
Cheat-Proofing
Dead Reckoned Multiplayer Games

(Extended Abstract)
Eric Cronin Burton Filstrup Sugih Jamin

Electrical Engineering and Computer Science Department
University of Michigan

Ann Arbor, MI 48109-2122
{ecronin,bfilstru,jamin}@eecs.umich.edu

Keywords— multiplayer games, cheat-proof protocols,
peer-to-peer architectures

I. I NTRODUCTION

THE multiplayer game (MPG) market is segmented
into a handful of readily identifiable genres, the

most popular beingfirst-person shooters, realtime strat-
egy games, androle-playing games. First-person shoot-
ers (FPS) such as Quake [11], Half-Life [17], and Unreal
Tournament [9] are fast-paced conflicts between up to
thirty heavily armed players. Players in realtime strat-
egy (RTS) games like Command & Conquer [19], Star-
Craft [8], and Age of Empires [18] or role-playing game
(RPG) such as Diablo II [7] command tens or hundreds
of units in battle against up to seven other players. Per-
sistent virtual worlds such as Ultima Online [2], Ev-
erquest [12], and Lineage [14] encompass hundreds of
thousands of players at a time (typically served by mul-
tiple servers).

Cheating has always been a problem in computer
games, and when prizes are involved can become a con-
tractual issue for the game service provider. Here we
examine a cheat where players lie about their network
latency (and therefore the amount of time they have to
react to their opponents) to see into the future and stay

This research is supported in part by the NSF CAREER Award
ANI-9734145, the Presidential Early Career Award for Scientists and
Engineers (PECASE) 1998, the Alfred P. Sloan Foundation Research
Fellowship 2001, and by the United Kingdom Engineering and Phys-
ical Sciences Research Council (EPSRC) Grant no. GR/S03577/01,
and by equipment grants from Sun Microsystems Inc. and HP/Digital
Equipment Corp. Part of this work was completed when Sugih Jamin
was visiting the Computer Laboratory at the University of Cam-
bridge.

ahead of other participants in a game. We focus on cheat-
proof protocols in the context of FPSs in a peer-to-peer
gaming architecture [6].

While the interactivity of all online multiplayer games
is limited by network latency, the effects are most appar-
ent in FPSs. In these games, players must react quickly to
their opponents’ actions in order to be successful. Play-
ers with high-latency connections learn about opponents’
actions long after they occur, placing them at a serious
disadvantage relative to players with low-latency con-
nections. In RTSs, latencies below 500 ms are gener-
ally acceptable [5]; for FPSs, however, acceptable laten-
cies decrease to between 100 and 150 ms [1][4]. FPSs
are also more sensitive to the smoothness of the rendered
game, determined by how much the latency varies (called
jitter). If game play is jittery, the ability to accurately
aim at a moving target is negatively impacted. In [4],
the author discusses the importance of a latency hiding
technique known as dead reckoning [10] in the design
of the Half-Life game engine, which drives many pop-
ular FPSs. Dead reckoning allows play at a client to
continue uninterrupted, even if needed moves from an-
other player1 have not arrived, by predicting the missing
moves. The alternative to dead reckoning is to suspend
the game until the late moves arrive; this leads to de-
creased smoothness in the gameplay, which, as described
above, damages playability. A problem with the use of
dead reckoning is that when moves are incorrectly pre-
dicted, inconsistencies can occur. Earlier cheat-proofing
protocols [3] do not allow dead reckoning because of
these inconsistencies. In [4] however, the author con-

1For ease of exposition, without loss of generality, we assume a
two-player scenario in discussing multiplayer gaming.

Player C Player H

0

50

100

200

150

250

0

50

100

200

150

250

t=0

t=50

t=100
t=0

t=50

t=100

time (ms)

Player C Player H

0

50

100

200

150

250

0

50

100

200

150

250

t=0

t=50

t=100

t=0

t=50

t=100

b) C is a cheater
 50ms from H claiming to
 be 150ms from H

a) C is an honest player
 150ms from H

Fig. 1. A sample lookahead cheat.

tends that in the case of an FPS like Half-Life, the neg-
ative impact of jerky play due to the avoidance of dead
reckoning is greater than the negative impact of any occa-
sional inconsistencies. For this reason, we examine how
cheat-proof protocols can be made to coexist with dead
reckoning in order to provide both assurances of fairness
and acceptable client performance.

II. BACKGROUND

A. Time Cheats

There are all kinds of cheats used with multiplayer
games, from auto-aim robots, to editing files on disk, to
making walls invisible [15]. In this paper we examine
one particular category of cheats known astime-cheats.
These cheats give the cheater an unfair advantage by al-
lowing it to see into the future, giving the cheater addi-
tional time to react to the other players’ moves. Like a
number of other cheats, it is very difficult to distinguish
between a player employing a time-cheat and one who
happens to have high latency or lossy connection and
very good luck. Statistical tests can be used to tell when
a player is “too lucky” [15], but the cheater needs only to
adjust its cheat to be just below this threshold to remain
undetected. With detection difficult, if not impossible,
prevention becomes the important issue.

The first time-cheat we look at is thelookahead
cheat [3]. In peer-to-peer games, where each player
maintains its own copy of the game state, moves must
be timestamped when generated so that they can be exe-
cuted at the same relative times by each player. Fig. 1b il-
lustrates a lookahead cheat. A cheater (C) exploits client-
side timestamping to gain an advantage over an honest
player (H). The players are assumed to be 50 ms apart
in network latency. In the figure, wall-clock time is rep-
resented on the vertical axis, increasing down the page.

The diagonal lines represent messages between players,
each of which has a timestamp of when it was “sent”
(which does not necessarily agree with the wall-clock
time when it was generated if the player is cheating).
Two of the messages are emphasized in bold. In the fig-
ure, C waits until it sees H’s move for time 100 before
sending out a move timestamped with time 50. This be-
havior allows player C to see H’s moves 50 ms into the
future relative to the move it generates, while player H
can only see C’s moves 150 ms in the past. This results
in C having additional time to dodge attacks or other-
wise react to H, while H must decide on several of its
moves before seeing C’s first move. From player H’s
point of view, the cheater is indistinguishable from an
honest player who is 150 ms away (see Fig. 1a), where
the two messages cross in the network as expected, giv-
ing neither player an advantage. This cheat is prevented
by the protocols proposed in [3] and [13] (see Section II-
C), but at a significant cost in game latency and jitter.

The second time-cheat we look at is thesuppress-
correct cheat[3] that exploits dead reckoning. This cheat
is targeted at systems where the receiver dead reckons up
to n missing moves from the other player before assum-
ing that the player has disconnected. In the suppress-
correct cheat, a cheater purposefully dropsn − 1 moves
and then, having received the other players’ lastn − 1
moves, constructs a move based on this information that
provides the cheater an advantage. The cheater in this
situation is indistinguishable from an honest player with
a lossy connection so long as theirnth move is plausible.
Since dead reckoning was not considered in both [3] and
[13], this cheat was also not examined in depth in both
papers. In contrast, since we are concerned with dead
reckoning in this paper, cheat-proofing suppress-correct
cheats is a focus of the protocols presented.

As in previous papers on cheat-proof protocols [3], we
assume that cheaters are able to read, modify, inject, or
block any game protocol messages between players. In
addition, we give cheaters the ability to control how the
game interfaces with the cheat-proof protocol, including
when moves are submitted and how long the game de-
lays move executions to account for network latency. We
do not attempt to protect against other application-level
cheats such as those listed in [15].

B. Terminology

We now define the terminology used for describing
and evaluating the cheat-proof protocols.

Players issue amoveonce perframe. Each frame is
a fixed unit of simulation time for all players. A move
consists of position change information such as the dis-
placement, change of orientation, weapon firing (posi-
tion change of the bullet), etc. of a single player. It does
not contain event notifications, such as death or telepor-
tation. These events are determined (independently by
each client) only after execution of the move. Player
i’s move issued for frame numbern is denotedM i

n.
Moves issued by different players for the same frame en-
ter the game state at the same time. In addition to moves,
the cheat-proof protocols also send cryptographically se-
cure one-wayhashes[16] of each move—as a commit-
ment to that move—before sending the move itself (all
hashes, unless otherwise noted, are assumed to be cryp-
tographic). The hash of playeri’s move for framen is
denotedH i

n. We assume the use of a transport proto-
col that ensures reliable, in-order delivery of moves and
hashes.

Games are designed to operate at a givenmaximum
frame rate, rmax; at this rate, the length of each frame
is the minimum frame interval, 1/rmax. The maxi-
mum frame rate controls how often the view on the
player’s screen is updated. The higher the frame rate, the
smoother the motion appears on the screen and the more
responsive the game is to player actions. In single-player
games, the maximum frame rate is determined solely
by the hardware capabilities of the player’s computer.
In networked multiplayer games however, the maximum
frame rate is primarily limited by the rate at which moves
can be sent across the network. Quake, for example, typ-
ically has a maximum network frame rate of 50 frames
per second (a minimum frame interval of 20 ms). There
is only onermax for all players in a game because the
frame size is the same for each player. Cheat-proof pro-
tocols at playeri may stall a game for cheat-proofing op-
erations, resulting in a slower actual frame rate,ri. If the
frame rate is not constant, the resultinggame speed jitter
creates choppy game play [18].

Moves are typically scheduled to be executed a fixed
synchronization delayafter they are submitted (instead of
immediately) to account for network latency. This syn-
chronization delay allows moves issued at the same time
to be executed at the same future time in both the local
game and remote games. If a remote move takes longer
than the synchronization delay to arrive, the game can
either pause, or if dead reckoning is used, the missing
move can be extrapolated from earlier moves.

The instantaneous one-way network latency between
playersi andj is represented byli,j . We assume sym-
metric latencies; that is,li,j = lj,i for all i andj. In a
game involving more than two players, the highest in-
stantaneous network latency between any two players is
lmax.

When measuring the performance of a cheat-proof
protocol, we look at therelative game speed. The relative
game speed for playeri is the player’s actual frame rate
ri divided by the target maximum frame ratermax, as
defined above. This ratio is recalculated for each frame
sinceri can change from frame to frame. The perfor-
mance metricri/rmax shows at what fraction of the op-
timal speed the game is operating. Variance in the ratio
indicates the jitter experienced.

C. Previous Works

Our cheat-proofing protocol for dead reckoned mul-
tiplayer games is built upon protocols introduced in [3]
and [13]. Due to space constraints, a complete descrip-
tion of these protocols is omitted.

C.1 The Lockstep Protocol

The lockstep (LS) protocol, proposed in [3] requires
that all players advance their game clocks synchronously.
In the lockstep protocol, player 1 decides on a moveM1

n

for framen, computes hashH1
n and sends it as a com-

mitment to all players. Once all the hashes for a frame
have arrived from the other players, each player can send
its move to all other players. Players must then wait for
moves to arrive from all other players before computing
the current frame. After computing the current frame,
the player then decides on a move for the next frame and
computes a new hash. If less than the minimum frame
interval has passed since it sent the previous hash, the
player must wait before sending out the next hash. No
synchronization delay or dead reckoning of late pack-
ets is necessary (or possible) with the lockstep protocol,
since a player must always stop and wait until the previ-
ous moves of all players have arrived before deciding on
the next move.

The biggest drawback of the lockstep protocol to an
FPS is that the speed of the game depends on the network
latency of the slowest link,lmax [3]. The frame interval
can be calculated using Eq. 1:

1
ri

= max
{

2 · lmax,
1

rmax

}
. (1)

If lmax is greater than half the minimum frame gener-
ation interval,1/rmax, game speed for all players will
be slower than the target game speed. Any jitter inlmax

will then be reflected in the frame interval, resulting in
choppy game speed.

C.2 The Pipelined Lockstep Protocol

The lockstep protocol assumes that players need to see
opponents’ previous moves before deciding on the next
move. However, if a synchronization delay is used, the
opponents’ moves for a given frame will not be rendered
until some time after the decision for that frame has al-
ready been made. The pipelined lockstep (PLS) protocol,
proposed in [13], takes advantage of the synchronization
delay by sending several hashes before the correspond-
ing opponents’ hashes are received.

Under the PLS protocol, playeri can send out its move
M i

n as soon as it has received hashHj
n from every other

player j. However, since game speed is not affected
as long as other players receiveM i

n and can slide their
pipelines forward before they have to computeHj

n+2p,
wherep is the pipeline size, we assume playeri sends
H i

n+2 with M i
n, H i

n+3 with M i
n+1, and so on.2 The PLS

protocol is able to provide the same cheat-proof guaran-
tee as the lockstep protocol, in that no player can see an-
other player’s movei before committing to its own move
i.

The performance of the pipelined lockstep protocol
depends on the pipeline size. Eq. 2 describes the frame
interval of the pipeline protocol, wherep represents the
pipeline size.

1
ri

= max
{

lmax

p
,

1
rmax

}
, (2)

popt = lmax · rmax. (3)

If the maximum frame rate is fixed, the pipeline sizep de-
termines the protocol’s performance. Ifp is set too high,
there is less jitter but the overall delay increases. Ifp is
set too low (p = 1 is simply the lockstep protocol), the
frame rate can be exposed to network jitter. Eq. 2 shows
that p ≥ lmax · rmax makeslmax/p no larger than the
minimum frame interval. Settingp larger than necessary
simply increases delay, hence we setpopt to the small-
est value that satisfies the maximum frame rate (Eq. 3).

2Playeri could put itself in a disadvantagous situation similar to
the one depicted in Fig. 2 if it sends its moves earlier than required
by the protocol.

H 1
1

H 1
2

M1
1

H 1
3

H 1
4

0

60

120

180

0

60

120

180

H 2
1

H 2
2

H 2
3

H 2
4

M2
3

M2
1

M2
2H 2

5

Player 1 Player 2

,

,

H 2
6 ,

,

Fig. 2. Cheating under the Pipelined Lockstep protocol.

As under the lockstep protocol, if there is increased de-
lay and moves are late, since the PLS protocol does not
allow for dead reckoning, the game must stall.

With the PLS protocol, a player places itself at a dis-
advantage by deciding its current move based on a past
view of the world. However, it does this under the as-
sumption that every other player is doing the same, and
therefore it is at no greater disadvantage than any other
player. If it is assumed that a cheater can control its own
synchronization delay and the point at which it commits
to a move, the PLS protocol is, unfortunately, unable to
guarantee this level of cheat-proofing.

Fig. 2 shows a cheat where player 1 is able to decide on
moves based on full knowledge of all of player 2’s previ-
ous moves while player 2 (an honest player) decides on
its move based only on player 1’s moves up to six moves
back (2p frames, assumingp = 3). At time 60, player
1 receivesH2

1 , and is expected to decide upon its next
move and sendH1

4 ,M1
1 to all players. Player 2 does as is

expected and sendsH2
4 ,M2

1 . As the next three hashes ar-
rive, player 2 continues to commit to moves and send out
hashes; player 1 continues to do nothing. After player
2 sendsH2

6 ,M2
3 , it cannot send any new messages be-

cause it has reached the end of its pipeline and has not
receivedH1

4 that would allow it to slide its pipeline for-
ward. At time 160, all of player 2’s outstanding messages
have arrived. Player 1 then looks atM2

1 , M2
2 , andM2

3 to
decide onM1

4 , to which it commits and sends outH1
4 .

At this point, the two players will advance one move at
a time, with player 1 always at a five move advantage
when deciding its next move. With larger pipeline sizes,
this may provide player 1 with a considerable advantage:
a pipeline of 10 would mean player 2 would move based

on where player 1 was located 20 frames ago. We call
this thelate-commitcheat.

III. A DAPTIVE PROTOCOLS

The above cheat-proof protocols fall short of the per-
formance requirements for FPSs, in terms of both latency
and jitter. In this section we propose a new adaptive pro-
tocol that adjusts to network conditions and address the
late-commit cheat exposed in the PLS protocol. Our new
protocol takes advantage of dead reckoning in order to
mask the jitter and provide a constant frame rate to the
players while still remaining cheat-proof.

A. The Adaptive Pipeline Protocol

As seen in Section II-C.2, using the pipelined lockstep
protocol has two main problems: (1) efficiently comput-
ing a goodpopt (Eq. 3) that will last an entire protocol
session, and (2) preventing cheaters from waiting before
committing to moves (the late-commit cheat). The solu-
tion to both these problems lies in knowing the value of
lmax and adjusting the protocol to adapt to it. Unfortu-
nately,lmax is not likely to remain constant throughout
a game. In this section we present the adaptive pipeline
(AP) protocol that addresses these problems by making
p a dynamic parameter that adjusts withlmax to keep the
actual frame rate as close as possible to the maximum
frame rate. In addition, by takinglmax into account in
determining when it is safe to commit to a move, the
cheat presented in the previous section can be detected
and bounded to a single pipeline. Like the lockstep and
pipelined lockstep protocols, the AP protocol doesnot
allow for the use of dead reckoning to compensate for
late moves.

A.1 Efficient Computation ofpopt

To address the first problem of efficiently computing
popt, the adaptive pipeline protocol requires every player
i to continually measure the latencyli,j to every other
playerj. We assume that this measurement is done by
passive monitoring of when hashes and moves are sent
as part of the normal running of the AP protocol. For
player i, limax is the largest latency between itself and
any other player, given by Eq. 4. The maximum of all
limax’s for a particular frame islmax (Eq. 5).

limax = max{li,j |j ∈ Players}, (4)

lmax = max{limax|i ∈ Players}. (5)

begin ADAPTIVE-PIPELINE-PROTOCOL

RECEIVE Hj
n−p and updateljmax for all j

lmax ← MAX({ljmax|j ∈ Players})
old p← p
p← dlmax · rmaxe
limax ← MAX({li,j |j ∈ Players})

if p > old p
// grow pipeline size
SEND (M i

n−old p, Hi
n, Hi

n+1, ..., Hi
n+p−old p, limax)

else if p < old p
// shrink pipeline size
SEND (M i

n−old p)

else
// same pipeline size
SEND(M i

n−old p, Hi
n, limax)

n← n + 1

repeat

Fig. 3. The Adaptive Pipeline protocol at playeri for framen.

To faciliate the distributed computation oflmax, each
game message carrieslimax in addition to a move and
a hash.

Since the globallmax is computed after each frame,
it is possible for each player to adjust its pipeline size
either by sending more hashes (to increasep) or by send-
ing the moves but no new hashes (to decreasep) over the
next several frames. The adaptive pipeline protocol op-
eration for a frame is given in Fig. 3. Newlimax’s are
sent only with hashes because only the receipt of hashes
marks frame advancement, when thelmax can be recom-
puted. Whenlmax increases and the pipeline size grows,
multiple hashes are sent in the same message. Compu-
tation of lmax associated with each of these hashes uses
the singlelimax included with the message.

The frame rate for the AP protocol is still given by
Eq. 2 since the calculatedlmax is only an estimate of
the global maximum latency when the message is sent.
If lmax does not change significantly between when the
li,j measurements are made and the message is sent, the
frame interval is near optimal. The disadvantage to the
AP protocol’s dynamic sizing ofp is that although la-
tency is reduced, each timep changes, the synchroniza-
tion delay for the game changes, which introduces jitter.
Since dead reckoning is not supported by the AP proto-
col, it too is not well suited for FPSs due to this jitter. In-
stead, we use it as a stepping point to the Sliding Pipeline
protocol.

0

60

120

0

60

120

Player 1 Player 2

l max

l 1,2

1/r

Unsafe

a) Player 1 is a cheater

b) l is larger than estimated1,2

H 1
n

M1
n-1

M1
n-3

M1
n-2H 1

n+1

H 1
n+2

H 2
n

M2
n-1

M2
n-3

M2
n-2H 2

n+1

H 2
n+2

H 2
n+3

M2
n+2

M2
n

M2
n+1H 2

n+4

H 2
n+5

M1
nH 1

n+3

0

60

120

0

60

120

Player 1 Player 2

l max

l 1,2

1/r

Unsafe

H 1
n

M1
n-1

M1
n-3

M1
n-2H 1

n+1

H 1
n+2

H 2
n

M2
n-1

M2
n-3

M2
n-2H 2

n+1

H 2
n+2

H 2
n+3

M2
n+2

M2
n

M2
n+1H 2

n+4

H 2
n+5

M1
nH 1

n+3

Fig. 4. Detecting cheating under the Pipelined Lockstep pro-
tocol withp = 3, lmax = 60 andl1,2 = 60.

A.2 Detecting and Bounding Late-Commit Cheat

The second problem faced by the PLS protocol is the
late-commit cheat illustrated in Fig. 2. Under the AP
protocol, knowinglmax andli,j allows us to detect when
a player may be using this cheat. This detection has no
false negatives (if a player is cheating itwill be detected),
but players who experience a sharp increase in latency
could falsely be labeled as cheaters. After describing
how the detection works, we will show that it does not
require trusted knowledge oflmax and li,j and discuss
ways that a game designer can deal with potential late-
commit cheaters.

As long as playeri receives playerj’s moveM j
n be-

fore li,j + 1/ri time from when it sent outM i
n, it is im-

possible that playerj could have received more moves
before sending its moveM j

n. Fig. 4a shows how this de-
tection can be done. We focus on the move for framen.
As discussed in Section III-A, in the pipelined protocols,
moves are assumed to be sent out as late as possible: the
first move of a pipeline is sent out at the start of the next
pipeline. In the figure, afterH i

n is sent out at time 0, both

players must waitlmax before schedulingM i
n with H i

n+3

Player 2 notes when moveM2
n was sent, and when it re-

ceived moveM1
n from Player 1. If the gap is less than

l1,2 + 1/r2, Player 2 knows that Player 1 could not have
waited for any more of Player 2’s moves before decid-
ing on M1

n+3 and sending its hash. The shaded area in
the figure represents theunsafe region. If M1

n is received
after time 140, it is possible that Player 1 received extra
moves from Player 2 before deciding onM1

n+3.
Fig. 4b shows how this cheat detection can still ac-

count for some variance inli,j . At time 60,l1,2 increases
from 60 to 70. Player 1’s message arrives later than
player 2 was expecting it (time 130 instead of time 120).
The dashed line is the projection of Player 1’s move’s
transmittal based on what Player 2 thinksl1,2 is. Even if
l1,2 were still 60, Player 1 would have sent the move be-
fore M2

n+1 had arrived. Therefore, Player 2 knows that
Player 1 could not have received any more moves in this
period and is not cheating.

A player lying about itslimax or otherwise causing the
measurement ofli,j to be larger than its actual value sim-
ply increases the estimatedlmax. A largerlmax lengthens
the pipeline size, andautomatically bounds the negative
effect of the false information to a single pipeline. Thus
the effect of a falselmax on the cheat-proofing ability of
the AP protocol is bounded to a single pipeline size.

A player receiving a move in the unsafe region (see
Fig. 4) could mean either the other player is experienc-
ing higher network delay, or the other player is using the
late-commit cheat. Iflmax is estimated based on passive
measurements of protocol message exchanges, a cheat-
ing player will simply increase the estimatedlmax and,
again, lengthen the pipeline size. Thus the effect of a
late-commit cheat is also bounded to a single pipeline
size. To continue to benefit from the late-commit cheat,
a cheating player would have to continually increase its
wait time. The game designer should certainly be suspi-
cious of increasingly lengtheninglmax.

Given the possibility that the detection mechanism can
return false positive when a player experiences delay
spikes, and given that when a player cheats it can gain
a one pipeline-full advantage over honest players, game
designers using our cheat-proofing protocols should de-
sign their games to be robust against occasional unfair-
ness, e.g., by requiring multiple hits to bring down a
player, or revert back to the more conservative lock-
step protocol for operations that require one-time atomic
transaction.

B. The Sliding Pipeline Protocol

Like the AP protocol, the sliding pipeline (SP) proto-
col dynamically adjusts the pipeline depth to reflect cur-
rent network conditions. The SP protocol also uses the
same cheat-proofing mechanisms used by the AP proto-
col. The distinction is that SP protocol introduces asend
buffer to hold moves generated while the pipeline size
is adjusted. Combined with optimistic execution using
dead reckoning, this allows the game to maintain jitter-
free play while still preventing lookahead and suppress-
correct cheats.

In earlier cheat-proofing protocols, if a move has not
yet arrived when the game is ready to render a frame, it
must stall until the move arrives. Similarly, if the proto-
col is not ready to send the next commitment when the
game is ready to issue a move, the game must stall until
the protocol can accept the move. In contrast, if the SP
protocol is not ready to send a commitment for a move,
the move is placed at the end of the send buffer and the
game can continue. If a move has not arrived, the game
uses optimistic execution to dead reckon the move and
resume play. If we assume a practically infinite send
buffer, the game never needs to pause and there is no
jitter.

The SP protocol is a generalization of the AP proto-
col. Like the AP protocol, additional latency is mini-
mized and the pipeline size is tuned to maximize frame
rate. The SP protocol is able to detect moves sent outside
the “safety zone” just as in the AP protocol, preventing
the late-commit cheat possible in the PLS protocol. The
suppress-correct cheat associated with the use of dead
reckoning in [3] also cannot manifest itself under the SP
protocol since players are not allowed to drop moves.
The SP protocol guarantees both that (1) no cheater sees
moves for a frame to which it has not yet committed a
move and (2) that no cheater may continually decide on
a move with more recent information than a fair player
had.

IV. CONCLUSION

Previously proposed cheat-proof protocols introduce
performance penalties that make them unsuitable for
latency-sensitive games such as FPSs. The SP protocol
we propose in this paper allows for the use of dead reck-
oning, which hitherto is not supported by cheat-proofing
protocols, enabling a multiplayer game to run at its max-
imum frame rate. The SP protocol, and its intermediary

form the AP protocol, also allow for the detection and
bounding of the late-commit cheat possible with the PLS
protocol.

V. ACKNOWLEDGMENTS

We thank Jon Crowcroft for discussions on the cheat
proofing protocol presented

REFERENCES

[1] G. Armitage. Quake3 playing times.
http://members.home.net/garmitage/things/
quake3-latency-051701.html, May 2001.

[2] Electronic Arts. Ultima Online. http://www.uo.com/.
[3] N.E. Baughman and B.N. Levine. Cheat-proof playout for cen-

tralized and distributed online game. InProc. of IEEE Infocom
2001, April 2001.

[4] Y. Bernier. Latency compensating methods in client/server in-
game protocol design and optimization. InProc. of GDC 2001,
March 2001.

[5] P. Bettner and M. Terrano. 1500 archers on a 28.8: Network
programming in Age of Empires and beyond. InProc. of GDC
2001, March 2001.

[6] E. Cronin, B. Filstrup, A.R. Kurc, and S. Jamin. An efficient
synchronization mechanism for mirrored game architectures. In
Proc. of NetGames 2002, pages 67–73, 2002.

[7] Blizzard Entertainment. Diablo II.
http://www.blizzard.com/diablo2/.

[8] Blizzard Entertainment. Starcraft.
http://www.blizzard.com/starcraft/.

[9] Epic Games. Unreal. http://www.unreal.com/.
[10] L. Gautier, C. Diot, and J. Kurose. End-to-end transmission

control mechanisms for multiparty interactive applications on
the Internet. InProc. of IEEE Infocom 1999, March 1999.

[11] id Software. Quake.
http://www.idsoftware.com/quake/.

[12] Verant Interactive. EverQuest.
http://www.everquest.com/.

[13] H. Lee, E. Kozlowski, S. Lenker, and S. Jamin. Synchro-
nization and cheat-proofing protocol for real-time mulitplayer
games. InProc. of Int’l Workshop on Entertainment Computing,
Makuhari, Japan, May 2002. An earlier version was presented
at the workshopPlaying with the Future: Development and Di-
rections in Computer Gaming, Manchester, UK, Apr. 2002.

[14] NCSoft. Lineage—The Blood Pledge.
http://www.lineage-us.com/.

[15] M. Pritchard. How to hurt the hackers: The scoop on Internet
cheating and how you can combat it.
http://www.gamasutra.com/features/
20000724/pritchard01.htm.

[16] B. Schneier.Applied Cryptography: Protocols, Algorithms, and
Source Code in C. John Wiley & Sons, second edition, 1995.

[17] Valve Software. Half-Life. http://half-life.sierra.com/.
[18] Ensemble Studio. Age of Empires.

http://www.microsoft.com/games/age/.
[19] Westwood. Command & Conquer.

http://westwood.ea.com/games/ccuniverse/.

