
PSFQ: A Reliable Transport Protocol
for Wireless Sensor Networks

Chieh-Yih Wan

Dept. of Electrical Engineering
Columbia University
New York, NY 10027

wan@comet.columbia.edu

Andrew T. Campbell
Dept. of Electrical Engineering

Columbia University
New York, NY 10027

campbell@comet.columbia.edu

Lakshman Krishnamurthy
 Network Architecture Laboratory
Intel Research and Development

Hillsboro, OR 97124

lakshman.krishnamurthy@intel.com

ABSTRACT
We propose PSFQ (Pump Slowly, Fetch Quickly), a reliable
transport protocol suitable for a new class of reliable data
applications emerging in wireless sensor networks. For example,
currently sensor networks tend to be application specific and are
typically hard-wired to perform a specific task efficiently at low
cost; however, there is an emerging need to be able to re-task or
reprogram groups of sensors in wireless sensor networks on the fly
(e.g., during disaster recovery). Due to the application-specific
nature of sensor networks, it is difficult to design a single monolithic
transport system that can be optimized for every application. PSFQ
takes a different approach and supports a simple, robust and scalable
transport that is customizable to meet the needs of different reliable
data applications. To our knowledge there has been little or no work
on the design of an efficient reliable transport protocol for wireless
sensor networks, even though some techniques found in IP networks
have some relevance to the solution space, such as, the body of work
on reliable multicast. We present the design and implementation of
PSFQ, and evaluate the protocol using the ns-2 simulator and an
experimental wireless sensor testbed based on Berkeley motes. We
show through simulation and experimentation that PSFQ can out
perform existing related techniques (e.g., an idealized SRM scheme)
and is highly responsive to the various error conditions experienced
in wireless sensor networks, respectively.

Categories and Subject Descriptors
C.2.1. [Computer-Communications Networks]: Network
Protocols, Wireless Communications.

General Terms: Algorithms, Design, Performance.

Keywords
Reliable transport protocols, wireless sensor networks.

1. INTRODUCTION
There is a considerable amount of research in the area of wireless
sensor networks ranging from real-time tracking to ubiquitous
computing where users interact with potentially large numbers of
embedded devices. This paper addresses the design of system
support for a new class of applications emerging in wireless sensor
networks that require reliable data delivery. One such application
that is driving our research is the reprogramming or “re-tasking” of
groups of sensors. This is one new application in sensor networks
that requires underlying transport protocol to support reliable data
delivery. Today, sensor networks tend to be application specific, and
are typically hard-wired to perform a specific task efficiently at low
cost. We believe that as the number of sensor network applications
grows, there will be a need to build more powerful general-purpose
hardware and software environments capable of reprogramming or
“re-tasking” sensors to do a variety of tasks. These general-purpose
sensors would be capable of servicing new and evolving classes of
applications. Such systems are beginning to emerge. For example,
the Berkeley motes [1] [2] are capable of receiving code segments
from the network and assembling them into a completely new
execution image in EEPROM secondary store before re-tasking a
sensor.

Unlike traditional networks (e.g., IP networks), reliable data delivery
is still an open research question in the context of wireless sensor
networks. To our knowledge there has been little or no work on the
design of reliable transport protocols for sensor networks. This is, as
one would expect, since the vast majority of sensor network
applications do not require reliable data delivery. For example, in
applications such as temperature monitoring or animal location
tracking, the occasional loss of sensor readings is tolerable, and
therefore, the complex protocol machinery that would ensure the
reliable delivery of data is not needed. Directed diffusion [3] is one
of a representative class of data dissemination mechanisms,
specifically designed for a general class of applications in sensor
networks. Directed diffusion provides robust dissemination through
the use of multi-path data forwarding, but the correct reception of all
data messages is not assured. We observed that in the context of
sensor networks, data that flows from sources to sinks is generally
tolerable of loss. On the other hand, however, data that flows from
sinks to sources for the purpose of control or management (e.g., re-
tasking sensors) is sensitive to message loss. For example,
disseminating a program image to sensor nodes is problematic. Loss
of a single message associated with code segment or script would
render the image useless and the re-tasking operation a failure.

This research is supported in part by the NSF WIRELESS TECHNOLOGY
Award ANI-9979439 and with support from Intel Corp.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WSNA’02, September 28, 2002, Atlanta, Georgia, USA.
Copyright 2002 ACM 1-58113-589-0/02/0009…$5.00.

There are a number of challenges associated with the development
of a reliable transport protocol for sensor networks. For example, in
the case of a re-tasking application there may be a need to
reprogramming certain groups of sensors (e.g., within a disaster
recovery area). This would require addressing groups of sensors,
loading new binaries into them, and then, switching over to the new
re-tasked application in a controlled manner. Another example of
new reliable data requirements relates to simply injecting scripts into
sensors to customize them rather than sending complete, and
potentially bandwidth demanding, code segments. Such re-tasking
becomes very challenging as the number of sensor nodes in the
network grows. How can a transport offer suitable support for such
a re-tasking application where possibly hundreds and thousands of
nodes need to be reprogrammed in a controlled, reliable, robust and
scalable manner?

Reliable point-to-point, or more appropriately, multicast transport
mechanisms are well understood in conventional IP-style
communication networks, where nodes are identified by their end-
points. However, these schemes (e.g., TCP, XTP [4], SRM [5])
cannot be efficiently applied to sensor networks mainly because of
the unique communication challenges presented by wireless sensor
networks, including the need to support cluster-based
communications, wireless multi-hop forwarding, application-
specific operations, and lack of clean layering for the purposes of
optimization, etc. There is a need for the development of a new
reliable transport protocol, which can respond to the unique
challenges posed by sensor networks. Such an approach must be
lightweight enough to be realized even on low-end sensor nodes,
such as, the Berkeley mote series of sensors. A reliable transport
protocol must be capable of isolating applications from the
unreliable nature of wireless sensor networks in an efficient and
robust manner. The error rates experienced by these wireless
networks can vary widely, and therefore, any reliable transport
protocol must be capable of delivering reliable data to potentially
large groups of sensors under such conditions. This is very
challenging.

In this paper, we propose PSFQ (Pump Slowly, Fetch Quickly), a
new reliable transport protocol for wireless sensor networks. Due to
the application-specific nature of sensor networks, it is hard to
generalize a specific scheme that can be optimized for every
application. Rather, the focus of this paper is the design and
evaluation of a new transport system that is simple, robust, scalable,
and customizable to different applications’ needs. PSFQ represents a
simple approach with minimum requirements on the routing
infrastructure (as opposed to IP multicast/unicast routing
requirements), minimum signaling thereby reducing the
communication cost for data reliability, and finally, responsive to
high error rates allowing successful operation even under highly
error-prone conditions.

The paper is organized as follows. Section 2 presents the PSFQ
model and discusses the design choices. Section 3 presents the detail
design of PSFQ’s pump, fetch and report operations. Section 4
presents an evaluation of the protocol and comparison to Scalable
Reliable Multicast (SRM) [5] using the ns-2 simulator.

Section 5 present experimental results from the implementation of
PSFQ in an experimental wireless sensor testbed based on Berkeley
motes. Finally, we present some concluding remarks in Section 6.

2. PROTOCOL DESIGN SPACE
The key idea that underpins the design of PSFQ is to distribute data
from a source node by pacing data at a relatively slow speed (“pump
slowly”), but allowing nodes that experience data loss to fetch (i.e.,
recover) any missing segments from immediate neighbors very
aggressively (local recovery, “fetch quickly”). We assume that
message loss in sensor networks occurs because of transmission
errors due to the poor quality of wireless links rather than traffic
congestion since most sensor network applications generate light
traffic most of the time. Messages that are lost are detected when a
higher sequence number than expected is received at a node
triggering the fetch operation. Such a system is equivalent to a
negative acknowledgement system. The motivation behind our
simple model is to achieve loose delay bounds while minimizing the
lost recovery cost by localized recovery of data among immediate
neighbors. PSFQ is designed to achieve the following goals:

• to ensure that all data segments are delivered to all the intended
receivers with minimum1 support from the underlying transport
infrastructure;

• to minimize the number of transmissions for lost detection and
recovery operations with minimal signaling;

• to operate correctly even in an environment where the radio
link quality is very poor; and

• to provide loose delay bounds for data delivery to all the
intended receivers.

2.1 Hop-by-Hop Error Recovery
To achieve these goals we have taken a different approach in
comparison to traditional end-to-end error recovery mechanisms in
which only the final destination node is responsible for detecting
loss and requesting retransmission. Despite the various differences
in the communication and service model, the biggest problem with
end-to-end recovery has to do with the physical characteristic of the
transport medium: sensor networks usually operate in harsh radio
environments, and rely on multi-hop forwarding techniques to
exchange messages. Error accumulates exponentially over multi-
hops. To simply illustrate this, assume that the packet error rate of a
wireless channel is p then the chances of exchanging a message
successfully across a single hop is (1-p). The probability that a
message is successfully received across n hops decrease quickly to
(1-p)n. For a negative acknowledgement system, at least one
message has to be received correctly at the destination after a loss
has happened in order to detect the loss. Figure 1 illustrates this
problem numerically. The success rate denotes the probability of a
successful delivery of a message in end-to-end model, which is (1-
p)n. Figure 1 plots the success rate as function of the network size
(in terms of the number of hops) and shows that for larger network it
is almost impossible to deliver a single message using an end-to-end
approach in a lossy link environment when the error rate is larger
than 20%.
From Figure 1, we can see that end-to-end approach performs fine
even across large numbers of hops in highly reliable link
environments where the channel error rate is less than 1%, (e.g.,
found in a wired network). Under such conditions the probability of

1 PSFQ only requires a MAC that is capable of broadcasting operations

(e.g., CSMA, TDMA).

a successful delivery is well above 90%. This requirement can be
easily met in wired network and even in wireless LAN networks,
such as IEEE 802.11. However, it is not the case in sensor networks.
Due to the various resources and design constraints on a sensor
node, sensor network operations require low-power RF
communications, which cannot rely on using high power to boost
the link reliability when operating under harsh radio conditions. In
military applications or disaster recovery efforts, it is not unusual to
have channel error rate that is in the range of 5% ~ 10% or even
higher. This observation suggests that end-to-end error recovery is
not a good candidate for reliable transport in wireless sensor
networks, as indicated by the result shown in Figure 1.

Figure 1. Probability of successful delivery of a message
using an end-to-end model across a multi-hop network.

We propose hop-by-hop error recovery in which intermediate nodes
also take responsibility for loss detection and recovery so reliable
data exchange is done on a hop-by-hop manner rather than an end-
to-end one. Several observations support this choice. First, this
approach essentially segments multihop forwarding operations into
a series of single hop transmission processes that eliminate error
accumulation. The chances of exchanging a message successfully
across a single hop is (1-p). Therefore, the probability of detecting
loss in a negative acknowledgement system is proportional to (1-p)
in a hop-by-hop approach (independent of network size), rather than
decreasing exponentially with growing network size as in the case of
end-to-end approaches. The hop-by-hop approach thus scales better
and is more error tolerable. Second, the extra cost of involving
intermediate nodes in the loss detection process (i.e., intermediate
nodes must keep track of the data they forward, which involves
allocating sufficient data cache space) can be justified in sensor
networks. Typically, communication in wireless sensor networks is
not individual-based but is group or cluster-based communications.
Consider some of the example applications that require reliable data
delivery, (e.g., re-tasking the sensor nodes, or for control or
management purposes), the intended receivers are often the whole
group of sensor nodes in the vicinity of a source node (a user). In
this case, intermediate nodes are also the intended receiver of data,
therefore there is no extra cost in transiting data through nodes.

Figure 2. Probability of successful delivery of a message

when the mechanism allows multiple retransmissions before
the next packet arrival.

2.2 Fetch/Pump Relationship
For a negative acknowledgement system, the network latency would
be dependent on the expected number of retransmissions for
successful delivery. In order to achieve loose delay bound for the
data delivery, it is essential to maximize the probability of successful
delivery of a packet within a “controllable time frame”. An intuitive
approach to doing this would be to enable the possible multiple
retransmissions of packet n (therefore increasing the chances of
successful delivery) before the next packet n+1 arrives; in other
words, clear the queue at a receiver (e.g., an intermediate sensor)
before new packets arrive in order to keep the queue length small
and hence reduce the delay. However, it is non-trivial to determine
the optimal number of retransmissions that tradeoff the success rate
(probability of successful delivery of a single message within a time
frame) against wasting too much energy on retransmissions. In order
to investigate and justify this design decision, we analyze a simple
model, which approximates this mechanism. Let p be the packet loss
rate of a wireless channel. Assume that p stays constant at least
during the controllable time frame, it can be shown that in a negative
acknowledgement system, the probability of a successful delivery of
a packet between two nodes that allows n retransmission can be
expressed recursively as:

• (1-p) + p × Ω(n) (n ≥ 1)

• Ω(n) = Φ(1) + Φ(2) + … + Φ(n)

• Φ(n) = (1-p)2 × [1 – p – Φ(1) – Φ(2) – … – Φ(n-1)]
Φ(0) = 0

Where Ω(n) is the probability of successful recovery of a missing
segment within n retransmission, Φ(n) is the probability of the
successful recovery of the missing segment at nth retransmission.
The above expressions are evaluated numerically against packet loss
rate p, as shown in Figure 2. The straight line that denotes “no
retransmission” is simply the probability of receiving an error free
packet over the channel, which is 1-p; this line represents the case
when no retransmission is attempted within a time frame before next
segment is “pumped” into the channel. Figure 2 demonstrates the
impact of increasing the number of retransmissions up to n equal to
7. We can see that substantial improvements in the success rate can
be gained in the region where the channel error rate is between 0
and 60%. However, the additional benefit of allowing more
retransmission diminishes quickly and becomes negligible when n is

larger than 5. This simple analysis implies that the optimal ratio
between the timers associated with the pump and fetch operations is
approximately 5. This simple model also shows that at most ≈20%
gain in the success rate can be achieved with this approach, as
indicated from the result shown in Figure 2.

2.3 Multi-modal Operations
There are several important considerations associated with the pump
operation’s ability to localize loss events while maximizing the
probability of in-sequence data delivery. As a result of these
considerations the PSFQ pump operation is designed for multi-
modal operations, providing a graceful tradeoff between the classic
“packet forwarding” and “store-and-forward” communication
paradigms depending on the wireless channel conditions
experienced. In what follows, we discuss the reasoning behind this
key design choice.
Figure 3 illustrates an example in which a local loss event
propagates to downstream nodes. The propagation of a loss event
could cause a serious waste of energy. A loss event will trigger error
recovery operations that attempt to fetch the missing packet quickly
from immediate neighbors by broadcasting a “Nack” message.
However, for nodes B and C in Figure 3, none of their neighbors
have the missing packet, therefore the loss cannot be recovered and
the control messages associated with the fetch operation are wasted.
As a result, it is necessary to make sure that intermediate nodes only
relay messages with continuous sequence numbers. In other words,
node A in Figure 3 should not relay message #4 until it successfully
recovers message #3.

The use of data cache is required to buffer both message #3 and #4
to ensure in-sequence data forwarding and ensure complete recovery
for any fetch operations from downstream nodes. Note that cache
size effect is not investigated here but in our reference application,
the cache keeps all code segments. This pump mechanism not only
prevents propagation of loss events and the triggering of
unnecessary fetch operations from downstream nodes, but it also
greatly contributes toward the error tolerance of the protocol against
channel quality. By localizing loss events and not relaying any
higher sequence number messages until recovery has taken place,
this mechanism operates in a similar fashion to a store-and-forward

approach where an intermediate node relays a file only after the
node has received the complete file. The store-and-forward
approach is effective in highly error-prone environments because it
essentially segments the multi-hop forwarding operations into a
series of single hop transmission processes (errors accumulate
exponentially for multi-hop communication, as discuss in Section
2.1).
However, the classic store-and-forward approach suffers from large
delay even in error free environments. Therefore, store-and-forward
is not a suitable choice in most cases although it could be the only
choice in highly error-prone environments. PSFQ benefits from the
following tradeoff between store-and-forward and multihop
forwarding. The pump operation operates in a multihop packet
forwarding mode during periods of low errors when lost packets can
be recovered quickly, and behaves more like store-and-forwarding
communications when the channel is highly error-prone. Therefore,
as mentioned earlier, PSFQ exhibits a novel multi-modal property
that provides a graceful tradeoff between forwarding and store-and-
forward paradigms, depending on the channel conditions
encountered.
The observations presented in this section motivate our “pump
slowly, fetch quickly” paradigm. The fetch operation should be fast
relative to the pump operation as to allow a reasonable number of
retransmissions in order to maximize the success rate of receiving a
data segment within a controllable time frame. In addition, these
insights suggest the need for in-sequence forwarding at intermediate
nodes for the pump operation.

3. PROTOCOL DESCRIPTION
PSFQ comprises three functions: message relaying (pump
operation), relay-initiated error recovery (fetch operation) and
selective status reporting (report operation). A user (source) injects
messages into the network and intermediate nodes buffer and relay
messages with the proper schedule to achieve loose delay bounds. A
relay node maintains a data cache and uses cached information to
detect data loss, initiating error recovery operations if necessary. As
in many negative acknowledgement systems, there is no way for the
source to know when the receivers have received the data messages.
This has several drawbacks. First, the data segments must be
retained indefinitely at the source for possible retransmissions. Next,
it is important for the user to obtain statistics about the
dissemination status (e.g., the percentage of nodes that have
obtained the complete execution image for a re-tasking application)
in the network as a basis for subsequent decision-making, (e.g., the
correct time to switch over to the new task in the case of re-tasking).
Therefore, it is necessary to incorporate a feedback and reporting
mechanism into PSFQ that is flexible (i.e., adaptive to the
environment) and scalable (i.e., minimize the overhead).
In what follows, we describe the main PSFQ operations (viz. pump,
fetch and report) with specific reference to a re-tasking applications
-- one in which a user needs to re-task a set of sensor nodes in the
vicinity of its location by distributing control scripts or binary code
segments into the targeted sensor nodes. A number of concerns
associated with this simple PSFQ model are related to the timer
issues that control the loose service properties, such as, statistical
delay bounds. Important protocol parameters include message
pumping speed and loss recovery speed.

Figure 3. Propagation of a loss event. The packet with
sequence number 3 sent by the user node-to-node A is lost or
corrupted due to channel error. The subsequent packet with
sequence number 4 received by node A triggers a loss event. If
this packet is forwarded to node B, another loss event is
triggered at node B. When this packet forwarded from node B
to node C, it will again trigger another loss event at node C.
The loss event will keep on propagating in this manner until
the TTL reaches 0 and packet is dropped.

3.1 Pump Operation
Recall that PSFQ is not a routing solution but a transport scheme. In
the case where a specific node (instead of a whole group) needs to
be addressed, PSFQ can work on top of existing routing or data
dissemination scheme, (e.g. directed diffusion, DSDV, etc.), to
achieve reliability. A user node uses TTL-based methods to control
the scope of its re-tasking operation; note that, since the term
“source” in sensor network usually denotes a sensor node which has
sensed data to be sent, we use the term “user node” in this paper to
refer to a node which distributes the code segments to avoid
confusion. To enable local loss recovery and in-sequence data
delivery, a data cache is created and maintained at intermediate
nodes.
We define an “inject message” associate with the pump operation in
PSFQ. The inject message has four fields in its header: i) file ID, ii)
file length iii) sequence number, and iv) TTL2. The message payload
carries the data fragment (code segment).
The pump operation is important in controlling four performance
factors associated with our example re-tasking application. First, the
timely dissemination of code segments to all target nodes used for
re-tasking the sensor nodes. Second, to provide basic flow control so
that the re-tasking operation does not overwhelm the regular
operations of the sensor network, (e.g., monitoring environmental
conditions). Next, for densely deployed sensor networks in which
nodes are generally within transmission range of more than one
neighboring node, we need to avoid redundant messaging to save
power and to minimize contention/collision over the wireless
channel. Finally, we want to localize loss, avoiding the propagation
of loss events to downstream nodes. This requires mechanisms to
ensure in-sequence data forwarding at intermediate nodes, as
discussed in Section 2.3. The first two performance factors
discussed above require proper scheduling for data forwarding. We
adopt a simple scheduling scheme, which use two timers Tmin and
Tmax for scheduling purposes.

3.1.1 Pump Timers
A user node broadcasts a packet to its neighbors every Tmin until all
the data fragments has been sent out. In the meantime, neighbors
that receive this packet will check against their local data cache
discarding any duplicates. If this is a new message, PSFQ will buffer
the packet and decrease the TTL field in the header by 1. If the TTL
value is not zero and there is no gap in the sequence number, then
PSFQ sets a schedule to forward the message. The packet will be
delayed for a random period between Tmin and Tmax and then relayed
to its neighbors that are one or more hops away from the source. In
this specific reference case, PSFQ simply rebroadcast the packet.
Note that the data cache has several potential uses, one of which is
loop prevention, i.e., if a received data message has a matching data
cache entry then the data message is silently dropped. A packet
propagates outward from the source node up to TTL hops away in
this mode. The random delay before forwarding a message is
necessary to avoid collisions because RTS/CTS dialogues are
inappropriate in broadcasting operations when the timing of
rebroadcasts among interfering nodes can be highly correlated.

2 One bit of the TTL field in the inject message is used as the “report” bit

in order to solicit a report message from target nodes. The use of this bit
is discussed in Section 3.3.

Tmin has several considerations. First, there is a need to provide a
time-buffer for local packet recovery. One of the main motivations
behind the PSFQ paradigm is to recover lost packets quickly among
immediate neighboring nodes within a controllable time frame. Tmin
serves such a purpose in the sense that a node has an opportunity to
recover any missing segment before the next segment come from its
upstream neighbors, since a node must wait at least Tmin before
forwarding a packet in pump state. Next, there is a need to reduce
redundant broadcasts. In a densely deployed network, it is not
unusual to have multiple immediate neighbors within radio
transmission range. Since we use broadcast instead of unicast for
data relaying in our reference application, too many data forwarding
rebroadcasts are considered to be redundant if all its neighbors
already have the message. In [7], the authors show that a rebroadcast
system can provide only 0 ~ 61% additional coverage3 over that
already covered by the previous transmissions. Furthermore, it is
shown that if a message has been heard more than 4 times, the
additional coverage is below 0.05%. Tmin associated with the pump
operation provides an opportunity for a node to hear the same
message from other rebroadcasting nodes before it would actually
have started to transmit the message. A counter is used to keep track
of the number of times the same broadcast message is heard. If the
counter reaches 4 before the scheduled rebroadcast of a message
then the transmission is cancelled and the node will not relay the
specific message because the expected benefit (additional coverage)
is very limited in comparison to the cost of transmission. Tmax can be
used to provide a loose statistical delay bound for the last hop to
successfully receive the last segment of a complete file, (e.g., a
program image or script). Assuming that any missing data is
recovered within one Tmax interval using the aggressive fetch
operation described in next section, then the relationship between
delay bound D(n) and Tmax is as follows:

D(n) = Tmax × n × (Number of hops),
where n is the number of fragments of a file.

3.2 Fetch Operation
Since most sensor network applications generate light traffic most of
the time, message loss in the sensor networks usually occurs because
of transmission errors due to poor quality wireless links and not
because of traffic congestion. This is not to say that congestion
cannot occur but that the vast majority of loss in these networks is
associated with errors. This is especially true considering the
environment in which sensor networks operate in is highly
unpredictable, and therefore, the quality of the communication links
can vary considerably due to obstructions or hostile ambient
conditions.
A node goes into fetch mode once a sequence number gap in a file
fragments is detected. A fetch operation is the proactive act of
requesting a retransmission from neighboring nodes once loss is
detected at a receiving node. PSFQ uses the concept of “loss
aggregation” whenever loss is detected; that is, it attempts to batch
up all message losses in a single fetch operation whenever possible.

3.2.1 Loss Aggregation
There are several considerations associated with loss aggregation.
The first consideration relates to bursty loss. Data loss is often

3 Corresponds to the number of additional nodes that can be reached by a

rebroadcast.

correlated in time because of fading conditions and other channel
impairments. As a result loss usually occurs in batches. Therefore, it
is possible that more than one packet is lost before a node can detect
loss by receiving a packet with higher sequence numbers than
expected. PSFQ aggregates loss such that the fetch operation deals
with a “window” of lost packets instead of a single packet loss.
Next, in a dense network where a node usually has more than one
neighbor, it is possible that each of its neighbors only obtains or
retains part of the missing segments in the loss window. PSFQ
allows different segments of the loss window to be recovered from
different neighbors. In order to reduce redundant retransmissions of
the same segment, each neighbor waits for a random time before
transmitting segments, (i.e., sets a retransmission timer to a random
value, and sends the packet only when the timer goes off). Other
nodes that have the data and scheduled retransmissions will cancel
their timers if they hear the same “repair” (i.e., retransmission of a
packet loss) from a neighboring node. Third, in poor radio
environments successive loss could occur including loss of
retransmissions and fetch control messages. Therefore, it is not
unusual to have multiple gaps in sequence number of messages
received by a node after several such failures. Aggregating multiple
loss windows in the fetch operation increases the likelihood of
successful recovery in the sense that as long as one fetch control
message is heard by one neighbor all the missing segments could be
resent by this neighbor.

3.2.2 Nack Messaging
We define a NACK message associate with the fetch operation as
the control message that requests a retransmission from neighboring
nodes. The NACK message has at least three header fields (this
could be more) with no payload: i) file ID, ii) file length, and iii)
loss window. The loss window represents a pair of sequence
numbers that denote the left and right edge of a loss window (see
example below). When there is more than one sequence number
gap, each gap corresponds to a loss window and will be appended
after the first three header fields in the NACK message. For
example, if a node receives messages with sequence number
(3,5,6,9,11), then computes 3 gaps and hence 3 loss windows that
are (4,4), (7,8) and (10,10), respectively.

3.2.3 Fetch Timer
In fetch mode, a node aggressively sends out NACK messages to its
immediate neighbors to request missing segments. If no reply is
heard or only a partial set of missing segments are recovered within
a period Tr (Tr < Tmax, this timer defines the ratio between pump and
fetch) then the node will resend the NACK every Tr interval (with
slight randomization to avoid synchronization between neighbors)
until all the missing segments are recovered or the number of retries
exceed a preset threshold thereby ending the fetch operation. The
first NACK is scheduled to be sent-out within a short delay that is
randomly computed between 0 and ∆ (<<Tr). The first NACK is
cancel (to keep the number of duplicates low) in the case where a
NACK for the same missing segments is overheard from another
node before the NACK is sent. Since ∆ is small, the chance of this
happening is relatively small. In general, retransmissions in response
to a NACK coming from other nodes are not guaranteed to be
overheard by the node that cancelled its first NACK. In [7] the
authors show that at most there is a 40% chance that the canceling
node receives the retransmitted data under such conditions. Note,
however that a node that cancel its NACK will eventually resend a
NACK within Tr if the missing segments are not recovered,

therefore, such an approach is safe and beneficial given the trade
offs.
To avoid the message implosion problem, NACK messages never
propagate; that is, neighbors do not relay NACK messages unless
the number of times the same NACK is heard exceeds a predefined
threshold while the missing segments requested by the NACK
message are no longer retained in a node’s data cache. In this case,
the NACK is relayed once, which in effect broadens the NACK
scope to one more hop to increase the chances of recovery. Such a
situation should be a rare occurrence, since loss is triggered when a
packet with a higher sequence number than expected is received.
The upstream node that sent this packet maintains a data cache and
must have obtained all the preceding segments prior to sending this
higher sequence number packet, which in this scenario, failed to
reach the “fetching” node. The probability that all neighbors do not
have the missing segments is very low. In our reference application,
since all nodes must keep the code for re-tasking purposes, all
segments that have been received correctly can be pulled out of
cache or external storage. Therefore, NACK messages never need to
be propagated in this case.
Each neighbor that receives a NACK message checks the loss
window field. If the missing segment is found in its data cache, the
neighboring node schedules a reply event (sending the missing
segment) at a random time between (0, Tr). Neighbors will cancel
this event whenever a reply to the same NACK for the same
segment (same file ID and sequence number) is overheard. In the
case where the loss window in a NACK message contains more than
one segment to be resent, or more than one loss window exists in the
NACK message, then neighboring nodes that are capable of
recovering missing segments will schedule their reply events such
that packets are sent (in-sequence) at a speed that is not faster than
once every Tr.
Nodes in fetch mode maintain their own loss windows to keep track
of missing segments. When a fetching node receives a portion of a
missing segment that only represents a partial amount of its loss
window, it needs to update its loss windows accordingly, possibly
splitting the loss window or creating new loss windows.

3.2.4 Proactive Fetch
As in many negative acknowledgement systems, the fetch operation
described above is a reactive loss recovery scheme in the sense that
a loss is detected only when a packet with higher sequence number
is received. This could cause problems on rare occasions; for
example, if the last segment of a file is lost there is no way for the
receiving node to detect this loss4 since no packet with higher
sequence number will be sent. In addition, if the file to be injected
into the network is small (e.g., a script instead of binary code), it is
not unusual to lose all subsequent segments up to the last segment
following bursty loss. In this case, the loss is also undetectable and
thus non-recoverable with such a reactive loss detection scheme. In
order to cope with these problems, PSFQ supports a “proactive
fetch” operation such that a node can also enter fetch mode
proactively and send a NACK message for the next segment or the
remaining segments if the last segment5 has not been received and

4 A node knows that it has not received the last segment, but it does not

know whether the last segment is lost or will be relayed at some point in
the future.

5 The last segment could be identified by the file length field in the inject
message, which is essentially the sequence number of the last segment.

no new packet is delivered after a period of time Tpro. When a
proactive fetch operation is triggered, a node will manually create a
loss event and send out a NACK control message with the desired
loss window.
The proactive fetch mechanism is designed to autonomously trigger
the fetch mode at the proper time. If fetch mode is triggered too
early, then the extra control messaging might be wasted since
upstream nodes may still be relaying messages or they may not have
received the necessary segments. In contrast, if fetch mode is
triggered too late, then the target node might waste too much time
waiting for the last segment of a file, significantly increasing the
overall delivery latency of a file transfer. The correct choice of Tpro,
must consider two issues. First, in our reference application (where
each segment of a file needs to be kept in data cache or external
storage for the re-tasking operation), the proactive fetch mechanism
will Nack for all the remaining segments up to the last segment if the
last segment has not been received and no new packet arrives after a
period of time Tpro. Tpro should be proportional to the difference
between last highest sequence number (Slast) packet received and the
largest sequence number (Smax) of the file (the difference is equal to
the number of remaining segments associated with the file), i.e. Tpro
= α * (Smax – Slast) * Tmax (α ≥ 1). Smax is the file length found in the
header field, Tmax is the timer defined in the previous section, α is a
scaling factor to adjust the delay in triggering proactive fetch and
should be set to 1 for most operational cases. This definition of Tpro
guarantees that a node will wait long enough until all upstream
nodes have received all segments before a node moves into the
proactive fetch mode. In addition, this enables a node to start
proactive fetch earlier when it is closer to the end of a file, and wait
longer when it is further from completion. Such an approach adapts
nicely to the quality of the radio environment. If the channel is in a
good condition, then it is unlikely to experience successive packet
loss; therefore, the reason for the reception of no new messages
prior to the anticipated last segment is most likely due to the loss of
the last segment, hence, it is wise to start the proactive fetch
promptly. In contrast, a node is likely to suffer from successive
packet loss when the channel is error-prone; therefore, it makes
sense to wait longer before pumping more control messages into the
channel. If the sensor network is known to be deployed in a harsh
radio environment then α should be set larger than 1 so that a node
waits longer before starting the proactive fetch operation. Finally, a
node that starts proactive fetch will create a loss window with the
left edge equal to (Slast+1) and right edge equal to Smax before
sending a NACK message. The rest of the actions taken in response
to a NACK message are exactly the same as normal fetch operations
including the retransmission of NACKs and the handling of loss
windows, as discussed earlier.
In other applications where the data cache size is small and nodes
only can keep a portion of the segments that have been received, the
proactive fetch mechanism will Nack for the same amount of
segments (or less) that the data cache can maintain. In this case, Tpro
should be proportional to the size of the data cache. If the data cache
keeps n segments, then Tpro = α * n * Tmax (α ≥ 1). As in discussed
previously, α should be set to 1 in low error environments and to a
larger value in harsher radio environments. This approach keeps the
sequence number gap at any node smaller than n, (i.e., it makes sure
that a node will fetch proactively after n successive missing
segments). Recall that a node waits at most Tmax before relaying a
message in the pump state so that the probability of finding missing
segments in the data cache of upstream nodes is maximized.

3.3 Report Operation
In addition to the pump and fetch operations, described above,
PSFQ supports a report operation designed specifically to feedback
data delivery status information to users in a simple and scalable
manner. In wireless communication, it is well known that the
communication cost of sending a long message is less than sending
the same amount of data using many shorter messages [14]. Given
the potential large number of target nodes in a sensor network in
addition to potential long paths (i.e., longer paths through multi-
hops greatly increase the delivery cost of data), the network would
become overwhelmed if each node sent feedback in the form of
report messages. Therefore, there is a need to minimize the number
of messages used for feedback purposes. PSFQ’s report message
and feedback mechanisms are designed to address these issues. The
report message is designed to travel from the furthest target node
back to the user on a hop-by-hop basis. Each node en route toward
the user is capable of piggybacking their report message in an
aggregated manner. Nodes can add/append their own feedback
information to the original report message sent by the most distant
target node as it propagates back toward the user that initially
requested the report.

3.3.1 Report Message
The report message has only one field in its header representing the
destination node ID of the node that should relay this report. The
payload is a chain of node IDs and sequence number pairs that
feedback the current status of each node along the path from the last
hop toward the source user node.

3.3.2 Report Timers
A node enters the report mode when it receives an inject data
message with the “report bit” set in the TTL field. The user node
sets the report bit in the inject message whenever it needs to know
the latest status of the surrounding nodes. To reduce the number of
report messages and to avoid report implosion, only the last hop6
nodes will respond immediately by initiating a report message
sending it to its parent7 node at a random time between (0, ∆). Each
node along the path toward the source node will piggyback their
report message by adding their own node ID and sequence number
pair into the report, and then propagate the aggregated report toward
the user node. Each node will ignore the report if it found its own ID
in the report to avoid looping. Nodes that are not last hop nodes but
are in report mode will wait for a period of time (Treport = Tmax × TTL
+ ∆) sufficient to receive a report message from a last hop node,
enabling it to piggyback its state information. A node that has not
received a report message after Treport in report mode will initiate its
own report message and send it to its parent node. If the network is
very large then it is possible for a node to receive a report message
that has no space to append more state information. In this case a
node will create a new report message and send it prior to relaying
the previously received report that had no space remaining to
piggybacking data. This ensures that other nodes en route toward the
user node will use the newer report message rather than creating
new reports because they themselves receive the original report with
no space for piggybacking additional status.

6 The last hop can be identified from the “TTL” field of the inject

message, (i.e., nodes that receive an inject message with TTL=1).
7 The node where the previous segment came from.

4. PERFORMANCE EVALUATION
We use packet-level simulation to study the performance of PSFQ in
relation to several evaluation metrics and discuss the benefits of
some of our design choices. Simulation results indicate that PSFQ is
capable of delivering reliable data in wireless sensor networks even
under highly error prone conditions, whereas, in contrast, other
relevant approaches “retooled” to operate under such conditions
cannot.

4.1 Simulation Approach
We implemented PSFQ as part of our reference re-tasking
application using the ns-2 network simulator [13]. In order to
highlight the different design choices made we compare the
performance of PSFQ to an idealized version of Scalable Reliable
Multicast (SRM) [5], which has some similar properties to PSFQ,
but is designed to support reliable multicast services in IP networks.
While there is growing body of work in multicast [8] [9] in mobile
ad hoc networks and some initial work on reliable multicast support
[11][12], we have chosen SRM as the best possible candidate that is
well understood in the literature. SRM supports reliable multicast
on top of IP and uses three control messages for reliable delivery,
including session, request and repair messaging. Briefly, session
messages are sent by each node in a multicast group to inform
members of the last data message received by a node. Session
messages are time-stamped and their exchange is also used to
calculate the delay between pairs of nodes. Request messages are
multicast by a node when it discovers that a data message is missing.
Its complement is the repair message, which responds with the
missing data requested in the request message. Missing data
messages may be sent not only by the original source but also by
any other node able to respond to the request. SRM represents a
scheme that use explicit signaling for reliable data delivery while
PSFQ is a more minimalist transport that can be unicast (on top of
routing) or broadcast and does not require periodic signaling.
We compare PSFQ with the loss detection/recovery approach of
SRM but extract out the IP multicast substrate and replace it with an
idealized omniscient multicast routing scheme. In this sense, we
present SRM in the best possible light. There are several
considerations for doing this. First, SRM is based heavily on the
group delivery model and Application Level Framing [10], which
make it a good match for cluster-based communications and the
application-specific nature of sensor networks. On the other hand,
SRM relies heavily on an IP multicasting mechanism for data
routing. It is, however, unrealistic to assume an IP substrate in the
context of sensor networks, as discussed previously. In addition,
PSFQ is solely a reliable data transport scheme in our reference
application, it does not provide a general routing solution as in the
case of SRM, and therefore it is only fair to isolate SRM from the
routing cost incurred by an IP multicast substrate for the purpose of
our evaluation. We therefore only compare the reliable delivery
portions of the SRM and PSFQ protocols. Since PSFQ uses a
simple broadcast mechanism as a mean for routing in our reference
application, it makes sense to layer SRM over an ideal omniscient
multicast routing layer for simulation purposes. Using omniscient
multicast, the source transmits its data along the shortest-path
multicast tree to all intended receivers in which the shortest path
computation and the tree construction to every destination is free in
term of communication cost.

The major purpose of our comparison is to highlight the impact of
different design choices made. SRM represents a traditional
receiver-based reliable transport solution and is designed to be
highly scalable for Internet applications. SRM’s service model has
the closest resemblance to our reference application in sensor
networks. However, SRM is designed to operate in the wired
Internet in which the transport medium is highly reliable and does
not suffer from the unique problems found in wireless sensor
networks, such as, hidden terminal and interference. To make a fair
comparison, we try to idealize the lower layer to minimize the
differences of the transport medium (which SRM is designed for)
for simulation purposes, and, solely focus on the reliable data
delivery mechanism – we term this idealized SRM scheme as SRM-
I.
The goal of our evaluation is also to justify the design choices of
PSFQ. We choose three metrics, which underpin the major
motivations behind PSFQ:

• average delivery ratio, which measures the ratio of number of
message a target node received, to the number of message a
user node injects into the network. This metric indicates the
error tolerance of the scheme at the point where a scheme fails
to deliver 100% of the messages injected by a user node within
certain time limits.

• average latency, which measures the average time elapsed
from the transmission of the first data packet from the user
node until the reception of the last packet by the last target
node in the sensor network. This metric examines the delay
bound performance of a scheme.

• average delivery overhead, which measures the total number of
messages sent per data message received by a target node. This
metric examines the communication cost to achieve reliable
delivery over the network.

We study these metrics as a function of channel error rate as well as
the network size.
To evaluate PSFQ in a realistic scenario, we simulate the re-tasking
of a simple sensor network in a disaster recovery scenario within a
building. Typically, sensor nodes in a building are deployed along
the hallway on each floor. Figure 4 depicts such a simple sensor
network in a space of dimensions 100m x 100m. Each sensor node
is located 20 meters from each other. Nodes use radios with 2 Mbps
bandwidth and 25 meters nominal radio range. The channel access is
the simple CSMA/CA and we used a uniformly distributed channel
error model. A user node at location 0 attempts to inject a program
image file with size equal to 2.5KB into every node on the floor for
the purposes of re-tasking. The typical packet size used by the
sensors used in this evaluation, and for which the radio is designed,
is 50 bytes. This is equivalent to injecting 50 packets into the sensor
network from the user node. Packets are generated from the user
node and transmitted at a rate of one packet per 10ms. For PSFQ,
the timer parameters were set conservatively to follow PSFQ
paradigm: Tmax is 100ms, Tmin is 50ms and Tr is 20ms. Therefore, the
fetch operation can be 5 times faster than pump operation. Each
experiment is run 10 times and the results shown are an average of
these runs.

Figure 4. Sensor network in a building. A user node at

location 0 injects 50 packets into the network within 0.5
seconds.

4.2 Simulation Results
One of the major goals of PSFQ is to be able to work correctly
under a wide variety of wireless channel conditions. The first
experiment examines the “error tolerance” of PSFQ and SRM-I, and
compares their results. Following the consideration of optimizing
lower layer support for SRM, SRM-I is given extra benefit in
channel access by using CSMA/CA with RTS/CTS and ACK
support while PSFQ only uses CSMA broadcasting. The use of
omniscient multicast along with the RTS/CTS channel access
greatly contributes to the error tolerance of SRM-I in two respects.
First, RTS/CTS eliminates the hidden terminal problems and
reduces possible interference between nodes. Second, ACK support
in our simulation allows up to 4 link-layer retransmissions (note that
from the simple analysis shown in Figure 2, this could provide an
improvement up to 20%) after an RTS-CTS exchange, this
essentially incorporates the loss recovery mechanism into lower
layer (i.e., MAC-level ARQ) in addition to that offered by SRM.
In Figure 5, we present the results for PSFQ and SRM-I under
various channel error conditions as we increase the number of hops
in the network. As one might expect, the average delivery ratio of
both schemes decrease as channel error rate increases. In addition,
for larger error rates, the delivery ratio decreases rapidly when the
number of hops increases. Notice that the user node starts sending
data packets into the network at a constant rate of one packet per
10ms at 2 seconds into the simulation trace and finishes sending all
50 packets within 0.5 seconds. The simulation ran for 100 seconds
after the user node stopped sending data packets. This arbitrary
cutoff point was chosen as the time after which the delivery of data
would be meaningless for a time critical re-tasking operation. Of
course, this time limit is very much application-specific; in this case,
consider that 100 seconds is 200 times the amount of time required
by the user node to inject the entire program image file into the
network. Observe from Figure 5, SRM-I (dotted line) can achieve
100% delivery at up to 13 hops away from the source node only
when the channel error rate is smaller than 30%. For 50% error rate,
the 100% delivery point decreases to within 5 hops; and for larger
error rates, SRM-I is only able to deliver a portion of the file two
hops away from the user node. In contrast, PSFQ (solid line) can
achieve a much higher delivery ratio for all cases under
consideration for a wide range of channel error conditions. PSFQ
achieves 100% delivery up to 10 hops away from the user node even
at 50% error rate and delivers more than 90% of the packet up to 13
hops away. Even under extremely error-prone channel error rates of
70%, PSFQ is still able to deliver 100% data up to 4 hops away and
70% of the packets up to 13 hops, while SRM-I can only deliver less
than 30% of data even within 2 hops.

Figure 5. Error tolerance comparison - average delivery
ratio as a function of the number of hops under various

channel condition for different packet error rate.
The better error tolerance exhibited by PSFQ in comparison to
SRM-I justifies the design paradigm of pump slowly and fetch
quickly for wireless sensor networks. The in-sequence data pump
operation prevents the propagation of loss events, as discuss in
Section 2.3. While SRM-I does not attempt to provide ordered
delivery of data and loss events are propagated along the multicast
tree. PSFQ’s aggressive fetch operation and loss aggregation
techniques support multiple loss windows in a single control
message. In contrast SRM-I is conservative in loss recovery
operations. This is because SRM is intended for applications
without fixed deadlines, it also does not support the aggregation of
multiple loss windows in a single control message.

Figure 6. Comparison of average latency as a function of channel

error rate.
Our second experiment examines the data delivery latency of both
schemes under various channel conditions. The results are shown in
Figure 6. Delivery latency is defined only when all intended target
nodes receive all data packets before the simulation terminates. For
SRM-I, we know that 100% delivery can be achieved only within a
limited number of hops when the error rate is high. In this
experiment, we compare the two schemes using a 3-hop network
and investigate PSFQ’s performance with a larger number of hops
since PSFQ has better error tolerance. Figure 6 shows that SRM-I
has a smaller delay than PSFQ when the error rate is smaller than
40%, but its delay grows exponentially as the error rate increases,

while PSFQ grows more slowly until it hits its error tolerance barrier
at 70% error rate. The reason that SRM-I performs better than PSFQ
in terms of delay in the small error region is due to the “pump
slowly” mechanism, in which each node delays a random period of
time between Tmin and Tmax before forwarding packets. Despite this
small penalty in the smaller error region, the coupling of this
mechanism with the “fetch quickly” operation proves to be very
effective. As shown in Figure 6, PSFQ can provide delay assurances
even at very high error rates. Figure 6 also shows that as the number
of hops increases, the delay in PSFQ increases rapidly in the higher
error rate region, but it is still within the anticipated delay bound.
In the next experiment, we study the communication cost for
reliability in both schemes under various channel conditions using a
3-hop network. Communication cost is measured as the average
number of transmissions per data packet (i.e., average delivery
overhead). For SRM-I, we separate the communication cost of the
SRM-specific loss recovery mechanisms from the total
communication cost, which includes the cost associated with the
link-layer loss recovery mechanisms (RTS/CTS/ACK). Figure 7
shows that the cost for PSFQ is consistently smaller than SRM-I by
an order of magnitude even after excluding the link-layer cost of
SRM-I. Figure 7 also illustrates the 100% delivery barrier of both
schemes (the two vertical lines). The 52% error rate mark shows the
limit for SRM-I while the 70% error rate mark shows the operation
boundary for PSFQ. The different performance observed under
simulation is rooted in the distinct design choices made for each
protocol. PSFQ utilize a passive, on-demand loss recovery
mechanism, whereas SRM employ periodic exchange of session
messages for loss detection/recovery.

Figure 7. Average delivery overhead as a function of channel

error rate
If we consider the results for SRM-I in Figure 7, we can observe
four distinct portions of the curve: i) from 0 to 30% error rate, the
curve is linear where the link-layer loss recovery mechanisms are
able to recover all packet losses and there is no need for the SRM
(REQ, REP) mechanisms to be used; ii) from 30% to 50% there is a
rapid increase in messages as the packet loss overwhelms the link-
layer mechanisms, and the SRM reliable delivery mechanisms must
be used to maintain 100% delivery; iii) after that point, message
growth continues, but despite SRM, not all packets can be delivered
to all nodes; and iv) the curve declines rapidly when the channel
error rate increases beyond 70%, at which point the error rate is so
high that hardly any transmission can take place since the RTS-CTS
exchange is rarely completed.

5. WIRELESS SENSOR TESTBED
In what follows, we discuss some early experiences implementing
PSFQ in an experimental wireless sensor testbed. We implemented
PSFQ using the TinyOS platform [1][6] on RENE motes [1]. The
sensor devices have an ATMEL 4MHz, low power, 8-bit micro-
controller with 8K bytes of program memory and 512 byte of data
memory; 128KB EEPROM serves as secondary storage. The radio
is a single channel RF transceiver operating at 916MHz and capable
of transmitting at 10kbps using on-off-keying encoding. The radio
performs transmission and bit sampling in software (TinyOS).
TinyOS [6] is an event-based operating system, employing a CSMA
MAC and performs encoding and decoding of the byte stream using
Manchester encoding with a 16-bit CRC. The packet size is 30
bytes. With a link speed of 10kbps the channel capacity can delivers
at most 20 packets per second. Tuning the transmission power can
change the radio transmission range of motes.
We implemented the PSFQ pump, fetch and report operations as a
component of TinyOS that interfaces with the lower layer radio
components. The component code size for PSFQ is 2KB. In the
implementation, every data fragment that is received correctly is
stored into the external EEPROM at a predefined location based on
its sequence number. The sequence number is used as an index to
locate and retrieve data segments when a node receives a NACK
from its neighbors.
We conducted several experiments using a simple scenario for
preliminary evaluation of PSFQ. In order to emulate a wireless
channel with different packet error rates, we manipulate the radio
transmission power of the mote and measured the packet loss rate
between every pair of motes that were separated by a fix distance
before starting the experiments by calculating the number of missing
packet for the transmission of 100 packets between the node pairs.
Due to the irregular fading conditions in the laboratory, it was
difficult to obtain accurate and fine-grained channel error rates. We
were only able to obtain four different error rates that were relatively
consistent over the period of our experiments. This simple
experiment measures the delivery latency of sending 30 packets
from a source node to multiple target nodes hops away. In order to
monitor the completion time in which a mote received all the
packets, additional motes connected to a laptop computer were
placed close to the target motes to snoop the reports sent by each
node.
Figure 8 shows the result of our experiments. Every data point in the
figure is an average of 5 independent experiments. The timer
parameters were set as follows: Tmax = 0.3s and Tr = 0.1s. In the
figure, the delay for a 5-hops network increases rapidly for an error
rate of 15%. Whereas smaller-hop networks, the delay increases
more slowly even at high error rates. The results observed from the
testbed show poorer performance in comparison to the simulation
results where a rapid increase occurred at much higher error rate.
This discrepancy is expected because of several factors. First,
channel conditions of the wireless link in the real world are highly
irregular especially for motes, which uses a very simple radio. The
error rates presented in Figure 8 are not accurate enough. Second,
the computational overhead cannot be captured in simulation. Since
the processor has to process every bit received off the link, intensive
computation could overwhelm the processor forcing packets to be
missed. Therefore, the actual loss rate during the experiment could
be higher. Finally, the mote implementation uses a very simple

random number generator (16-bit LFSR) therefore the likelihood of
collision in the testbed is higher than under simulation conditions.

Figure 8: Delay experiments for mote testbed

6. CONCLUSION
In this paper, we have presented PSFQ, a reliable transport protocol
specifically designed for wireless sensor networks. PSFQ is a
lightweight, simple, mechanism that is scalable and robust making
minimum assumptions about the underlying transport infrastructure.
We have discussed the need for reliable data delivery in sensor
network, especially the application where a user node needs to re-
task a group of sensor nodes in its vicinity by injecting program
images into target nodes. Base on this reference application, we
have described the design of PSFQ to achieve several goals,
including operation under high error rate conditions and support for
loose delay bounds for data delivery. We evaluated PSFQ and
compared its performance to an idealized SRM implementation
under simulation. We found that PSFQ outperforms SRM-I in terms
of error tolerance, communication overhead, and delivery latency.
We also presented some initial results from an experimental wireless
sensor network that supports PSFQ using the TinyOS platform on
top of the RENE motes. Results show a basic proof-of-concept
indicating that the approach looks very promising in an actual
wireless testbed. Future work includes more experimentation with
larger numbers of sensors. The driving force behind our work
remains transport and system support for programming wireless
sensor networks. Along those lines we intend to study the impact of
re-tasking motes on-the-fly using PSFQ. Results from this phase of
our work will be the subject of a future publication.

7. ACKNOWLEDGEMENTS
Many thanks to Shane Eisenman for helping in data measurement,
and we would also like to thank the anonymous reviewers for their
insightful comments.

8. REFERENCES
[1] Jason Hill, Robert Szewczyk, Alec Woo, Seth Hollar, David

Culler, Kristofer Pister. “System architecture directions for
network sensors”, Proc. of the 9th International Conf. on

Architectural Support for Programming Languages and
Operating Systems, pg 93-104, Nov. 2000.

[2] Cots Dust, Large Scale Models for Smart Dust. http://www-
bsac.eecs.berkeley.edu/~shollar/macro_motes/macromotes.htm
l.

[3] C. Intanagonwiwat, RC. Govindan, D. Estrin, "Directed
Diffusion: A Scalable and Robust Communication Paradigm
for Sensor Networks", Proc. of the Sixth Annual ACM
International Conference on Mobile Computing and
Networking, pp. 56-67, Aug. 2000.

[4] J. Atwood, O. Catrina, J. Fenton and W. Strayer, “Reliable
Multicasting in the Xpress Transport Protocol”, Proc. of 21st
Conference on Local Computer Networks, pg 202-211,Oct
1996.

[5] S. Floyd, V. Jacobson, C. Liu, S. Macanne and L. Zhang. “A
Reliable Multicast Framework for Lightweight Session and
Application Layer Framing”. IEEE/ACM Transactions on
Networking, vol. 5, no. 6, pp. 784-803, Dec. 1997.

[6] TinyOS Homepage. http://webs.cs.berkeley.edu/tos/

[7] S.-Y. Ni, Y.-C. Tseng, Y.-S. Chen, J.-P. Sheu, "The broadcast
storm problem in a mobile adhoc network", Proc. of the Fifth
Annual ACM International Conference on Mobile Computing
and Networking, pp. 151-162, Aug. 1999.

[8] J.J. Garcia-Luna-Aceves, E. L. Madruga, “The core assisted
mesh protocol”, IEEE Journal on Selected Areas in
Communications, vol. 17, no. 8, pp. 1380-94, Aug. 1999

[9] S.-J. Lee, M. Gerla, C.-C. Chiang, “On-demand multicast
routing protocol”, Proc. IEEE Wireless Communications and
Networking Conf., pp. 1298-1304, Sept. 21-25, 1999.

[10] D. Clark and D. Tennenhouse, “Architectural Considerations
for a New Generation of Protocols”, Proceedings of ACM
SIGCOMM ’90, pp. 201-208, Sept. 1990.

[11] C. Ho, K. Obraczka, G. Tsudik, K. Viswanath, “Flooding for
Reliable Multicast in Multi-Hop Ad Hoc Networks”, ACM
Mobicom Workshop on Discrete Algorithms & Methods for
Mobility (DialM’99), Aug. 1999.

[12] E. Pagani, G. Rossi, “Reliable Broadcast in Mobile Multihop
Packet Networks”, Proc. of the Third Annual ACM
International Conference on Mobile Computing and
Networking, pp. 34-42, Sept. 1997.

[13] The Network Simulator - ns-2. http://www.isi.edu/nsnam/ns/

[14] D. A. Maltz, “On-Demand Routing in Multi-hop Wireless
Mobile Ad Hoc Networks”, PhD Thesis, Carnegie Mellon
University, 2001.

