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ABSTRACT 
We propose PSFQ (Pump Slowly, Fetch Quickly), a reliable 
transport protocol suitable for a new class of reliable data 
applications emerging in wireless sensor networks. For example, 
currently sensor networks tend to be application specific and are 
typically hard-wired to perform a specific task efficiently at low 
cost; however, there is an emerging need to be able to re-task or 
reprogram groups of sensors in wireless sensor networks on the fly 
(e.g., during disaster recovery). Due to the application-specific 
nature of sensor networks, it is difficult to design a single monolithic 
transport system that can be optimized for every application. PSFQ 
takes a different approach and supports a simple, robust and scalable 
transport that is customizable to meet the needs of different reliable 
data applications. To our knowledge there has been little or no work 
on the design of an efficient reliable transport protocol for wireless 
sensor networks, even though some techniques found in IP networks 
have some relevance to the solution space, such as, the body of work 
on reliable multicast. We present the design and implementation of 
PSFQ, and evaluate the protocol using the ns-2 simulator and an 
experimental wireless sensor testbed based on Berkeley motes. We 
show through simulation and experimentation that PSFQ can out 
perform existing related techniques (e.g., an idealized SRM scheme) 
and is highly responsive to the various error conditions experienced 
in wireless sensor networks, respectively.    

Categories and Subject Descriptors 
C.2.1. [Computer-Communications Networks]: Network 
Protocols, Wireless Communications. 

General Terms: Algorithms, Design, Performance. 

Keywords 
Reliable transport protocols, wireless sensor networks. 

1. INTRODUCTION 
There is a considerable amount of research in the area of wireless 
sensor networks ranging from real-time tracking to ubiquitous 
computing where users interact with potentially large numbers of 
embedded devices. This paper addresses the design of system 
support for a new class of applications emerging in wireless sensor 
networks that require reliable data delivery. One such application 
that is driving our research is the reprogramming or “re-tasking” of 
groups of sensors. This is one new application in sensor networks 
that requires underlying transport protocol to support reliable data 
delivery. Today, sensor networks tend to be application specific, and 
are typically hard-wired to perform a specific task efficiently at low 
cost. We believe that as the number of sensor network applications 
grows, there will be a need to build more powerful general-purpose 
hardware and software environments capable of reprogramming or 
“re-tasking” sensors to do a variety of tasks. These general-purpose 
sensors would be capable of servicing new and evolving classes of 
applications. Such systems are beginning to emerge. For example, 
the Berkeley motes [1] [2] are capable of receiving code segments 
from the network and assembling them into a completely new 
execution image in EEPROM secondary store before re-tasking a 
sensor.  

Unlike traditional networks (e.g., IP networks), reliable data delivery 
is still an open research question in the context of wireless sensor 
networks.  To our knowledge there has been little or no work on the 
design of reliable transport protocols for sensor networks. This is, as 
one would expect, since the vast majority of sensor network 
applications do not require reliable data delivery. For example, in 
applications such as temperature monitoring or animal location 
tracking, the occasional loss of sensor readings is tolerable, and 
therefore, the complex protocol machinery that would ensure the 
reliable delivery of data is not needed. Directed diffusion [3] is one 
of a representative class of data dissemination mechanisms, 
specifically designed for a general class of applications in sensor 
networks.  Directed diffusion provides robust dissemination through 
the use of multi-path data forwarding, but the correct reception of all 
data messages is not assured. We observed that in the context of 
sensor networks, data that flows from sources to sinks is generally 
tolerable of loss. On the other hand, however, data that flows from 
sinks to sources for the purpose of control or management (e.g., re-
tasking sensors) is sensitive to message loss. For example, 
disseminating a program image to sensor nodes is problematic. Loss 
of a single message associated with code segment or script would 
render the image useless and the re-tasking operation a failure.     
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There are a number of challenges associated with the development 
of a reliable transport protocol for sensor networks. For example, in 
the case of a re-tasking application there may be a need to 
reprogramming certain groups of sensors (e.g., within a disaster 
recovery area). This would require addressing groups of sensors, 
loading new binaries into them, and then, switching over to the new 
re-tasked application in a controlled manner. Another example of 
new reliable data requirements relates to simply injecting scripts into 
sensors to customize them rather than sending complete, and 
potentially bandwidth demanding, code segments. Such re-tasking 
becomes very challenging as the number of sensor nodes in the 
network grows.  How can a transport offer suitable support for such 
a re-tasking application where possibly hundreds and thousands of 
nodes need to be reprogrammed in a controlled, reliable, robust and 
scalable manner?  

Reliable point-to-point, or more appropriately, multicast transport 
mechanisms are well understood in conventional IP-style 
communication networks, where nodes are identified by their end-
points. However, these schemes (e.g., TCP, XTP [4], SRM [5]) 
cannot be efficiently applied to sensor networks mainly because of 
the unique communication challenges presented by wireless sensor 
networks, including the need to support cluster-based 
communications, wireless multi-hop forwarding, application-
specific operations, and lack of clean layering for the purposes of 
optimization, etc. There is a need for the development of a new 
reliable transport protocol, which can respond to the unique 
challenges posed by sensor networks. Such an approach must be 
lightweight enough to be realized even on low-end sensor nodes, 
such as, the Berkeley mote series of sensors.  A reliable transport 
protocol must be capable of isolating applications from the 
unreliable nature of wireless sensor networks in an efficient and 
robust manner. The error rates experienced by these wireless 
networks can vary widely, and therefore, any reliable transport 
protocol must be capable of delivering reliable data to potentially 
large groups of sensors under such conditions. This is very 
challenging. 

In this paper, we propose PSFQ (Pump Slowly, Fetch Quickly), a 
new reliable transport protocol for wireless sensor networks. Due to 
the application-specific nature of sensor networks, it is hard to 
generalize a specific scheme that can be optimized for every 
application. Rather, the focus of this paper is the design and 
evaluation of a new transport system that is simple, robust, scalable, 
and customizable to different applications’ needs. PSFQ represents a 
simple approach with minimum requirements on the routing 
infrastructure (as opposed to IP multicast/unicast routing 
requirements), minimum signaling thereby reducing the 
communication cost for data reliability, and finally, responsive to 
high error rates allowing successful operation even under highly 
error-prone conditions.  

The paper is organized as follows. Section 2 presents the PSFQ 
model and discusses the design choices. Section 3 presents the detail 
design of PSFQ’s pump, fetch and report operations. Section 4 
presents an evaluation of the protocol and comparison to Scalable 
Reliable Multicast (SRM) [5] using the ns-2 simulator.  

Section 5 present experimental results from the implementation of 
PSFQ in an experimental wireless sensor testbed based on Berkeley 
motes. Finally, we present some concluding remarks in Section 6. 

2. PROTOCOL DESIGN SPACE 
The key idea that underpins the design of PSFQ is to distribute data 
from a source node by pacing data at a relatively slow speed (“pump 
slowly”), but allowing nodes that experience data loss to fetch (i.e., 
recover) any missing segments from immediate neighbors very 
aggressively (local recovery, “fetch quickly”). We assume that 
message loss in sensor networks occurs because of transmission 
errors due to the poor quality of wireless links rather than traffic 
congestion since most sensor network applications generate light 
traffic most of the time. Messages that are lost are detected when a 
higher sequence number than expected is received at a node 
triggering the fetch operation. Such a system is equivalent to a 
negative acknowledgement system. The motivation behind our 
simple model is to achieve loose delay bounds while minimizing the 
lost recovery cost by localized recovery of data among immediate 
neighbors. PSFQ is designed to achieve the following goals:  

• to ensure that all data segments are delivered to all the intended 
receivers with minimum1 support from the underlying transport 
infrastructure; 

• to minimize the number of transmissions for lost detection and 
recovery operations with minimal signaling;  

• to operate correctly even in an environment where the radio 
link quality is very poor; and  

• to provide loose delay bounds for data delivery to all the 
intended receivers.  

2.1 Hop-by-Hop Error Recovery 
To achieve these goals we have taken a different approach in 
comparison to traditional end-to-end error recovery mechanisms in 
which only the final destination node is responsible for detecting 
loss and requesting retransmission. Despite the various differences 
in the communication and service model, the biggest problem with 
end-to-end recovery has to do with the physical characteristic of the 
transport medium: sensor networks usually operate in harsh radio 
environments, and rely on multi-hop forwarding techniques to 
exchange messages. Error accumulates exponentially over multi-
hops. To simply illustrate this, assume that the packet error rate of a 
wireless channel is p then the chances of exchanging a message 
successfully across a single hop is (1-p). The probability that a 
message is successfully received across n hops decrease quickly to 
(1-p)n. For a negative acknowledgement system, at least one 
message has to be received correctly at the destination after a loss 
has happened in order to detect the loss. Figure 1 illustrates this 
problem numerically. The success rate denotes the probability of a 
successful delivery of a message in end-to-end model, which is (1-
p)n. Figure 1 plots the success rate as function of the network size 
(in terms of the number of hops) and shows that for larger network it 
is almost impossible to deliver a single message using an end-to-end 
approach in a lossy link environment when the error rate is larger 
than 20%. 
From Figure 1, we can see that end-to-end approach performs fine 
even across large numbers of hops in highly reliable link 
environments where the channel error rate is less than 1%, (e.g., 
found in a wired network). Under such conditions the probability of 
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(e.g., CSMA, TDMA). 



a successful delivery is well above 90%. This requirement can be 
easily met in wired network and even in wireless LAN networks, 
such as IEEE 802.11. However, it is not the case in sensor networks. 
Due to the various resources and design constraints on a sensor 
node, sensor network operations require low-power RF 
communications, which cannot rely on using high power to boost 
the link reliability when operating under harsh radio conditions. In 
military applications or disaster recovery efforts, it is not unusual to 
have channel error rate that is in the range of 5% ~ 10% or even 
higher. This observation suggests that end-to-end error recovery is 
not a good candidate for reliable transport in wireless sensor 
networks, as indicated by the result shown in Figure 1.  

 
Figure 1. Probability of successful delivery of a message 
using an end-to-end model across a multi-hop network. 

 
We propose hop-by-hop error recovery in which intermediate nodes 
also take responsibility for loss detection and recovery so reliable 
data exchange is done on a hop-by-hop manner rather than an end-
to-end one. Several observations support this choice. First, this 
approach essentially segments multihop forwarding operations into 
a series of single hop transmission processes that eliminate error 
accumulation. The chances of exchanging a message successfully 
across a single hop is (1-p). Therefore, the probability of detecting 
loss in a negative acknowledgement system is proportional to (1-p) 
in a hop-by-hop approach (independent of network size), rather than 
decreasing exponentially with growing network size as in the case of 
end-to-end approaches. The hop-by-hop approach thus scales better 
and is more error tolerable. Second, the extra cost of involving 
intermediate nodes in the loss detection process (i.e., intermediate 
nodes must keep track of the data they forward, which involves 
allocating sufficient data cache space) can be justified in sensor 
networks. Typically, communication in wireless sensor networks is 
not individual-based but is group or cluster-based communications. 
Consider some of the example applications that require reliable data 
delivery, (e.g., re-tasking the sensor nodes, or for control or 
management purposes), the intended receivers are often the whole 
group of sensor nodes in the vicinity of a source node (a user). In 
this case, intermediate nodes are also the intended receiver of data, 
therefore there is no extra cost in transiting data through nodes. 

 
Figure 2. Probability of successful delivery of a message 

when the mechanism allows multiple retransmissions before 
the next packet arrival. 

2.2 Fetch/Pump Relationship 
For a negative acknowledgement system, the network latency would 
be dependent on the expected number of retransmissions for 
successful delivery. In order to achieve loose delay bound for the 
data delivery, it is essential to maximize the probability of successful 
delivery of a packet within a “controllable time frame”. An intuitive 
approach to doing this would be to enable the possible multiple 
retransmissions of packet n (therefore increasing the chances of 
successful delivery) before the next packet n+1 arrives; in other 
words, clear the queue at a receiver (e.g., an intermediate sensor) 
before new packets arrive in order to keep the queue length small 
and hence reduce the delay. However, it is non-trivial to determine 
the optimal number of retransmissions that tradeoff the success rate 
(probability of successful delivery of a single message within a time 
frame) against wasting too much energy on retransmissions. In order 
to investigate and justify this design decision, we analyze a simple 
model, which approximates this mechanism. Let p be the packet loss 
rate of a wireless channel. Assume that p stays constant at least 
during the controllable time frame, it can be shown that in a negative 
acknowledgement system, the probability of a successful delivery of 
a packet between two nodes that allows n retransmission can be 
expressed recursively as:  

• (1-p) + p × Ω(n) (n ≥ 1) 

• Ω(n) = Φ(1) + Φ(2) + … + Φ(n) 

• Φ(n) = (1-p)2 × [1 – p – Φ(1) – Φ(2) – … – Φ(n-1)]   
Φ(0) = 0 

Where Ω(n) is the probability of successful recovery of a missing 
segment within n retransmission, Φ(n) is the probability of the 
successful recovery of the missing segment at nth retransmission. 
The above expressions are evaluated numerically against packet loss 
rate p, as shown in Figure 2. The straight line that denotes “no 
retransmission” is simply the probability of receiving an error free 
packet over the channel, which is 1-p; this line represents the case 
when no retransmission is attempted within a time frame before next 
segment is “pumped” into the channel. Figure 2 demonstrates the 
impact of increasing the number of retransmissions up to n equal to 
7. We can see that substantial improvements in the success rate can 
be gained in the region where the channel error rate is between 0 
and 60%. However, the additional benefit of allowing more 
retransmission diminishes quickly and becomes negligible when n is 



larger than 5. This simple analysis implies that the optimal ratio 
between the timers associated with the pump and fetch operations is 
approximately 5. This simple model also shows that at most ≈20% 
gain in the success rate can be achieved with this approach, as 
indicated from the result shown in Figure 2. 

2.3 Multi-modal Operations 
There are several important considerations associated with the pump 
operation’s ability to localize loss events while maximizing the 
probability of in-sequence data delivery. As a result of these 
considerations the PSFQ pump operation is designed for multi-
modal operations, providing a graceful tradeoff between the classic 
“packet forwarding” and “store-and-forward” communication 
paradigms depending on the wireless channel conditions 
experienced. In what follows, we discuss the reasoning behind this 
key design choice.  
Figure 3 illustrates an example in which a local loss event 
propagates to downstream nodes. The propagation of a loss event 
could cause a serious waste of energy. A loss event will trigger error 
recovery operations that attempt to fetch the missing packet quickly 
from immediate neighbors by broadcasting a “Nack” message. 
However, for nodes B and C in Figure 3, none of their neighbors 
have the missing packet, therefore the loss cannot be recovered and 
the control messages associated with the fetch operation are wasted. 
As a result, it is necessary to make sure that intermediate nodes only 
relay messages with continuous sequence numbers. In other words, 
node A in Figure 3 should not relay message #4 until it successfully 
recovers message #3. 

The use of data cache is required to buffer both message #3 and #4 
to ensure in-sequence data forwarding and ensure complete recovery 
for any fetch operations from downstream nodes. Note that cache 
size effect is not investigated here but in our reference application, 
the cache keeps all code segments. This pump mechanism not only 
prevents propagation of loss events and the triggering of 
unnecessary fetch operations from downstream nodes, but it also 
greatly contributes toward the error tolerance of the protocol against 
channel quality. By localizing loss events and not relaying any 
higher sequence number messages until recovery has taken place, 
this mechanism operates in a similar fashion to a store-and-forward 

approach where an intermediate node relays a file only after the 
node has received the complete file. The store-and-forward 
approach is effective in highly error-prone environments because it 
essentially segments the multi-hop forwarding operations into a 
series of single hop transmission processes (errors accumulate 
exponentially for multi-hop communication, as discuss in Section 
2.1). 
However, the classic store-and-forward approach suffers from large 
delay even in error free environments.  Therefore, store-and-forward 
is not a suitable choice in most cases although it could be the only 
choice in highly error-prone environments. PSFQ benefits from the 
following tradeoff between store-and-forward and multihop 
forwarding. The pump operation operates in a multihop packet 
forwarding mode during periods of low errors when lost packets can 
be recovered quickly, and behaves more like store-and-forwarding 
communications when the channel is highly error-prone. Therefore, 
as mentioned earlier, PSFQ exhibits a novel multi-modal property 
that provides a graceful tradeoff between forwarding and store-and-
forward paradigms, depending on the channel conditions 
encountered. 
The observations presented in this section motivate our “pump 
slowly, fetch quickly” paradigm. The fetch operation should be fast 
relative to the pump operation as to allow a reasonable number of 
retransmissions in order to maximize the success rate of receiving a 
data segment within a controllable time frame. In addition, these 
insights suggest the need for in-sequence forwarding at intermediate 
nodes for the pump operation. 

3. PROTOCOL DESCRIPTION 
PSFQ comprises three functions: message relaying (pump 
operation), relay-initiated error recovery (fetch operation) and 
selective status reporting (report operation). A user (source) injects 
messages into the network and intermediate nodes buffer and relay 
messages with the proper schedule to achieve loose delay bounds. A 
relay node maintains a data cache and uses cached information to 
detect data loss, initiating error recovery operations if necessary. As 
in many negative acknowledgement systems, there is no way for the 
source to know when the receivers have received the data messages. 
This has several drawbacks. First, the data segments must be 
retained indefinitely at the source for possible retransmissions. Next, 
it is important for the user to obtain statistics about the 
dissemination status (e.g., the percentage of nodes that have 
obtained the complete execution image for a re-tasking application) 
in the network as a basis for subsequent decision-making, (e.g., the 
correct time to switch over to the new task in the case of re-tasking). 
Therefore, it is necessary to incorporate a feedback and reporting 
mechanism into PSFQ that is flexible (i.e., adaptive to the 
environment) and scalable (i.e., minimize the overhead).  
In what follows, we describe the main PSFQ operations  (viz. pump, 
fetch and report) with specific reference to a re-tasking applications 
-- one in which a user needs to re-task a set of sensor nodes in the 
vicinity of its location by distributing control scripts or binary code 
segments into the targeted sensor nodes. A number of concerns 
associated with this simple PSFQ model are related to the timer 
issues that control the loose service properties, such as, statistical 
delay bounds. Important protocol parameters include message 
pumping speed and loss recovery speed. 

 
Figure 3. Propagation of a loss event. The packet with 
sequence number 3 sent by the user node-to-node A is lost or 
corrupted due to channel error. The subsequent packet with 
sequence number 4 received by node A triggers a loss event. If 
this packet is forwarded to node B, another loss event is 
triggered at node B. When this packet forwarded from node B 
to node C, it will again trigger another loss event at node C. 
The loss event will keep on propagating in this manner until 
the TTL reaches 0 and packet is dropped. 



3.1 Pump Operation 
Recall that PSFQ is not a routing solution but a transport scheme. In 
the case where a specific node (instead of a whole group) needs to 
be addressed, PSFQ can work on top of existing routing or data 
dissemination scheme, (e.g. directed diffusion, DSDV, etc.), to 
achieve reliability. A user node uses TTL-based methods to control 
the scope of its re-tasking operation; note that, since the term 
“source” in sensor network usually denotes a sensor node which has 
sensed data to be sent, we use the term “user node” in this paper to 
refer to a node which distributes the code segments to avoid 
confusion. To enable local loss recovery and in-sequence data 
delivery, a data cache is created and maintained at intermediate 
nodes. 
We define an “inject message” associate with the pump operation in 
PSFQ. The inject message has four fields in its header: i) file ID, ii) 
file length iii) sequence number, and iv) TTL2. The message payload 
carries the data fragment (code segment). 
The pump operation is important in controlling four performance 
factors associated with our example re-tasking application. First, the 
timely dissemination of code segments to all target nodes used for 
re-tasking the sensor nodes. Second, to provide basic flow control so 
that the re-tasking operation does not overwhelm the regular 
operations of the sensor network, (e.g., monitoring environmental 
conditions). Next, for densely deployed sensor networks in which 
nodes are generally within transmission range of more than one 
neighboring node, we need to avoid redundant messaging to save 
power and to minimize contention/collision over the wireless 
channel. Finally, we want to localize loss, avoiding the propagation 
of loss events to downstream nodes. This requires mechanisms to 
ensure in-sequence data forwarding at intermediate nodes, as 
discussed in Section 2.3. The first two performance factors 
discussed above require proper scheduling for data forwarding. We 
adopt a simple scheduling scheme, which use two timers Tmin and 
Tmax for scheduling purposes. 

3.1.1 Pump Timers 
A user node broadcasts a packet to its neighbors every Tmin until all 
the data fragments has been sent out. In the meantime, neighbors 
that receive this packet will check against their local data cache 
discarding any duplicates. If this is a new message, PSFQ will buffer 
the packet and decrease the TTL field in the header by 1. If the TTL 
value is not zero and there is no gap in the sequence number, then 
PSFQ sets a schedule to forward the message. The packet will be 
delayed for a random period between Tmin and Tmax and then relayed 
to its neighbors that are one or more hops away from the source. In 
this specific reference case, PSFQ simply rebroadcast the packet. 
Note that the data cache has several potential uses, one of which is 
loop prevention, i.e., if a received data message has a matching data 
cache entry then the data message is silently dropped. A packet 
propagates outward from the source node up to TTL hops away in 
this mode. The random delay before forwarding a message is 
necessary to avoid collisions because RTS/CTS dialogues are 
inappropriate in broadcasting operations when the timing of 
rebroadcasts among interfering nodes can be highly correlated. 

                                                                 
2 One bit of the TTL field in the inject message is used as the “report” bit 

in order to solicit a report message from target nodes. The use of this bit 
is discussed in Section 3.3. 

Tmin has several considerations. First, there is a need to provide a 
time-buffer for local packet recovery. One of the main motivations 
behind the PSFQ paradigm is to recover lost packets quickly among 
immediate neighboring nodes within a controllable time frame. Tmin 
serves such a purpose in the sense that a node has an opportunity to 
recover any missing segment before the next segment come from its 
upstream neighbors, since a node must wait at least Tmin before 
forwarding a packet in pump state. Next, there is a need to reduce 
redundant broadcasts. In a densely deployed network, it is not 
unusual to have multiple immediate neighbors within radio 
transmission range. Since we use broadcast instead of unicast for 
data relaying in our reference application, too many data forwarding 
rebroadcasts are considered to be redundant if all its neighbors 
already have the message. In [7], the authors show that a rebroadcast 
system can provide only 0 ~ 61% additional coverage3 over that 
already covered by the previous transmissions.  Furthermore, it is 
shown that if a message has been heard more than 4 times, the 
additional coverage is below 0.05%. Tmin associated with the pump 
operation provides an opportunity for a node to hear the same 
message from other rebroadcasting nodes before it would actually 
have started to transmit the message. A counter is used to keep track 
of the number of times the same broadcast message is heard.  If the 
counter reaches 4 before the scheduled rebroadcast of a message 
then the transmission is cancelled and the node will not relay the 
specific message because the expected benefit (additional coverage) 
is very limited in comparison to the cost of transmission. Tmax can be 
used to provide a loose statistical delay bound for the last hop to 
successfully receive the last segment of a complete file, (e.g., a 
program image or script). Assuming that any missing data is 
recovered within one Tmax interval using the aggressive fetch 
operation described in next section, then the relationship between 
delay bound D(n) and Tmax is as follows:   

D(n) = Tmax × n × (Number of hops),  
where n is the number of fragments of a file. 

3.2 Fetch Operation 
Since most sensor network applications generate light traffic most of 
the time, message loss in the sensor networks usually occurs because 
of transmission errors due to poor quality wireless links and not 
because of traffic congestion. This is not to say that congestion 
cannot occur but that the vast majority of loss in these networks is 
associated with errors. This is especially true considering the 
environment in which sensor networks operate in is highly 
unpredictable, and therefore, the quality of the communication links 
can vary considerably due to obstructions or hostile ambient 
conditions.  
A node goes into fetch mode once a sequence number gap in a file 
fragments is detected. A fetch operation is the proactive act of 
requesting a retransmission from neighboring nodes once loss is 
detected at a receiving node. PSFQ uses the concept of “loss 
aggregation” whenever loss is detected; that is, it attempts to batch 
up all message losses in a single fetch operation whenever possible. 

3.2.1 Loss Aggregation 
There are several considerations associated with loss aggregation. 
The first consideration relates to bursty loss. Data loss is often 
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rebroadcast. 



correlated in time because of fading conditions and other channel 
impairments. As a result loss usually occurs in batches. Therefore, it 
is possible that more than one packet is lost before a node can detect 
loss by receiving a packet with higher sequence numbers than 
expected. PSFQ aggregates loss such that the fetch operation deals 
with a “window” of lost packets instead of a single packet loss. 
Next, in a dense network where a node usually has more than one 
neighbor, it is possible that each of its neighbors only obtains or 
retains part of the missing segments in the loss window. PSFQ 
allows different segments of the loss window to be recovered from 
different neighbors. In order to reduce redundant retransmissions of 
the same segment, each neighbor waits for a random time before 
transmitting segments, (i.e., sets a retransmission timer to a random 
value, and sends the packet only when the timer goes off). Other 
nodes that have the data and scheduled retransmissions will cancel 
their timers if they hear the same “repair” (i.e., retransmission of a 
packet loss) from a neighboring node. Third, in poor radio 
environments successive loss could occur including loss of 
retransmissions and fetch control messages. Therefore, it is not 
unusual to have multiple gaps in sequence number of messages 
received by a node after several such failures. Aggregating multiple 
loss windows in the fetch operation increases the likelihood of 
successful recovery in the sense that as long as one fetch control 
message is heard by one neighbor all the missing segments could be 
resent by this neighbor.   

3.2.2 Nack Messaging 
We define a NACK message associate with the fetch operation as 
the control message that requests a retransmission from neighboring 
nodes. The NACK message has at least three header fields (this 
could be more) with no payload: i) file ID, ii) file length, and iii) 
loss window. The loss window represents a pair of sequence 
numbers that denote the left and right edge of a loss window (see 
example below). When there is more than one sequence number 
gap, each gap corresponds to a loss window and will be appended 
after the first three header fields in the NACK message. For 
example, if a node receives messages with sequence number 
(3,5,6,9,11), then computes 3 gaps and hence 3 loss windows that 
are (4,4), (7,8) and (10,10), respectively. 

3.2.3 Fetch Timer 
In fetch mode, a node aggressively sends out NACK messages to its 
immediate neighbors to request missing segments. If no reply is 
heard or only a partial set of missing segments are recovered within 
a period Tr (Tr < Tmax, this timer defines the ratio between pump and 
fetch) then the node will resend the NACK every Tr interval (with 
slight randomization to avoid synchronization between neighbors) 
until all the missing segments are recovered or the number of retries 
exceed a preset threshold thereby ending the fetch operation. The 
first NACK is scheduled to be sent-out within a short delay that is 
randomly computed between 0 and ∆ (<<Tr).  The first NACK is 
cancel (to keep the number of duplicates low) in the case where a 
NACK for the same missing segments is overheard from another 
node before the NACK is sent. Since ∆ is small, the chance of this 
happening is relatively small. In general, retransmissions in response 
to a NACK coming from other nodes are not guaranteed to be 
overheard by the node that cancelled its first NACK. In [7] the 
authors show that at most there is a 40% chance that the canceling 
node receives the retransmitted data under such conditions. Note, 
however that a node that cancel its NACK will eventually resend a 
NACK within Tr if the missing segments are not recovered, 

therefore, such an approach is safe and beneficial given the trade 
offs.  
To avoid the message implosion problem, NACK messages never 
propagate; that is, neighbors do not relay NACK messages unless 
the number of times the same NACK is heard exceeds a predefined 
threshold while the missing segments requested by the NACK 
message are no longer retained in a node’s data cache. In this case, 
the NACK is relayed once, which in effect broadens the NACK 
scope to one more hop to increase the chances of recovery. Such a 
situation should be a rare occurrence, since loss is triggered when a 
packet with a higher sequence number than expected is received. 
The upstream node that sent this packet maintains a data cache and 
must have obtained all the preceding segments prior to sending this 
higher sequence number packet, which in this scenario, failed to 
reach the “fetching” node. The probability that all neighbors do not 
have the missing segments is very low. In our reference application, 
since all nodes must keep the code for re-tasking purposes, all 
segments that have been received correctly can be pulled out of 
cache or external storage. Therefore, NACK messages never need to 
be propagated in this case. 
Each neighbor that receives a NACK message checks the loss 
window field. If the missing segment is found in its data cache, the 
neighboring node schedules a reply event (sending the missing 
segment) at a random time between (0, Tr). Neighbors will cancel 
this event whenever a reply to the same NACK for the same 
segment (same file ID and sequence number) is overheard. In the 
case where the loss window in a NACK message contains more than 
one segment to be resent, or more than one loss window exists in the 
NACK message, then neighboring nodes that are capable of 
recovering missing segments will schedule their reply events such 
that packets are sent (in-sequence) at a speed that is not faster than 
once every Tr. 
Nodes in fetch mode maintain their own loss windows to keep track 
of missing segments. When a fetching node receives a portion of a 
missing segment that only represents a partial amount of its loss 
window, it needs to update its loss windows accordingly, possibly 
splitting the loss window or creating new loss windows. 

3.2.4 Proactive Fetch 
As in many negative acknowledgement systems, the fetch operation 
described above is a reactive loss recovery scheme in the sense that 
a loss is detected only when a packet with higher sequence number 
is received. This could cause problems on rare occasions; for 
example, if the last segment of a file is lost there is no way for the 
receiving node to detect this loss4 since no packet with higher 
sequence number will be sent. In addition, if the file to be injected 
into the network is small (e.g., a script instead of binary code), it is 
not unusual to lose all subsequent segments up to the last segment 
following bursty loss. In this case, the loss is also undetectable and 
thus non-recoverable with such a reactive loss detection scheme. In 
order to cope with these problems, PSFQ supports a “proactive 
fetch” operation such that a node can also enter fetch mode 
proactively and send a NACK message for the next segment or the 
remaining segments if the last segment5 has not been received and 
                                                                 
4 A node knows that it has not received the last segment, but it does not 

know whether the last segment is lost or will be relayed at some point in 
the future. 

5 The last segment could be identified by the file length field in the inject 
message, which is essentially the sequence number of the last segment. 



no new packet is delivered after a period of time Tpro. When a 
proactive fetch operation is triggered, a node will manually create a 
loss event and send out a NACK control message with the desired 
loss window. 
The proactive fetch mechanism is designed to autonomously trigger 
the fetch mode at the proper time. If fetch mode is triggered too 
early, then the extra control messaging might be wasted since 
upstream nodes may still be relaying messages or they may not have 
received the necessary segments. In contrast, if fetch mode is 
triggered too late, then the target node might waste too much time 
waiting for the last segment of a file, significantly increasing the 
overall delivery latency of a file transfer. The correct choice of Tpro, 
must consider two issues. First, in our reference application (where 
each segment of a file needs to be kept in data cache or external 
storage for the re-tasking operation), the proactive fetch mechanism 
will Nack for all the remaining segments up to the last segment if the 
last segment has not been received and no new packet arrives after a 
period of time Tpro. Tpro should be proportional to the difference 
between last highest sequence number (Slast) packet received and the 
largest sequence number (Smax) of the file (the difference is equal to 
the number of remaining segments associated with the file), i.e. Tpro 
= α * (Smax – Slast) * Tmax (α ≥ 1). Smax is the file length found in the 
header field, Tmax is the timer defined in the previous section, α is a 
scaling factor to adjust the delay in triggering proactive fetch and 
should be set to 1 for most operational cases. This definition of Tpro 
guarantees that a node will wait long enough until all upstream 
nodes have received all segments before a node moves into the 
proactive fetch mode. In addition, this enables a node to start 
proactive fetch earlier when it is closer to the end of a file, and wait 
longer when it is further from completion.  Such an approach adapts 
nicely to the quality of the radio environment. If the channel is in a 
good condition, then it is unlikely to experience successive packet 
loss; therefore, the reason for the reception of no new messages 
prior to the anticipated last segment is most likely due to the loss of 
the last segment, hence, it is wise to start the proactive fetch 
promptly. In contrast, a node is likely to suffer from successive 
packet loss when the channel is error-prone; therefore, it makes 
sense to wait longer before pumping more control messages into the 
channel. If the sensor network is known to be deployed in a harsh 
radio environment then α should be set larger than 1 so that a node 
waits longer before starting the proactive fetch operation. Finally, a 
node that starts proactive fetch will create a loss window with the 
left edge equal to (Slast+1) and right edge equal to Smax before 
sending a NACK message. The rest of the actions taken in response 
to a NACK message are exactly the same as normal fetch operations 
including the retransmission of NACKs and the handling of loss 
windows, as discussed earlier. 
In other applications where the data cache size is small and nodes 
only can keep a portion of the segments that have been received, the 
proactive fetch mechanism will Nack for the same amount of 
segments (or less) that the data cache can maintain. In this case, Tpro 
should be proportional to the size of the data cache. If the data cache 
keeps n segments, then Tpro = α * n * Tmax (α ≥ 1). As in discussed 
previously, α should be set to 1 in low error environments and to a 
larger value in harsher radio environments. This approach keeps the 
sequence number gap at any node smaller than n, (i.e., it makes sure 
that a node will fetch proactively after n successive missing 
segments). Recall that a node waits at most Tmax before relaying a 
message in the pump state so that the probability of finding missing 
segments in the data cache of upstream nodes is maximized. 

3.3 Report Operation 
In addition to the pump and fetch operations, described above, 
PSFQ supports a report operation designed specifically to feedback 
data delivery status information to users in a simple and scalable 
manner. In wireless communication, it is well known that the 
communication cost of sending a long message is less than sending 
the same amount of data using many shorter messages [14]. Given 
the potential large number of target nodes in a sensor network in 
addition to potential long paths (i.e., longer paths through multi-
hops greatly increase the delivery cost of data), the network would 
become overwhelmed if each node sent feedback in the form of 
report messages. Therefore, there is a need to minimize the number 
of messages used for feedback purposes. PSFQ’s report message 
and feedback mechanisms are designed to address these issues. The 
report message is designed to travel from the furthest target node 
back to the user on a hop-by-hop basis. Each node en route toward 
the user is capable of piggybacking their report message in an 
aggregated manner. Nodes can add/append their own feedback 
information to the original report message sent by the most distant 
target node as it propagates back toward the user that initially 
requested the report. 

3.3.1 Report Message 
The report message has only one field in its header representing the 
destination node ID of the node that should relay this report. The 
payload is a chain of node IDs and sequence number pairs that 
feedback the current status of each node along the path from the last 
hop toward the source user node. 

3.3.2 Report Timers 
A node enters the report mode when it receives an inject data 
message with the “report bit” set in the TTL field. The user node 
sets the report bit in the inject message whenever it needs to know 
the latest status of the surrounding nodes. To reduce the number of 
report messages and to avoid report implosion, only the last hop6 
nodes will respond immediately by initiating a report message 
sending it to its parent7 node at a random time between (0, ∆).  Each 
node along the path toward the source node will piggyback their 
report message by adding their own node ID and sequence number 
pair into the report, and then propagate the aggregated report toward 
the user node. Each node will ignore the report if it found its own ID 
in the report to avoid looping. Nodes that are not last hop nodes but 
are in report mode will wait for a period of time (Treport = Tmax × TTL 
+ ∆) sufficient to receive a report message from a last hop node, 
enabling it to piggyback its state information. A node that has not 
received a report message after Treport in report mode will initiate its 
own report message and send it to its parent node. If the network is 
very large then it is possible for a node to receive a report message 
that has no space to append more state information.  In this case a 
node will create a new report message and send it prior to relaying 
the previously received report that had no space remaining to 
piggybacking data. This ensures that other nodes en route toward the 
user node will use the newer report message rather than creating 
new reports because they themselves receive the original report with 
no space for piggybacking additional status. 

                                                                 
6 The last hop can be identified from the “TTL” field of the inject 

message, (i.e., nodes that receive an inject message with TTL=1). 
7 The node where the previous segment came from. 



4. PERFORMANCE EVALUATION 
We use packet-level simulation to study the performance of PSFQ in 
relation to several evaluation metrics and discuss the benefits of 
some of our design choices. Simulation results indicate that PSFQ is 
capable of delivering reliable data in wireless sensor networks even 
under highly error prone conditions, whereas, in contrast, other 
relevant approaches “retooled” to operate under such conditions 
cannot. 

4.1 Simulation Approach 
We implemented PSFQ as part of our reference re-tasking 
application using the ns-2 network simulator [13]. In order to 
highlight the different design choices made we compare the 
performance of PSFQ to an idealized version of Scalable Reliable 
Multicast (SRM) [5], which has some similar properties to PSFQ, 
but is designed to support reliable multicast services in IP networks.  
While there is growing body of work in multicast [8] [9] in mobile 
ad hoc networks and some initial work on reliable multicast support 
[11][12], we have chosen SRM as the best possible candidate that is 
well understood in the literature.  SRM supports reliable multicast 
on top of IP and uses three control messages for reliable delivery, 
including session, request and repair messaging.  Briefly, session 
messages are sent by each node in a multicast group to inform 
members of the last data message received by a node.  Session 
messages are time-stamped and their exchange is also used to 
calculate the delay between pairs of nodes.  Request messages are 
multicast by a node when it discovers that a data message is missing.  
Its complement is the repair message, which responds with the 
missing data requested in the request message. Missing data 
messages may be sent not only by the original source but also by 
any other node able to respond to the request. SRM represents a 
scheme that use explicit signaling for reliable data delivery while 
PSFQ is a more minimalist transport that can be unicast (on top of 
routing) or broadcast and does not require periodic signaling.  
We compare PSFQ with the loss detection/recovery approach of 
SRM but extract out the IP multicast substrate and replace it with an 
idealized omniscient multicast routing scheme. In this sense, we 
present SRM in the best possible light. There are several 
considerations for doing this. First, SRM is based heavily on the 
group delivery model and Application Level Framing [10], which 
make it a good match for cluster-based communications and the 
application-specific nature of sensor networks. On the other hand, 
SRM relies heavily on an IP multicasting mechanism for data 
routing. It is, however, unrealistic to assume an IP substrate in the 
context of sensor networks, as discussed previously. In addition, 
PSFQ is solely a reliable data transport scheme in our reference 
application, it does not provide a general routing solution as in the 
case of SRM, and therefore it is only fair to isolate SRM from the 
routing cost incurred by an IP multicast substrate for the purpose of 
our evaluation. We therefore only compare the reliable delivery 
portions of the SRM and PSFQ protocols. Since PSFQ uses a 
simple broadcast mechanism as a mean for routing in our reference 
application, it makes sense to layer SRM over an ideal omniscient 
multicast routing layer for simulation purposes. Using omniscient 
multicast, the source transmits its data along the shortest-path 
multicast tree to all intended receivers in which the shortest path 
computation and the tree construction to every destination is free in 
term of communication cost.  

The major purpose of our comparison is to highlight the impact of 
different design choices made. SRM represents a traditional 
receiver-based reliable transport solution and is designed to be 
highly scalable for Internet applications. SRM’s service model has 
the closest resemblance to our reference application in sensor 
networks. However, SRM is designed to operate in the wired 
Internet in which the transport medium is highly reliable and does 
not suffer from the unique problems found in wireless sensor 
networks, such as, hidden terminal and interference. To make a fair 
comparison, we try to idealize the lower layer to minimize the 
differences of the transport medium (which SRM is designed for) 
for simulation purposes, and, solely focus on the reliable data 
delivery mechanism – we term this idealized SRM scheme as SRM-
I. 
The goal of our evaluation is also to justify the design choices of 
PSFQ. We choose three metrics, which underpin the major 
motivations behind PSFQ: 

• average delivery ratio, which measures the ratio of number of 
message a target node received, to the number of message a 
user node injects into the network. This metric indicates the 
error tolerance of the scheme at the point where a scheme fails 
to deliver 100% of the messages injected by a user node within 
certain time limits.   

• average latency, which measures the average time elapsed 
from the transmission of the first data packet from the user 
node until the reception of the last packet by the last target  
node in the sensor network. This metric examines the delay 
bound performance of a scheme.  

• average delivery overhead, which measures the total number of 
messages sent per data message received by a target node. This 
metric examines the communication cost to achieve reliable 
delivery over the network.  

We study these metrics as a function of channel error rate as well as 
the network size. 
To evaluate PSFQ in a realistic scenario, we simulate the re-tasking 
of a simple sensor network in a disaster recovery scenario within a 
building. Typically, sensor nodes in a building are deployed along 
the hallway on each floor. Figure 4 depicts such a simple sensor 
network in a space of dimensions 100m x 100m. Each sensor node 
is located 20 meters from each other. Nodes use radios with 2 Mbps 
bandwidth and 25 meters nominal radio range. The channel access is 
the simple CSMA/CA and we used a uniformly distributed channel 
error model. A user node at location 0 attempts to inject a program 
image file with size equal to 2.5KB into every node on the floor for 
the purposes of re-tasking. The typical packet size used by the 
sensors used in this evaluation, and for which the radio is designed, 
is 50 bytes. This is equivalent to injecting 50 packets into the sensor 
network from the user node. Packets are generated from the user 
node and transmitted at a rate of one packet per 10ms. For PSFQ, 
the timer parameters were set conservatively to follow PSFQ 
paradigm: Tmax is 100ms, Tmin is 50ms and Tr is 20ms. Therefore, the 
fetch operation can be 5 times faster than pump operation. Each 
experiment is run 10 times and the results shown are an average of 
these runs. 



 
Figure 4. Sensor network in a building. A user node at 

location 0 injects 50 packets into the network within 0.5 
seconds. 

4.2 Simulation Results 
One of the major goals of PSFQ is to be able to work correctly 
under a wide variety of wireless channel conditions. The first 
experiment examines the “error tolerance” of PSFQ and SRM-I, and 
compares their results. Following the consideration of optimizing 
lower layer support for SRM, SRM-I is given extra benefit in 
channel access by using CSMA/CA with RTS/CTS and ACK 
support while PSFQ only uses CSMA broadcasting. The use of 
omniscient multicast along with the RTS/CTS channel access 
greatly contributes to the error tolerance of SRM-I in two respects. 
First, RTS/CTS eliminates the hidden terminal problems and 
reduces possible interference between nodes. Second, ACK support 
in our simulation allows up to 4 link-layer retransmissions (note that 
from the simple analysis shown in Figure 2, this could provide an 
improvement up to 20%) after an RTS-CTS exchange, this 
essentially incorporates the loss recovery mechanism into lower 
layer (i.e., MAC-level ARQ) in addition to that offered by SRM.  
In Figure 5, we present the results for PSFQ and SRM-I under 
various channel error conditions as we increase the number of hops 
in the network. As one might expect, the average delivery ratio of 
both schemes decrease as channel error rate increases. In addition, 
for larger error rates, the delivery ratio decreases rapidly when the 
number of hops increases. Notice that the user node starts sending 
data packets into the network at a constant rate of one packet per 
10ms at 2 seconds into the simulation trace and finishes sending all 
50 packets within 0.5 seconds. The simulation ran for 100 seconds 
after the user node stopped sending data packets. This arbitrary 
cutoff point was chosen as the time after which the delivery of data 
would be meaningless for a time critical re-tasking operation. Of 
course, this time limit is very much application-specific; in this case, 
consider that 100 seconds is 200 times the amount of time required 
by the user node to inject the entire program image file into the 
network. Observe from Figure 5, SRM-I (dotted line) can achieve 
100% delivery at up to 13 hops away from the source node only 
when the channel error rate is smaller than 30%. For 50% error rate, 
the 100% delivery point decreases to within 5 hops; and for larger 
error rates, SRM-I is only able to deliver a portion of the file two 
hops away from the user node. In contrast, PSFQ (solid line) can 
achieve a much higher delivery ratio for all cases under 
consideration for a wide range of channel error conditions. PSFQ 
achieves 100% delivery up to 10 hops away from the user node even 
at 50% error rate and delivers more than 90% of the packet up to 13 
hops away. Even under extremely error-prone channel error rates of 
70%, PSFQ is still able to deliver 100% data up to 4 hops away and 
70% of the packets up to 13 hops, while SRM-I can only deliver less 
than 30% of data even within 2 hops. 

 
Figure 5. Error tolerance comparison - average delivery 
ratio as a function of the number of hops under various 

channel condition for different packet error rate. 
The better error tolerance exhibited by PSFQ in comparison to 
SRM-I justifies the design paradigm of pump slowly and fetch 
quickly for wireless sensor networks. The in-sequence data pump 
operation prevents the propagation of loss events, as discuss in 
Section 2.3. While SRM-I does not attempt to provide ordered 
delivery of data and loss events are propagated along the multicast 
tree. PSFQ’s aggressive fetch operation and loss aggregation 
techniques support multiple loss windows in a single control 
message. In contrast SRM-I is conservative in loss recovery 
operations. This is because SRM is intended for applications 
without fixed deadlines, it also does not support the aggregation of 
multiple loss windows in a single control message. 

 
Figure 6. Comparison of average latency as a function of channel 

error rate. 
Our second experiment examines the data delivery latency of both 
schemes under various channel conditions. The results are shown in 
Figure 6. Delivery latency is defined only when all intended target 
nodes receive all data packets before the simulation terminates. For 
SRM-I, we know that 100% delivery can be achieved only within a 
limited number of hops when the error rate is high.  In this 
experiment, we compare the two schemes using a 3-hop network 
and investigate PSFQ’s performance with a larger number of hops 
since PSFQ has better error tolerance. Figure 6 shows that SRM-I 
has a smaller delay than PSFQ when the error rate is smaller than 
40%, but its delay grows exponentially as the error rate increases, 



while PSFQ grows more slowly until it hits its error tolerance barrier 
at 70% error rate. The reason that SRM-I performs better than PSFQ 
in terms of delay in the small error region is due to the “pump 
slowly” mechanism, in which each node delays a random period of 
time between Tmin and Tmax before forwarding packets. Despite this 
small penalty in the smaller error region, the coupling of this 
mechanism with the “fetch quickly” operation proves to be very 
effective. As shown in Figure 6, PSFQ can provide delay assurances 
even at very high error rates. Figure 6 also shows that as the number 
of hops increases, the delay in PSFQ increases rapidly in the higher 
error rate region, but it is still within the anticipated delay bound.  
In the next experiment, we study the communication cost for 
reliability in both schemes under various channel conditions using a 
3-hop network. Communication cost is measured as the average 
number of transmissions per data packet (i.e., average delivery 
overhead). For SRM-I, we separate the communication cost of the 
SRM-specific loss recovery mechanisms from the total 
communication cost, which includes the cost associated with the 
link-layer loss recovery mechanisms (RTS/CTS/ACK). Figure 7 
shows that the cost for PSFQ is consistently smaller than SRM-I by 
an order of magnitude even after excluding the link-layer cost of 
SRM-I. Figure 7 also illustrates the 100% delivery barrier of both 
schemes (the two vertical lines). The 52% error rate mark shows the 
limit for SRM-I while the 70% error rate mark shows the operation 
boundary for PSFQ. The different performance observed under 
simulation is rooted in the distinct design choices made for each 
protocol. PSFQ utilize a passive, on-demand loss recovery 
mechanism, whereas SRM employ periodic exchange of session 
messages for loss detection/recovery.  

 
Figure 7. Average delivery overhead as a function of channel 

error rate 
If we consider the results for SRM-I in Figure 7, we can observe 
four distinct portions of the curve: i) from 0 to 30% error rate, the 
curve is linear where the link-layer loss recovery mechanisms are 
able to recover all packet losses and there is no need for the SRM 
(REQ, REP) mechanisms to be used; ii) from 30% to 50% there is a 
rapid increase in messages as the packet loss overwhelms the link-
layer mechanisms, and the SRM reliable delivery mechanisms must 
be used to maintain 100% delivery; iii) after that point, message 
growth continues, but despite SRM, not all packets can be delivered 
to all nodes; and iv) the curve declines rapidly when the channel 
error rate increases beyond 70%, at which point the error rate is so 
high that hardly any transmission can take place since the RTS-CTS 
exchange is rarely completed. 

5. WIRELESS SENSOR TESTBED  
In what follows, we discuss some early experiences implementing 
PSFQ in an experimental wireless sensor testbed. We implemented 
PSFQ using the TinyOS platform [1][6] on RENE motes [1]. The 
sensor devices have an ATMEL 4MHz, low power, 8-bit micro-
controller with 8K bytes of program memory and 512 byte of data 
memory; 128KB EEPROM serves as secondary storage. The radio 
is a single channel RF transceiver operating at 916MHz and capable 
of transmitting at 10kbps using on-off-keying encoding. The radio 
performs transmission and bit sampling in software (TinyOS). 
TinyOS [6] is an event-based operating system, employing a CSMA 
MAC and performs encoding and decoding of the byte stream using 
Manchester encoding with a 16-bit CRC. The packet size is 30 
bytes. With a link speed of 10kbps the channel capacity can delivers 
at most 20 packets per second. Tuning the transmission power can 
change the radio transmission range of motes. 
We implemented the PSFQ pump, fetch and report operations as a 
component of TinyOS that interfaces with the lower layer radio 
components. The component code size for PSFQ is 2KB. In the 
implementation, every data fragment that is received correctly is 
stored into the external EEPROM at a predefined location based on 
its sequence number.  The sequence number is used as an index to 
locate and retrieve data segments when a node receives a NACK 
from its neighbors. 
We conducted several experiments using a simple scenario for 
preliminary evaluation of PSFQ. In order to emulate a wireless 
channel with different packet error rates, we manipulate the radio 
transmission power of the mote and measured the packet loss rate 
between every pair of motes that were separated by a fix distance 
before starting the experiments by calculating the number of missing 
packet for the transmission of 100 packets between the node pairs. 
Due to the irregular fading conditions in the laboratory, it was 
difficult to obtain accurate and fine-grained channel error rates. We 
were only able to obtain four different error rates that were relatively 
consistent over the period of our experiments. This simple 
experiment measures the delivery latency of sending 30 packets 
from a source node to multiple target nodes hops away. In order to 
monitor the completion time in which a mote received all the 
packets, additional motes connected to a laptop computer were 
placed close to the target motes to snoop the reports sent by each 
node. 
Figure 8 shows the result of our experiments. Every data point in the 
figure is an average of 5 independent experiments. The timer 
parameters were set as follows: Tmax = 0.3s and Tr = 0.1s. In the 
figure, the delay for a 5-hops network increases rapidly for an error 
rate of 15%.  Whereas smaller-hop networks, the delay increases 
more slowly even at high error rates. The results observed from the 
testbed show poorer performance in comparison to the simulation 
results where a rapid increase occurred at much higher error rate. 
This discrepancy is expected because of several factors. First, 
channel conditions of the wireless link in the real world are highly 
irregular especially for motes, which uses a very simple radio. The 
error rates presented in Figure 8 are not accurate enough.  Second, 
the computational overhead cannot be captured in simulation. Since 
the processor has to process every bit received off the link, intensive 
computation could overwhelm the processor forcing packets to be 
missed. Therefore, the actual loss rate during the experiment could 
be higher.  Finally, the mote implementation uses a very simple 



random number generator (16-bit LFSR) therefore the likelihood of 
collision in the testbed is higher than under simulation conditions. 

 
Figure 8: Delay experiments for mote testbed 

6. CONCLUSION 
In this paper, we have presented PSFQ, a reliable transport protocol 
specifically designed for wireless sensor networks. PSFQ is a 
lightweight, simple, mechanism that is scalable and robust making 
minimum assumptions about the underlying transport infrastructure. 
We have discussed the need for reliable data delivery in sensor 
network, especially the application where a user node needs to re-
task a group of sensor nodes in its vicinity by injecting program 
images into target nodes. Base on this reference application, we 
have described the design of PSFQ to achieve several goals, 
including operation under high error rate conditions and support for 
loose delay bounds for data delivery. We evaluated PSFQ and 
compared its performance to an idealized SRM implementation 
under simulation. We found that PSFQ outperforms SRM-I in terms 
of error tolerance, communication overhead, and delivery latency. 
We also presented some initial results from an experimental wireless 
sensor network that supports PSFQ using the TinyOS platform on 
top of the RENE motes. Results show a basic proof-of-concept 
indicating that the approach looks very promising in an actual 
wireless testbed. Future work includes more experimentation with 
larger numbers of sensors. The driving force behind our work 
remains transport and system support for programming wireless 
sensor networks. Along those lines we intend to study the impact of 
re-tasking motes on-the-fly using PSFQ.   Results from this phase of 
our work will be the subject of a future publication.   
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