H.264/ AVC Video Coding Standard

An overview of the H.264/ AVC Standard

Kevin Loken, P.Eng.
Background

- MPEG-1
 - Spatial and temporal video coding
 - Predictive, bi-directional
- MPEG-2
 - Added support for interlaced video
 - Widely used for transmission of video, both in standard definition and high definition
Background

- More high definition TV and lower bandwidth channels require higher coding efficiency
 - Cable modem, DSL have lower bandwidth than broadcast
 - Higher coding efficiency means either higher quality or more channels
Background

• In 1998 a call for proposals on H.26L was issued
 - Desired to double coding efficiency of existing video codecs
 - That is, half the bit rate for the same fidelity
• Aimed to finalize draft of H.264/AVC in March 2003
The Standard

- Only the decoder is standardized
- Imposes restrictions on bitstream and syntax
 - Defines the HRD (hypothetical reference decoder)
- Permits maximum freedom to optimize implementations
 - Doesn't guarantee end-to-end reproduction quality
 - Poor encoding can still be conformant
Enhancements

• Variable block-size motion compensation
 - Use blocks as small as 4x4
 - MPEG-1 had fixed 8x8 block sizes

• Quarter sample motion compensation
 - Prior standards enabled half-sample motion
 - Reduced complexity from MPEG-4 Visual
Enhancements

• Motion vectors over picture boundaries
• Multiple reference picture motion compensation
 - Don't have to just reference previous I frame (from H.263)
 - P frames in MPEG-2 used only one previous frame
 - An encoder can select from a large number of stored frames in the decoder
Enhancements

• Decoupling of referencing order from display order
 – Encoder can choose ordering of pictures for referencing bounded only by available memory

• Decouple picture representation from picture reference capability
 – Not restricted to using I-frames for reference ... allows closer temporal frames to be used
Enhancements

- Weighted prediction
 - Allows motion-compensated prediction signal to be weighted and offset
 - Improves coding efficiency for effects like fades
- In-the-loop deblocking filtering
 - Blocking artifacts can be removed with the application of this filter
Coding Efficiency

- **Small block-size transform**
 - Utilize blocks as small as 4x4

- **Hierarchical block transform**
 - Flexible format allows for longer basis functions, including 8x8 blocks for chroma information

- **Short word-length transform**
 - Only requires 16-bit arithmetic, not 32
Coding Efficiency

• Exact match inverse transform
 – Previous standards only provided inverse transform within an error bound
 – H.264/AVC provides exact inverse transform, so all compliant decoders produce exactly the same output

• Arithmetic entropy coding
 – Better compression than Huffman

• Context-adaptive entropy coding
Robustness

• Parameter set structure
 - Header information handled separately

• NAL unit syntax structure
 - Each structure is placed into a logical data packet (Network Abstraction Layer)
 - Allows NAL unit syntax allows for customization of the method of carrying the signal (depending on network)
Robustness

• Flexible slice size
 - MPEG 2 had rigid slice size
 - H.264/ AVC is flexible (like MPEG-1)
• Flexible macroblock ordering (FMO)
 - Picture can be partitioned into regions (slice)
 - Each slice can be independently decoded
Robustness

• Arbitrary slice ordering (ASO)
 - Since each slice is independently decodable (approximately), slices can be sent and received out of order
 - This can improve end-to-end delay time on certain networks (like the Internet)

• Redundant pictures
 - An encoder can send redundant regions of pictures (typically lower resolution) for use during loss of data
Robustness

• Data Partitioning
 – Each region allows for up to three different partitions for transmission

• SP/ SI synchronization/ switching
 – New picture types allow exact synchronization of the decoding process without penalizing other decoders
 – Avoids penalizing some decoders when sending an I picture
Network Abstraction Layer

- NAL Units
 - Each unit is effectively a packet that contains an integer number of bytes.
 - First byte is header byte
 - Payload data is interleaved with emulation prevention bytes to avoid start code prefix
Network Abstraction Layer

- NAL Units in Byte Stream
 - Some transport mechanisms are streams of bytes
 - Use start code prefix to identify beginning of NAL unit
 - A small amount of data allows for byte alignment as necessary
Network Abstraction Layer

- NAL Units in packet transport systems
 - For internet protocol and other packet networks, don't require start code prefix, since packet defines the unit
- VCL and Non-VCL units
 - Some units are video data
 - Other units are parameter sets, data that pertains to a large amount of VCL data
Network Abstraction Layer

- Parameter Sets
 - Sequence parameter sets apply to a series of consecutive coded video pictures
 - Picture parameter sets apply to the decoding of one or more individual pictures
 - VCL has a reference to the appropriate parameter set
 - Example: video format, entropy encoding
Network Abstraction Layer

• Access Units
 – A set of NAL units in a specified form
 – Contains VCL NAL units for the primary picture
 – May also contain additional VCL for redundant pictures
 – Supplemental enhancement information (like timing)
Video Coding Layer

• Pictures, Frames and Fields
 - A video sequence is a set of coded pictures
 - A picture can be either a frame or a field (for interlaced video)

• Macroblocks
 - A picture is partitioned into fixed size blocks
 - 16x16 samples for luma, 8x8 for each of the two chroma channels
Video Coding Layer

- Colour space
 - YCbCr colour space
 - 4:2:0 sampling
 - Y – luma, CbCr – chroma
 - Humans are more sensitive to luma, so it has four times the samples of the chroma channels.
Video Coding Layer

- Slices and Slice Groups
 - A picture in H.264/AVC can be a collection of one or several slices
 - Each slice is a series of macroblock

![Diagram of slice groups]

- Group 0
- Group 1
- Group 2
Video Coding Layer

• Adaptive Frame/Field Coding
 - For interlaced (as opposed to progressive) video, H.264/AVC allows for separate encoding of each field.
 - Frame/field encoding decision can be made independently for each vertical pair of macroblocks (16x32 luma region).
Video Coding Layer

• Intra-Frame Prediction
 - Each macroblock can be transmitted in a number of different coding schemes
 - Intra_4x4
 • Good for detail
 - Intra_16x16
 • Good for smooth areas
 - I_PCM
 • Transmit samples directly (no prediction)
Video Coding Layer

- Inter-frame Prediction
 - Partitions of luma block sizes 16x16, 16x8, 8x16, and 8x8 are supported
 - Accuracy of motion compensation is in units of one quarter of the distance between luma samples
 - Allows motion compensation over picture boundaries
 - Doesn't allow motion compensation over slice boundaries
Summary

- Separation of standard into NAL and VCL
- Added robustness through ASO and FMO
- Improved coding efficiency
 - Small blocks, 16-bit arithmetic
- Improved quality
 - Better predictive coding, smaller blocks, in-the-loop deblocking
Discussion

• Good points?
• Bad points?