding different gaming communities. These decisions
are handled by the gaming grid middleware. However, the
task of spawning a server instance makes use of the standard
mechanisms provided by grid middleware. Hence, architec-
turally our middleware sits on top of generic grid services
middleware and handles tasks that are more specific to game
hosting.

2.2 Player services
The player services component of the middleware provides

game players with the functions to locate games, connect to
a game server, and play the desired game hosted on a grid
infrastructure. It hides the details of the underlying ar-
chitecture, including the fact that the game is hosted on a
grid infrastructure. The basic functionality of this service
includes managing account information, authenticating the
player, providing game related announcements, and most
importantly, finding an appropriate game server. The mid-
dleware service allows a player to specify his or her game-
related preferences, e.g., in which game community or team
the player wishes to participate. To the player, these func-
tions can be presented as a simple Web-based portal. Game
developers could then replace integrated game finders with a
simple interface to a Web browser which contacts the portal.

Server selection is also a key component of the gaming
platform. Current server load on the set of game servers
currently hosting the game, the inferred geographic loca-
tion about the player, and player preferences are taken into
account to choose a suitable server for the player. It may
be the case that there is no such server that meets the re-
quirement of the player. In that case, more instances of the
game are created by using the functions provided by the
game publisher and system services of the middleware. The
game server selection process in our architecture differs from
traditional network-aware server selection in that our mid-
dleware (i) accounts for player preferences (e.g., teams), and
(ii) on-demand resources may be allocated while making the
server selection. By clustering players into regions, network
and server monitoring can also be made more scalable, since
it is not necessary to track the entire network of servers for
a given set of players.

2.3 Game publisher services
These services collectively provide the required functions

and interface for a game publisher to participate in the grid
infrastructure. The various functionalities include deploying
a game, automatically updating game software, monitor-
ing game server performance, managing service level agree-
ments, and handling various modes of billing and settle-
ment. The automatic software update service should scale
to a large number of servers. One approach would be to
use overlay multicast on a per-title basis to automatically
handle the often very large updates, and includes required

authentication mechanisms to detect any unauthorized or
malicious update requests.

The game publisher middleware also allows a game pub-
lisher to specify an SLA for its players. For example, the
game publisher may request that not more than 10% of its
players suffer more than 150 ms delay and not more than
1% players are turned away due to lack of resources. In ad-
dition to performance related SLAs, the publisher can also
specify network-related SLAs such as game servers should
be allocated so players connect to the servers on the same
ISP whenever possible. These specifications are then used
by the player services when assigning a player to a game
server.

2.4 System services
This service is central to overall resource management

in the grid infrastructure for game hosting. It provides
on-demand server resource management, directory services
for player and game discovery, and resource-specific perfor-
mance and availability monitoring. Note that these system
services are tailored to the gaming service platform, and
hence, are built on top of base grid resource management
services. These system services help in facilitating compli-
ance with SLAs specified by the game publishers and, indi-
rectly, through players preferences.

The objective of this resource management is to maximize
the revenue of the grid infrastructure provider while meet-
ing the objectives of the game publishers and players. Using
the monitoring infrastructure, it detects when the current
allocation of resources is not sufficient to meet the desired
objectives of a game publisher. In that case, it allocates ad-
ditional resources to meet the desired SLAs on a per game
publisher basis. Similarly, if the allocated resources exceed
what is required to meet the SLAs, it can automatically
release the resources back to the grid infrastructure. This
on-demand grid resource allocation introduces several in-
teresting problems. An important issue is the choice of a
suitable timescale for this resource allocation/deallocation
process to ensure system-wide stability. Also the platform
must scale to handle a large number of players and changes
in players across the games. One approach is to do a priori
allocation of resources based on stated, or historical, esti-
mates of the load, and then incrementally adapt to handle
changes in the load.

The system services also include directory services for
players and game publishers. A player may be interested in
finding other players, or currently running games. In order
to provide an up-to-date view, the platform must handle a
highly dynamic player population in a scalable manner. We
are exploring the use of distributed hash table-based lookup
schemes [9], or existing hierarchical grid directory services
(as described in Section 3).

3. LEVERAGING THE GRID
Two primary advantages of developing a grid-based ser-

vices architecture are i) the existence and ongoing develop-
ment of open standards that allow many services to interop-
erate, and ii) the rich set of base services, implemented as
a general middleware layer, available for use in developing
new services. In this section, we provide an overview of grid
functionality and the current direction of grid standardiza-
tion efforts. We also describe how the existing middleware
available can be leveraged to implement some of the func-

tionality described in Section 2.

3.1 Current and evolving grid standards
The gaming service architecture is essentially a computa-

tional grid service, in which basic infrastructure such as the
hardware and software game server platform is virtualized
to deliver a utility-like abstraction to publishers and play-
ers. Computational grids are currently built around several
different models. For example, enterprises can use compu-
tational grids to harness unused CPU cycles to better uti-
lize their existing hardware resources. In the case of the
gaming service grid, however, it is more likely that the ser-
vice provider (or grid provider) follows a dedicated resource
model, in which servers, storage, and bandwidth, are de-
ployed specifically for the computational grid [4].

To support these models, a number of vendors have re-
leased software that provides base features needed to con-
struct the grid. For a CPU-harnessing grid, these might in-
clude a server which schedules programs, collects data, and
provides a management interface, and a desktop client that
executes programs and reports results and status informa-
tion to the server. One such package is the Globus Toolkit,
an open source software project which provides a number
of component services in the areas of resource management,
information services, and data management (described fur-
ther below) [10]. Version 2 of the Globus Toolkit, with its
C language-based APIs, is currently considered the de facto
standard grid implementation [4].

Similar to the Internet community’s Internet Engineering
Task Force (IETF), the Global Grid Forum (GGF) is a stan-
dards organization charged with documenting best practices
for Grid technology, including technical specifications and
implementation guidelines [6]. One of the key GGF work-
ing groups is the Open Grid Services Architecture (OGSA),
which is developing a conceptual architecture for future grid
services built around interoperable interfaces. In the OGSA
architecture, Grid-based services are implemented as Web
Services with some grid-specific interfaces. Web Services
define a standards-based (e.g., XML, HTTP, SOAP) com-
munications model to access software components and dis-
cover existing services in the network. Within OGSA, Open
Grid Services Infrastructure (OGSI) defines in detail the
interfaces that a Grid Service must support to be part of
OGSA. The next version of the Globus Toolkit is intended
to support OGSI so that, for example, the existing resource
management services described below are OGSI-compliant.
Additional details on OGSA, OGSI, and Globus develop-
ment is available at [6, 10].

3.2 Applying grid middleware
In this section we provide an overview of the way in which

existing grid middleware can be leveraged to realize key
functions of the gaming service architecture. We focus the
discussion around the components of the widely used Globus
Toolkit 2.2 [10].
Resource management: The Grid Resource Allocation
Manager (GRAM) provides services to support remote exe-
cution of client jobs. Clients specify jobs using a standard
Resource Specification Language (RSL) which describes the
executable program, arguments, and resource requirements
(e.g., minimum memory requirements). The RSL specifica-
tion is shipped over a secure channel to a Gatekeeper dae-
mon at the remote location (similar to an inetd). The Gate-

keeper starts a local Job Manager process which parses the
RSL and directs the request to a local resource manager,
which in turn may invoke a local job scheduler. The Job
Manager also supports callbacks to clients, status/cancel re-
quests from clients, and sends output results to clients. In
addition, Globus supports jobs that require multiple, sep-
arately controlled resources, for example at different grid
locations. This is done using the Dynamically-Updated Re-
quest Online Coallocator (DUROC) mechanism which parses
RSL containing DUROC syntax and sends requests to dif-
ferent Job Managers.

This support for task execution can be used directly for
automatically provisioning platform resources on the grid for
running different game servers. In addition, using DUROC
it is possible to start several game servers simultaneously
with a single command. The local Job Manager may be
used with platform-specific priority schedulers that can give
preference to certain games when server resources are con-
strained.
Information services: Globus provides a set of informa-
tion services collectively called the Monitoring and Discov-
ery Service (MDS). MDS consists of three primary com-
ponents, the Grid Resource Information Service (GRIS),
Grid Index Information Service (GIIS), and local Informa-
tion Providers (IPs). Access to MDS information is based on
the Lightweight Directory Access Protocol (LDAP) [7], and
can be done using a Web browser interface implemented with
a set of publicly available PHP scripts. The components are
arranged in a flexible hierarchy similar to DNS, with GIIS
providing an aggregated view of data from a collection of
resources. This collection may be defined over all of the
grid sites, or a single site. Each GRIS instance serves as a
repository of local resource information, and registers itself
with a GIIS index. GIIS instances can themselves register
with higher-level GIIS directories.

IPs collect data from any local data source and translate
information into the appropriate schema for GRIS. For in-
formation about a resource to to be visible to MDS, it must
have an IP created for it. The Globus toolkit includes a set
of core IPs for several platforms which provide such basic in-
formation as CPU load, platform description (e.g., processor
type, operating system, file system), available memory and
disk space, and network connectivity.

MDS can be used in a game hosting environment for many
core functions. The directory services are essential for lo-
cating currently instances of operational game servers for
a specific game, discovering the server to which a player
or group is assigned, and keeping track of where additional
resources are available for provisioning new game server in-
stances. In addition, MDS is well-suited to provide dynamic
platform-level information, such as server load and availabil-
ity or network bandwidth and delay statistics, in order to
support adaptive provisioning of additional resources when
needed. The hosting environment can also leverage MDS to
index application- or game-level information such as player
performance or other statistics, if an IP is developed to in-
terface with the game server.
Data management: The Global Access to Secondary Stor-
age (GASS) component is used by GRAM to transfer job
output back to clients. In general, GASS provides a stan-
dard API (e.g., a gass-copy function) to securely read and
write data between remote locations. In addition, GridFTP,
currently in development, provides a uniform protocol and

client/server implementations for all data transfers on the
grid. Based on FTP, it features additional facilities such as
multistreamed transfer and Globus-based security [4]. These
data transfer facilities are naturally useful in the context of
the gaming service grid in order to transfer server executa-
bles and data on-demand to various hardware clusters.
Security: The Grid Security Infrastructure (GSI) provided
by Globus enables secure and authenticated communica-
tion over public networks. GSI is largely based on public
key cryptography, where users and services have standard
X.509 certificates which are used for mutual authentication.
GSI leverages the SSL (or TLS) protocol for its mutual au-
thentication. GSI also supports confidential communication
through encryption, and support for single sign-on (through
delegation to a proxy) and coarse-grained access control are
currently in development. Clearly, the GSI plays an impor-
tant role in the gaming service provider environment where
access to games, server platforms, and game information
must be available only to appropriate parties (e.g., paying
players and publishers and the service provider).

4. CONCLUSION
In this paper, we present work-in-progress on developing

a grid-based hosting infrastructure for on-line games. We
believe that a grid-based on-demand computing environ-
ment is particularly suitable for server intensive FPS games
and, with some additional support for data management,
MMORPG games as well. It provides a scalable and robust
infrastructure for hosting games and allows service providers
to exploit the economies of scale through intelligent sharing
and adaptive provisioning of server resources.

In order to make the best use of the grid infrastructure
for gaming, we are developing a set of software services
based on the open source Globus Toolkit grid implemen-
tation. Our gaming middleware provides player manage-
ment, publisher management, and system management ser-
vices designed to facilitate hosting of on-line games in a grid
environment. Our ongoing work lies in defining these ser-
vices further and implementing them using components of
the Globus Toolkit. We also plan to demonstrate the archi-
tecture on a grid testbed with instances of popular on-line
game server software.

5. REFERENCES
[1] D. Bauer, S. Rooney, and P. Scotton. Network

infrastructure for massively distributed games. In
Proceedings of Workshop on Network and System
Support for Games (NETGAMES), Braunschweig,
Germany, April 2002.

[2] A. R. Bharambe, S. Rao, and S. Seshan. Mercury: A
scalable publish-subscribe system for internet games.
In Proceedings of Workshop on Network and System
Support for Games (NETGAMES), Braunschweig,
Germany, April 2002.

[3] W. Feng, F. Chang, W. Feng, and J. Walpole.
Provisioning on-line games: A traffic analysis of a
busy counter-strike server. In Proceedings of Internet
Measurement Workshop (IMW), November 2002.

[4] L. Ferreira et al. Introduction to Grid Computing with
Globus. IBM Corporation, 2002.
http://www.ibm.com/redbooks.

[5] S. Fiedler, M. Wallner, and M. Weber. A
communication architecture for massive multiplayer
games. In Proceedings of Workshop on Network and
System Support for Games (NETGAMES),
Braunschweig, Germany, April 2002.

[6] Global Grid Forum. http://www.ggf.org.

[7] J. Hodges and R. L. Morgan. Lightweight directory
access protocol (v3): Technical specification. Internet
Request for Comments (RFC 3377), September 2002.

[8] D. Levine, M. Wirt, and B. Whitebook. Practical Grid
Computing For Massively Multiplayer Games. Charles
River Media, 2003.

[9] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and
H. Balakrishnan. Chord: A scalable peer-to-peer
lookup service for internet applications. In Proceedings
of ACM SIGCOMM, San Diego, CA, August 2001.

[10] The Globus Project. http://www.globus.org.

