
CapProbe: A Simple and Accurate Capacity Estimation
Technique

Rohit Kapoor Ling-Jyh Chen Li Lao Mario Gerla M. Y. Sanadidi
Qualcomm UCLA UCLA UCLA UCLA

rohitk@cs.ucla.edu cclljj@cs.ucla.edu llao@cs.ucla.edu gerla@cs.ucla.edu medy@cs.ucla.edu

ABSTRACT
We present a new capacity estimation technique, called Cap-
Probe. CapProbe combines delay as well as dispersion mea-
surements of packet pairs to filter out samples distorted by
cross-traffic. CapProbe algorithms include convergence tests
and convergence speed-up techniques by varying probing pa-
rameters. Our study of CapProbe includes a probability
analysis to determine the time it takes CapProbe to con-
verge on the average. Through simulations and measure-
ments, we found CapProbe to be quick and accurate across
a wide range of traffic scenarios. We also compared Cap-
Probe with two previous well-known techniques, pathchar
and pathrate. We found CapProbe to be much more ac-
curate than pathchar and similar in accuracy to pathrate,
while providing faster estimation than both. Another ad-
vantage of CapProbe is its lower computation cost, since no
statistical post processing of probing data is required.

Categories and Subject Descriptors
C.2.3 [Network Operations]: Network Monitoring

General Terms
Measurement, Experimentation, Performance

Keywords
Network capacity, Bottleneck bandwidth, Packet pair dis-
persion

1. INTRODUCTION
Estimating the capacity of an Internet path is a funda-

mental problem that has received considerable attention in
the last few years. Knowledge of the capacity of a path
can be put to good use in various scenarios. Using such
information, multimedia servers can determine appropriate
streaming rates while ISPs can keep track of the character-
istics of their own links. Further, recent research in overlay

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCOMM’04,Aug. 30–Sept. 3, 2004, Portland, Oregon, USA.
Copyright 2004 ACM 1-58113-862-8/04/0008 ...$5.00.

networks and application layer multicast can benefit from
such capacity information in better structuring their over-
lays and trees.

Work on estimating path capacity has been based on mon-
itoring either delays of packet pairs and trains or their dis-
persion. Tools adopting the former approach include pathchar [8,
5]. Pathchar uses ICMP replies from routers to estimate link
capacities based on the variation of the round-trip delay as
the probing packet size is increased.

“Packet dispersion” techniques rely on probing the path
with a series of “packet pairs” or “packet trains”, and sta-
tistically processing the probing packets’ dispersion induced
by the path of interest. An early packet dispersion ap-
proach, bprobe [3], was proposed by Carter and Crovella.
Lai [11] filtered packet pair measurements, whose poten-
tial bandwidth, derived from the minimum separation of
the packet pair at the sender, was less than the measured
bandwidth. Packet Tailgating was another technique pro-
posed by Lai [12]. Recently, Vicat in [6] proposed another
filter based technique called tracerate. Paxson [14] iden-
tified multi-channel links as a failure case of packet pairs
and presented the Packet Bunch Modes (PBM) technique
to overcome this limitation. Dovrolis [4] presented the most
detailed and revealing analysis of the capabilities and limita-
tions of packet dispersion techniques. He also introduced the
well-known capacity estimation tool pathrate, which first
uses packet pairs and if this yields a multimodal distribu-
tion, then uses packet trains of increasing length. Further
details on previous work are presented in Section 8.

All the techniques mentioned above relied either only on
delay [8, 5] or only on dispersion [4, 12] of probe packets.
CapProbe, the tool we present and study in this paper, com-
bines dispersion and delay measurements of probing packet
pairs. CapProbe is based on a simple and fundamental
observation: a packet pair that produces either an over-
estimation or an under-estimation of capacity must have
suffered cross-traffic induced queuing at some link (similar
queuing observations have also been made by the authors
in [4, 7]). CapProbe filters out such distorted measure-
ments by tracking packet pair delays. It only uses packet
pairs with minimal end-to-end delays. As we will show in
this paper, CapProbe is accurate across a wide range of path
and network traffic parameters. The only scenario where the
tool fails to consistently estimate capacity correctly is when
cross-traffic is both intensive and non-reactive (like constant
rate UDP traffic).

In this work, we present and study in some detail Cap-
Probe algorithms and their performance. We assess the ac-

curacy and convergence speed of CapProbe, and using mea-
surements on the Internet, we compare its performance to
other tools such as pathrate and pathchar. CapProbe al-
gorithms include filtering for minimal queuing time among
packet pairs, convergence speed-up by varying probing pa-
rameters, and convergence determination tests that improve
the chances of the tool to reach an accurate capacity esti-
mate at termination, while minimizing traffic overhead and
the time to convergence.

An active probing version of CapProbe can be imple-
mented using ICMP messages or UDP messages as probing
packet pairs. In such cases, we say that “active probing”,
or “out-of-band” probing is used to determine the path ca-
pacity. ICMP messages are a fine alternative, provided des-
tination hosts are not discarding such messages. And UDP
messages are a fine alternative provided it is feasible to im-
plement the tool on both ends of a path. In case of difficul-
ties with either ICMP, or a two end implementation of UDP
probing, it would be advantageous to use “passive probing”
or “in-band probing”. As an example of passive probing,
one might consider the use of CapProbe techniques within
TCP. We have designed a minimal modification to the TCP
sender protocol that allows accurate estimation of path ca-
pacity without sending any special messages; relying only on
the normal packet flows within the TCP connection. Details
of this technique, which we call TCPProbe, will be reported
in future work due to space limitation.

This paper also includes a probability analysis to identify
the time it takes CapProbe to converge on average, and a
mathematical analysis of the fundamental property of dis-
persion and delay that CapProbe relies on.

The remainder of the paper is organized as follows. Sec-
tion 2 describes the packet pair technique on which a num-
ber of capacity estimation techniques including CapProbe
are based. Section 3 discusses the main idea underlying
CapProbe. Section 4 discusses the effect of probing packet
size on the probability of queuing of a packet pair. Sec-
tion 5 presents an analysis of the probability of obtaining
a sample not affected by queuing. Section 6 presents algo-
rithms to detect and speed-up convergence of CapProbe. In
Section 7, we present results of simulations and measure-
ments showing the performance of CapProbe and compar-
ing it with two well-known capacity estimation techniques,
pathchar and pathrate. Previous works on capacity estima-
tion are discussed in Section 8. Section 9 concludes the work
and discusses avenues for future work.

2. BACKGROUND
The basic Packet Pair algorithm [9, 2] relies on the fact

that if two packets sent back-to-back are queued one after
the other at the narrow link, they will exit the link with
dispersion T given by:

T = L/B

where L is the size of the second packet, and B is the band-
width of the narrow link, i.e., the capacity limiting link.

If the two packets have the same size, their transmission
delays are the same. This means that after the narrow link,
a dispersion of T will be maintained between the packets
even if faster links are traversed downstream of the narrow
link. This is shown in Figure 1(a), where S is the source,
D is the destination, and link A-B is the narrow link. The

narrow link capacity can then be calculated as:

B = L/T

The Packet Pair algorithm assumes that the packets will
queue next to each other at the narrow link. The presence
of cross-traffic can invalidate this assumption.

Previous researchers have noted that capacity estimates
resulting from Packet Pair dispersion can be inaccurate.
This inaccuracy can be caused either by interference from
cross-traffic or by the end systems’ inability to measure dis-
persion accurately. Below, we discuss the effects of cross-
traffic, which can cause compression or expansion of dis-
persion. Compression results in over-estimation of capacity,
while expansion results in under-estimation.

Capacity over-estimation occurs when the dispersion be-
tween the packet pair at the destination is smaller than what
would be introduced by the narrow link. This may happen
whenever the narrow link is not the last link on the path,
i.e., when so-called post narrow links are present. If the
first packet of a pair queues at a post-narrow link, while the
second experiences queuing for a shorter time than the first
(for example, when no cross packets are injected between
the pair), the dispersion between the packets decreases. Fig-
ure 1(b) shows how dispersion can decrease at a post-narrow
link. When dispersion of a packet pair sample is compressed
resulting in capacity over-estimation, the first packet of the
probing pair will have queued at a post-narrow link due to
interference from cross-traffic. Compression and its effect
have been found to be more pronounced when probe pack-
ets are smaller than cross-traffic packets [4].

Capacity under-estimation occurs when the dispersion be-
tween the packet pair at the destination is larger than what
would be introduced by the narrow link in the absence of
cross-traffic. This increase of dispersion happens due to
cross-traffic packets being served (transmitted) in between
packets of a packet pair probe. Such expansion can hap-
pen anywhere on the path, before, at, or after the narrow
link. Figure 1(c) shows how under-estimation of capac-
ity can occur. When under-estimation occurs, the second
packet of the probing pair will have queued due to inter-
ference from cross-traffic. We emphasize that queuing of
the second packet behind the first packet does not lead to
expansion of the probing pair dispersion. Capacity under-
estimation has been shown to be more pronounced when the
size of cross-traffic packets is smaller than that of probing
packets [4].

3. CAPPROBE
The main idea underlying CapProbe is that at least one of

the two probing packets must have queued if the dispersion
at the destination has been distorted from that correspond-
ing to the narrow link capacity. This means that for samples
that estimate an incorrect value of capacity, the sum of the
delays of the packet pair packets, which we call the delay
sum, includes cross-traffic induced queuing delay. This de-
lay sum will be larger than the minimum delay sum, which
is the delay sum of a sample in which none of the packets
suffer cross-traffic induced queuing. The dispersion of such
a packet pair sample is not distorted by cross-traffic and will
reflect the correct capacity. Based on this observation, Cap-
Probe calculates delay sums of all packet pair samples and
uses the dispersion of the sample with the minimum delay
sum to estimate the narrow link capacity.

(a) (b) (c)

Figure 1: Packet Pair dispersion. (a) Ideal case. (b) Over-estimation of capacity. (c) Under-estimation of
capacity.

Figure 2: Packet Pair arriving at the narrow link of
capacity C.

While pathchar used only packet delays and other schemes
[4, 12] used only packet pair dispersion, CapProbe combines
dispersion and delay measurements of packet pair probes.
Searching for the pair with the minimum delay sum implies
no post processing of probing pair data. Thus CapProbe
promises lower computation costs, and faster capacity esti-
mation. Such features may allow the use of CapProbe in
an “on-line” mode, in cases where the capacity to be esti-
mated changes relatively frequently. This might be the case
in wireless links in which the quality of the link varies fre-
quently. For example, in the CDMA-based 1xRTT cellular
technology, the system design employs varying transmission
bit rates to optimize correct reception probability.

CapProbe also requires minimal storage since only a search
for a minimum is performed, as compared to gathering data
for a histogram to be post-processed. For CapProbe to accu-
rately estimate the narrow link capacity, at least one packet
pair sample with the minimum delay sum must be received
at the destination. In a network such as the Internet in
which the traffic intensity has ample fluctuations includ-
ing lull periods due to reactive TCP flows, there is a good
likelihood of obtaining one or more of the desired samples.
In fact, our experiments below encountered very few cases
that are deprived of such samples. The cases in which these
samples are sometimes not obtained correspond to a highly
congested (almost 100% congested), UDP-predominant (i.e.,
non-reactive) network.

4. EFFECT OF PROBING PACKET SIZE
In this section, we discuss the effect of the size of probing

packets on the accuracy of CapProbe estimation. Our dis-
cussion makes use of the well-known queuing theory result
that the probability of queuing of a packet depends only
on the traffic load in the network [10] and is independent
of the size of the packet or cross-traffic packets (assuming
that the packet probe rate does not significantly change the
traffic load on the network). We also mention here that, as
previous authors have discussed, for packet pair dispersion

Figure 3: Dispersion reduced due to smaller packet
size.

to measure the narrow link capacity, the two packets should
have the same size.

For CapProbe to estimate accurately, it is sufficient that
neither packet of the packet pair has suffered any queuing.
We first discuss the effect of packet size on the queuing prob-
ability of the second packet. Consider the packet pair shown
in Figure 2, where both packets have a size of L bits each.
Assume these packets arrive back-to-back at a narrow link
with capacity C bps. Note that the arrival of a packet occurs
when the last bit of the packet is received.

Assuming that no cross-traffic interferes with the packets
at the narrow link, the second packet departs L/C time units
after the first packet, and this is also equal to the dispersion
T between the packets. This dispersion is the time in which
cross-traffic packets can interfere with the packet pair at a
post-narrow link. That is, a cross-traffic packet “arriving” in
this time will be served between the two packets, causing the
second packet to queue. This consequently causes expansion
of dispersion. We refer to this time as the “vulnerability
window” of the packet pair.

The probability of queuing of the second packet can be
reduced by decreasing the size of the packets. As shown in
Figure 3, the size of the packets is reduced to L/2 bits. The
“vulnerability window” in this case is T = L/2C, which is
smaller than L/C. Thus, by reducing the packet size, the
chances of the second packet being queued are reduced. This
reduces the chances of capacity under-estimation.

We now consider the effect of packet size on probability
of queuing of the first packet of a probing pair. We observe
that the queuing behavior of the first packet is similar to
that of an independent single packet. Since the probability
of queuing of a single packet is independent of its size, this
also holds true for the first packet of a packet pair.

Thus, a smaller packet size decreases the chances of queu-
ing of the second packet, while the probability of queuing
of the first packet is independent of the packet size. Conse-
quently, we conclude that smaller packet sizes have a larger
probability of going through without suffering any queuing.

(a)

(b)

Figure 4: (a) Path Persistent (b) Non-persistent
cross-traffic.

Figure 5: Frequency of occurrence of bandwidth
samples when packet size of probes is (a) 100 and
(b) 1500 bytes.

Yet, previous authors [4] have shown that while small
packet sizes can reduce under-estimation, they can also in-
crease over-estimation. So, is our observation in conflict
with these earlier observations? Our observations are actu-
ally entirely consistent with these earlier observations. Ac-
cording to our observation, the second packet has a smaller
probability of being queued when the packet size is de-
creased. Though this decrease in packet size does not change
the probability of queuing of the first packet, the “relative”
probability of queuing of the first packet with respect to
the second packet is increased. This increases the proba-
bility of over-estimation. Note though that decreasing the
size reduces the queuing probability of the packet pair and
thus leads to a higher probability for the packet pair to go
through without being queued. Increasing the packet size
has the opposite effect.

Another effect of decreasing the packet size is that the
“magnitude” of over-estimation is also increased. To explain
this, suppose the first packet suffers more queuing than the
second, leading to compression of the packet pair. Clearly,
the compression ratio will be larger when the original dis-
persion is smaller, i.e., when packet sizes are smaller.

To explain these observations further, we present results
of a simulation consisting of a 6-hop path with link band-
widths = 10, 7.5, 5.5, 4, 6, 8 Mbps. Cross-traffic was path-
persistent and long-range dependent (LRD). Path-persistent
and non-persistent stand for the two extreme cases of cross
traffic routing as shown in Figure 4. The path persistent
cross-traffic packets follow the same path as the packet pair

Figure 6: Probability that a sample does not suffer
queuing when cross-traffic packet size is 550 bytes.

(Figure 4(a)), whereas the non-persistent cross-traffic pack-
ets exit one hop after they enter the path (Figure 4(b)). In
order to model LRD traffic, we used a number of Pareto
sources with shape parameter α = 1.9 [16]. NS-2 [1] was
used as the simulation environment. The cross-traffic packet
size was uniformly distributed between 40 and 1500 bytes.
The cross-traffic created a traffic load of 50% on the nar-
row link. This is similar to the scenario used by Dovrolis et
al [4]. Figure 5(a) shows the frequency of occurrence of a
bandwidth sample when the probe packet size is 100 bytes.
Figure 5(b) shows the same when the probe packet size is
1500 bytes.

In Figure 5(a), over-estimated capacity occurs with a high
frequency, while in Figure 5(b), under-estimation is predom-
inant. Clearly, smaller probing packet sizes lead to a higher
chance of over-estimation. Yet, in Figure 5(a), the capacity
mode (i.e., the capacity with highest frequency of occur-
rence) occurs with a relative frequency of almost 25%, while
in Figure 5(b), the capacity mode occurs with a frequency
of less than 4%. Thus, even though smaller probing packets
increase the chances of over-estimation relative to chances of
under-estimation, smaller probe packets have higher chances
of accurate estimation.

We also found that the probability of a packet pair not
suffering queuing was around 13% when the probing packet
size was 100 bytes. Note that this probability is smaller than
the frequency of occurrence of the correct capacity, since the
latter can include some samples where both packets suffered
queuing delay by the same amount, and thus dispersion re-
flected the right capacity. When packet size was 1500 bytes,
this probability was around 1.5%.

We thus see that decreasing the packet size of the pair
leads to a higher probability of obtaining a sample that does
not suffer any queuing. This means that CapProbe should
work best when the probing packet size is the smallest possi-
ble. Due to the impact of operating system clock granularity,
there are practical limits to how much the probing packet
size can be reduced. The authors in [11] and [4] have also
addressed this issue. Since dispersion of a packet pair is a
function of the packet size of the second packet, the larger
the second packet’s size, the easier it will be for clocks to
measure dispersion accurately. We discuss the issue of probe
packet sizing further in Section 6.

We studied via simulation the effect of probing packet size
on the probability of obtaining a queuing-free packet pair
sample. Using the same topology as above, we performed
simulations for LRD cross traffic. Probing packet pairs were
sent every 200msec. The size of probing packets and the
traffic load on the links was varied. Figure 6 shows the

 1

 10

 100

 1000

 0 0.2 0.4 0.6 0.8 1

A
ve

ra
ge

 n
um

be
r

of
 s

am
pl

es

Load

40 bytes, analysis
40 bytes, simulation
550 bytes, analysis

550 bytes, simulation
1500 bytes, analysis

1500 bytes, simulation

(a)

 1

 10

 0 0.2 0.4 0.6 0.8 1

A
ve

ra
ge

 n
um

be
r

of
 s

am
pl

es

Load

40 bytes, analysis
40 bytes, simulation
550 bytes, analysis

550 bytes, simulation
1500 bytes, analysis

1500 bytes, simulation

(b)

 1

 10

 0 0.2 0.4 0.6 0.8 1

A
ve

ra
ge

 n
um

be
r

of
 s

am
pl

es

Load

40 bytes, analysis
40 bytes, simulation
550 bytes, analysis

550 bytes, simulation
1500 bytes, analysis

1500 bytes, simulation

(c)

Figure 7: Analytical and simulation results of average number of samples for a single link. (a) Poisson CT.
(b) Deterministic CT. (c) Pareto ON/OFF CT.

probability of obtaining queuing-free probing packet pairs
when cross-traffic packet size is 550 bytes. The legend shows
probing packet sizes. The graph shows that packet pairs
with smaller packet size have a higher probability of not
hitting any queues, which is consistent with our explanation
above.

5. DERIVATION OF NON-QUEUING
PROBABILITY

CapProbe estimates capacity accurately once a packet
pair goes through the path with no queuing due to inter-
fering traffic. The probability of obtaining such a sample,
which we call a “good” sample, is an indication of how
quickly CapProbe converges to a correct capacity estimate.
Below, we determine the probability of obtaining a good
sample and from that, the average number of samples re-
quired for convergence.

We present a queuing model that can predict the prob-
ability of a “good” sample for a single link in the case
of Poisson, Deterministic and Pareto On/Off cross traffic
(CT) with deterministic packet size, since these distribu-
tions produce packet flows with significantly different vari-
ance in inter-arrival time and thus pose different challenges
to CapProbe. We use simulations to extend our evaluation
to the case of LRD traffic, which does not lend itself easily
to analytic modeling. Finally, we extend our evaluation to
a path consisting of multiple links with cross-traffic being
path-persistent, non-persistent, and a combination of these
two.

An assumption we make here is that packet pairs arrive
according to a Poisson distribution, and thus they take what
amounts to “a random look” at the link. This assumption
becomes more accurate as the path length increases, and the
time interval between successive packet pairs is randomly
affected by various delays along the path. We also assume
that packet pairs do not constitute a significant load on the
network since they are sent infrequently as a non-intrusive
probe. Finally, we assume that buffers are large enough;
that is, queues are effectively infinite.

We now calculate the probability that a packet pair sam-
ple is not affected by cross-traffic at a link. There are two
ways in which cross-traffic can affect a sample: i) Cross-
traffic is present upon arrival of the first packet; ii) Cross-
traffic packets arrive between the packet pair, specifically,
between the arrival instants of the two packets. We sim-

plify the analysis by disregarding the case when cross-traffic
packets arrive between a packet pair but do not cause the
second packet to queue, and thus our analysis is rather con-
servative and tends to over-estimate the number of samples
N required for convergence.

5.1 Poisson Cross Traffic
For condition (i) to be false, no cross-traffic packets should

be found upon arrival of the first packet. The probability
p1 that the first packet arrives to an empty system, is given
by:

p1 = 1− λ/µ

where λ and µ are the traffic arrival rate to the link and the
service rate of the link, respectively.

For condition (ii) to be false, there should be no arrivals
between the packet pair. If the dispersion of the packet pair
is denoted as τ , the probability p0 of no arrivals during τ is
given by [10]:

p0 = e−λτ

The probability plink, of no queuing and therefore no dis-
tortion at the link is equal to the product of p1 and p0:

plink = p0p1

The expected number of samples, N , needed to obtain a
good sample on a given link is given by:

N =

∞∑

k=1

kplink(1− plink)k−1 =
1

plink

We perform NS-2 simulations to evaluate the values of
N for a single link of capacity 4Mbps. Studies have shown
that Internet traffic consists of primarily 3 packet sizes, 40,
550 and 1500 bytes [13]. We evaluate N for cross-traffic
composed only of one of these packet sizes. The probing
packet size is fixed at 500 bytes and the dispersion τ is set
to 0.4msec, corresponding to link capacity of 10Mbps. Note
that all simulation results presented in this section are the
averages of 10 runs with different seeds for random number
generation. Unless otherwise specified, these parameters are
used in all the simulation studies presented in this section.

In Figure 7(a), we show analytical and simulation results
for values of N when cross traffic is Poisson. The curves rep-
resent cross traffic of different packet sizes, and the packet
sizes are shown in the legend. We found that simulation

tx

1/λ time

1st Cross Traffic Packet 2nd Cross Traffic Packet

 τ

Figure 8: An illustration of the time interval be-
tween the arrivals of two deterministic CT packets.

results for Poisson cross-traffic match the analytically ob-
tained curves very well. We observed that smaller cross-
traffic packets tend to reduce the probability of obtaining
good samples, since at the same link load, cross traffic with
smaller packets has higher packet arrival rate λ, which re-
sults in a higher chance of the second packet being queued.
Considering that the Internet consists of a combination of
small and large packets, we expect CapProbe to be able
to converge rather quickly when the arrivals of cross traffic
packets is closer to Poisson distribution.

5.2 Deterministic Cross Traffic
Deterministic cross traffic packets arrive at the link peri-

odically, so we consider one inter-arrival period of length
1/λ. As shown in Figure 8, if we denote the transmis-
sion time of a cross-traffic packet as tx, the arrival of the
packet pair must occur after the transmission of the first
cross-traffic packet to avoid the queuing of the first probing
packet. In addition, since the dispersion of the packet pair
is τ , the first probing packet must arrive early enough be-
fore the arrival of the next cross-traffic packet to allow the
second probing packet to start transmission without being
queued. In other words, the first probing packet must arrive
during the shaded time interval in Figure 8. Therefore, the
probability of no queuing is calculated as follows:

plink = max(0, 1− tx + τ
1
λ

) = max(0, 1− λ(tx + τ))

The analytical and simulation results for Deterministic
cross traffic are shown in Figure 7(b). It is clear that the
analytical results match simulation results very well. Note
that when the cross-traffic packet size is 40 bytes, good sam-
ples can only be obtained at very light load of 0.1. When link
load increases, the higher arrival rate and thus shorter inter-
arrival time of the cross-traffic packets prevent the packet
pair from going through the link without being queued.
However, as cross-traffic packet size increases, a good sample
can normally be obtained in less than 20 samples.

5.3 Pareto On/Off Cross Traffic
For Pareto on/off cross traffic, the source enters ON and

OFF state alternately. In the ON state, the source transmits
packets at a deterministic rate, whereas in the OFF state,
the source does not transmit any packets. The time for a
source to remain in ON or OFF state follows Pareto distri-
butions. In our model, we assume the ON and OFF periods
are independently identically distributed, i.e., the probabil-
ity density function (pdf) f(t) of the ON/OFF time periods
t and its mean t̄ are given by:

f(t) =
αkα

tα+1
0 < k ≤ t, 1 < α ≤ 2

and

t̄ =
αk

α− 1

ON period

Busy period

OFF period time

 τ

Figure 9: An illustration of an Pareto ON/OFF cy-
cle for the third case.

where α and k are the shape parameter and scale parame-
ter of the Pareto distribution, respectively. Since the mean
arrival rate of the cross traffic packets is λ and the mean
length of ON periods is equal to that of the OFF periods,
the arrival rate of the cross traffic during ON periods should
be 2λ.

Based on the relationship of 1/2λ (the inter-arrival time of
cross traffic during an ON period), tx (the transmission time
of cross-traffic packets), and τ (the dispersion of a packet
pair), we derive the non-queuing probability of the packet
pair in the presence of one Pareto cross-traffic flow. Three
cases need to be considered, depending upon whether the
link has idle time in ON/OFF periods, and the length of
that idle time.

1. If tx < 1/2λ < tx + τ , the inter-arrival time of cross-
traffic packets is larger than their service time, so there will
be idle time during an ON period. However, the idle time is
not long enough for a packet pair to arrive during the idle
time and not queue. In this case, a good sample can only
arrive during an OFF period. In the OFF period, a packet
pair does not suffer queuing if and only if the residual life-
time of the OFF period when the first probing packet arrives
is longer than the dispersion τ . Given the distribution of the
length of the OFF period, we can find the distribution of the
residual lifetime when the renewal process is Pareto. Thus,
the probability of obtaining a good sample can be obtained
from the probability that the residual lifetime Y is larger
than the dispersion τ (the details are shown in Appendix):

plink =
1

2
P [Y ≥ τ] =

{
1
2α

(k
τ
)α−1 if τ ≥ k,

1
2
[1− (α−1)τ

αk
] if τ < k.

2. If 1/2λ > tx + τ , the link has idle time in both ON
and OFF periods, and the idle time in ON periods is long
enough for a packet pair to arrive without suffering queu-
ing. In other words, good samples can occur in both ON
and OFF periods. Considering ON and OFF periods sepa-
rately, the conditional probability of obtaining a good sam-
ple given that the source is in ON state can be obtained in a
similar way as the Deterministic cross traffic case shown in
Section 5.2, whereas the conditional probability given that
the source is in OFF state is equal to P [Y ≥ τ] in case 1.
Thus, by conditioning and un-conditioning on the state of
the source, the probability of obtaining a good sample can
be formulated as:

plink =

{
1
2
[1− 2λ(tx + τ)] + 1

2α
(k

τ
)α−1 if τ ≥ k,

1
2
[1− 2λ(tx + τ)] + 1

2
[1− (α−1)τ

αk
] if τ < k.

3. If 1/2λ < tx, the inter-arrival time of cross-traffic pack-
ets is not long enough to serve one packet, thus the queue
will build up in ON periods and decrease during OFF peri-
ods. Consequently, good packet pair samples can only sur-
vive in OFF periods with idle time longer than the disper-
sion τ . Due to the difficulty of computing the distribution
of the length of the idle time in OFF periods, we simplify

 1

 10

 100

 1000

 0 0.2 0.4 0.6 0.8 1

A
ve

ra
ge

 n
um

be
r

of
 s

am
pl

es

Load

40 bytes
550 bytes

1500 bytes
mix

Figure 10: Simulation results of average number of
samples for a single link; LRD cross-traffic.

the analysis by assuming that every OFF period has idle
time longer than τ . Figure 9 shows a typical ON and OFF
period, in which the busy period of the link extends to the
OFF period, and the first packet of a good sample can arrive
any time in the shaded region in the graph. Therefore, the
probability of a good sample pair is equal to the proportion
of the shaded region in a complete ON and OFF cycle, that
is:

plink = 1− λ

µ
− τ

2t̄

Figure 7(c) plots the results obtained for one Pareto source.
Even under conditions with heavy load and small cross-
traffic packets, a good sample can be obtained within ap-
proximately 10 packet pairs. Intuitively, these results are
reasonable because good packet pairs have more chances to
go through due to the presence of OFF periods.

In summary, the analytic model and simulation results
for Poisson, Deterministic and Pareto ON/OFF cross traffic
show that the average number of samples N for CapProbe to
obtain a correct capacity estimation is affected by link load,
cross-traffic packet size, and the pattern of the cross traffic.
However, under normal conditions in which links are not
extremely heavily loaded and the cross-traffic packet sizes
are not too small, a good sample can be obtained rather
quickly, irrespective of the traffic patterns of the cross traffic.
To further demonstrate this observation, we present some
simulation results for more realistic LRD cross traffic in the
following subsection.

5.4 Long Range Dependent Cross Traffic
Figure 10 shows simulation results for LRD cross-traffic.

We evaluate N for cross-traffic composed only of one of the
three packet sizes (40, 550, and 1500 bytes) and also a combi-
nation of these sizes with the percentages 50%, 25% and 25%
respectively, similar to the measured Internet traffic [13]. In
this figure, we observe a similar trend as before: the number
of required samples is large when cross-traffic packets are 40
bytes, since smaller packets can interfere more easily with
probe packets, whose size is 500 bytes. In addition, mix-
ing the cross-traffic with different packet sizes gives results
similar to those for 550- and 1500-byte cross-traffic packets.

We now extend the results to the same 6-hop path used
in Section 4. Note that we do not study this longer path
through analysis owing to the more intractable nature of
such analysis. We mention here that developing a more so-
phisticated analytical model to better study the impact of
path length on the probability of an unqueued sample is part
of our future work.

 1

 10

 100

 1000

 0 0.2 0.4 0.6 0.8 1

A
ve

ra
ge

 n
um

be
r

of
 s

am
pl

es

Load

non-persistent
persistent

mixed

Figure 11: Average number of samples for the 6-
link path with persistent, non-persistent, and mixed
LRD cross traffic.

We show results only for LRD cross-traffic consisting of
a mix of different packet sizes in the same ratio as earlier.
The cross-traffic can be path-persistent (Figure 4(a)), non-
persistent (Figure 4(b)), or a more realistic mix of both.
In this last case, around 50% of the traffic at every link is
path-persistent. All links on the path were equally loaded.

In Figure 11, we show the average number of samples
needed to obtain a good sample for the 6-hop path obtained
using simulations. Under non-persistent cross-traffic, it is
more plausible that the packet pairs encounter independent
queues. On the other hand, under persistent cross-traffic,
a correlation among the successive queues is more likely.
Thus, probe packets that are not queued at one link, have
a high chance of not being queued at subsequent links. In
accordance with this intuition, we found, as shown in Fig-
ure 11, that persistent cross-traffic easily allows the pas-
sage of probe samples without queuing, while non-persistent
cross-traffic does not. The number of samples required when
cross-traffic is a mix lies between the two extremes of only
persistent and only non-persistent traffic. We expect In-
ternet traffic to be a mix of persistent and non-persistent
sources. For mixed LRD traffic, even for loads as high as
80%, a good sample can be obtained in around 100 samples.
Based on this observation, we choose 100 as the value of a
parameter in Section 6.

6. TECHNIQUES FOR CONVERGENCE
DETECTION AND SPEED-UP

A question that arises when using CapProbe is: how do we
know whether the capacity estimated by CapProbe is accu-
rate or not? In other words, how can we determine whether
the minimum delay sum in a set of packet pair samples is
actually equal to the no-queuing (minimum) delay sum. At
the beginning of an experiment, the current minimum delay
sum in a set of packet pair samples is still likely to contain
some amount of queuing delay. The higher the congestion,
the higher this probability, and the longer the time to ob-
tain a correct sample. Thus, in a sense, we would like to be
able to: 1) Use some indicators to establish confidence in
the capacity estimated by CapProbe; and 2) Stop sending
probes based on the above indicators.

We begin by observing that by summing the delays of
the packet pair packets, CapProbe was able to identify and
eliminate samples whose dispersion was distorted. On the
other hand, the summing of delays also leads to the loss of
potentially useful information: the individual delays of the

Figure 12: Probability of an unqueued sample for
pairs and single packets.

first and second packets. Our aim thus, is to use individual
delays to determine convergence soon after CapProbe has
indeed achieved it.

Consider the set of packet pair probes, i = 0, 1, 2, ..., let d1
i

and d2
i represent the delays of the first and second packets

of the ith probe. Let the minimum delay sample be the jth
sample. Thus, min{d1 + d2} occurs at the jth sample.

Now consider the minimum among the delays of the first
packet of all packet pair samples, i.e., min{d1}. Let min{d2}
represents the corresponding quantity for the second packet.

In the set of packet pair samples, it is not necessary that
min{d1 + d2} = min{d1} + min{d2}. In other words, it
is not necessary for the minimum delay sum to be equal
to the sum of the minimum delays. It could happen, for
instance, that the delay of the first (or the second) packet in
the minimum delay sum is greater than the minimum delay
of the first (or the second) packet among all samples. In
such a situation, min{d1 + d2} > min{d1}+ min{d2}.

Therefore, if, in a set of packet pair samples, min{d1 +
d2} > min{d1}+min{d2}, then we can deduce the following:

• If the delay of the first (or the second) packet in the
minimum delay sum sample is greater than min{d1}
(or min{d2}), we conclude that this packet suffered
some queuing delay.

• In either case, the minimum delay sum is clearly greater
than the no-queuing delay sum and thus, the disper-
sion obtained from the minimum delay sum could have
been a distorted one.

In this way, the additional information relating individ-
ual minimum delays with the minimum delay sum helps in
weeding out incorrect minimum delay samples. We refer to
this relation as the minimum delay sum condition.

6.1 How much does this extra information
improve detection of convergence?

The probability of a single packet going through without
queuing is much higher than the probability of a packet pair
suffering the same fate. Thus, by comparing the delay of the
first (second) packet in the minimum delay sample with the
minimum delay of the first (second) packet, we can identify
incorrect minimum delays sums with the same probability
as that of the first (second) packet not being queued in the
network.

We evaluated by simulations the probability of a packet
pair as well as a single packet going through without being
queued under different conditions. A 6-hop linear topology,
similar to the one used in earlier sections, was used for the
simulations. Cross-traffic was LRD. The cross-traffic pack-
ets were a mix of three packet sizes as described in previous
sections. The probing packets had a size of 500 bytes.

Figure 13: Percentage increase in probability of un-
queued sample when using single packets instead of
packet pairs.

Figure 14: Number of samples required to satisfy
minimum delay sum condition.

Simulations were performed for both path-persistent and
non-persistent cross-traffic sources. Figure 12 shows the
probability of obtaining a sample which does not suffer any
queuing in the case of packet pairs and single packets, for dif-
ferent values of narrow link traffic load. Figure 13 shows the
percentage increase in the probability of obtaining a sample
which does not suffer any queuing when using single pack-
ets compared to using packet pairs. The increase is clearly
very large when the traffic load increases. Also, for non-
persistent traffic, the increase is larger than when traffic is
path-persistent. The more than 10 times increase for highly
loaded non-persistent traffic is very significant.

6.2 More on Minimum Delay Sum
In order to show the effect of using the minimum delay

sum condition with CapProbe, we show some simulation
results. The simulation parameters are similar to the ones
used in Section 6.1, except for that the size of probe packets
was varied. Figure 14 shows the number of samples required
to satisfy the minimum delay sum condition. The index in
Figure 14 shows different probing packet sizes.

For low loads, the minimum delay condition is satisfied
after a small number of samples, while higher loads require
a larger number of samples. Also, packet pairs using smaller
packets satisfy this condition much faster than those using
larger packets.

To avoid situations where the minimum delay sum is equal
to the sum of the minimum delays but these minimum delays
are not the no-queuing delays (this can easily happen, for
instance, in the first few samples, either of the packets of the
pair may not have gone through without queuing), we con-
tinue sending a few samples even after the minimum delay
sum is equal to the sum of the minimum delays. Thus, the
minimum delay sum condition is said to be satisfied when

the minimum delay sum is equal1 to the sum of the mini-
mum delays for the n previous samples and the minimum
delay sum and minimum delays have not changed during
these n samples. Through experiments, we found 40 to be
a good value for n.

6.3 Algorithm
Based on the observations in the last two sections, we

outline an algorithm to detect and speed-up convergence.
We again bring to the attention of the readers our result of
Section 5 that for a 6-hop path with up to 80% traffic load, a
sample not affected by queuing could be obtained within 100
samples. This value of 100 is used as the number of packet
pair samples in each phase of the algorithm described below.

We also found while conducting experiments that when
the packet size was very small such that the operating sys-
tem could not measure the dispersion accurately, the band-
width obtained from the dispersion of samples varied quite a
lot. In our algorithm outlined below, we need to determine
whether the variance in bandwidth estimated from packet
pair samples is caused due to operating system not being
able to measure dispersion accurately. We used a simple
test: if the ratio of maximum to minimum bandwidth esti-
mated by samples > 50, it is likely to be due to measurement
errors. The value of 50 was obtained solely through experi-
mentation.

In the algorithm, each “run” is defined to consist of packet
pair samples, all having the same packet size. The “run”
stops either if the minimum delay sum condition is satis-
fied or 100 samples have been sent. In the beginning, we
select two initial values of packet sizes, p1 = 700 bytes and
p2 = 900 bytes. These initial values are chosen since they
lie between very small values which cause problems in mea-
surement and large values (such as 1500 bytes, which is the
typical MTU value) which have a higher chance of suffer-
ing expansion. These are also values suggested by previous
authors [4].

1. The first run uses p1 as the packet size. If the minimum
delay sum condition is not satisfied in this run, then:

(a) If the bandwidth estimated varies a lot across
samples (if the ratio of maximum to minimum
bandwidth estimated by packet pair samples is
greater than 50), it is an indication that the op-
erating system clock is unable to measure disper-
sion accurately. Thus, the packet sizes p1 and p2

are increased by 20% and the algorithm goes back
to Step 1. The upper bound on p1 and p2 is 1500
bytes, which is the largest packet that does not
suffer fragmentation.

(b) If the bandwidth estimated does not vary signifi-
cantly across samples, it is an indication that no
ample could go through without queuing. Since
decreasing packet size leads to a higher chance of
obtaining an unqueued sample, the packet sizes p1

and p2 are decreased by 20% and the algorithm
goes back to Step 1.

2. If the minimum delay sum condition is satisfied in the
previous run with packet size p1, another run with
packet size p2 is employed.

1Since operating system measurements can have some error,
we say that the minimum delay sum is equal to the sum of
minimum delays when their difference is less than 1%.

Figure 15: (a) Minimum delay sums and (b) fre-
quency of occurrence when cross-traffic is TCP and
packet size of probes is 200 bytes.

(a) If the minimum delay sum condition is not satis-
fied in this run, then packet sizes p1 and p2 are
decreased or increased according to the rules in
1(a) and 1(b) and the algorithm goes back to Step
1.

(b) If the minimum delay condition is satisfied

i. If the capacities resulting from the two runs
are within 5%, the algorithm stops, yielding
the average of the two runs as the capacity.

ii. Else, the algorithm goes back to Step 1.

Thus, the CapProbe algorithm continues to run till ca-
pacities obtained from two consecutive runs (using different
packet sizes) are similar and the minimum delay sum con-
dition is satisfied in each of these runs.

7. RESULTS
In this section, we present results of simulations and In-

ternet measurements to evaluate the performance of Cap-
Probe. We compared CapProbe with two previously pro-
posed well-known capacity estimation schemes, pathchar [8]
and pathrate [4] (for a brief description, see Section 8).

We first show results of simulations experiments to test
CapProbe. The network topology is the same 6-hop linear
path used in previous sections. The capacity is measured at
the destination. The cross-traffic on the path can be either
persistent (Figure 4(a)) or non-persistent (Figure 4(b)). The
different traffic types we used for the cross-traffic were TCP,
CBR and LRD. In each set of experiments, we increased the
rate of the cross-traffic from 1Mbps to 4Mbps, which is the
capacity of the narrow link. The simulation time was 100
sec. The size of cross-traffic packets was 500 bytes. We
study below the packet pair delay sum statistics, in particu-
lar, the minima of such delays and corresponding bandwidth
estimate distributions obtained for various bandwidth esti-
mates. We show some of the results from these simulations.

Figure 15(a) shows the minimum packet pair delay sums
when packet size of probes is 200 bytes and cross-traffic is
path-persistent. The index in the figures shows maximum
cross-traffic rates2. Figure 15(b) shows the frequency distri-
bution of bandwidth estimates from packet dispersion.

We make the following observations from the graphs: the
value of minimum packet pair delay sums is smallest at the
point corresponding to the narrow link capacity, which is
4Mbps. We note here that when cross-traffic rate is 4Mbps,

2TCP rates fluctuate, but are limited to between 1Mbps and
4Mbps, depending upon the scenario.

Figure 16: (a) Minimum delay sums and (b) fre-
quency of occurrence when cross-traffic is TCP and
packet size of probes is 500 bytes.

Figure 17: (a) Minimum delay sums and (b) fre-
quency of occurrence when cross-traffic is UDP.

i.e., equal to the narrow link capacity, CapProbe still works.
Thus, when cross-traffic is TCP, CapProbe measures the
right capacity even for highly congested links. Looking at
Figure 15(b), the strongest mode always occurs at 8Mbps.
This mode is the Post-Narrow Capacity Mode (PNCM) in-
troduced in [4] and represents compression.

We now show results when size of packet pair packets is
increased to 500 bytes. Figure 16(a) shows the minimum
packet pair delay sums. Figure 16(b) shows the frequency
distribution of bandwidth estimates from packet dispersion.
From Figure 16(b), when the size of packet pair packets
is similar to that of cross-traffic packets, results show the
emergence of the ADR (Asymptotic Dispersion Rate), which
has been noted in [4]. The strongest mode is the ADR when
cross-traffic is 3Mbps. From Figure 16(a), the CapProbe
scheme still estimates the right capacity for different cross-
traffic values. Thus, even when the strongest mode is the
ADR, CapProbe is able to estimate the correct capacity.

We now show simulation results when the cross-traffic
is path-persistent and CBR using UDP as transport layer
protocol. Figure 17(a) shows the minimum packet pair de-
lay sums. Figure 17(b) shows the frequency distribution
of bandwidth estimates from packet dispersion. The UDP
cross-traffic results are different from TCP results since UDP
is not reactive to congestion.

From Figure 17(a), CapProbe predicts the correct capac-
ity till the UDP cross-traffic is 2Mbps, i.e., till a load of 50%
on the narrow link. For higher cross-traffic rates, no sam-
ples corresponding to the correct capacity are obtained. In
fact, all samples for cross-traffic of 3Mbps or 4Mbps have
a packet dispersion corresponding to an estimated band-
width of 8Mbps (Figure 17(b)). This is basically the PNCM
mode described in [4]. Also, the strongest mode is an over-
estimation for all cross-traffic loads. It should be noted here
that high-rate UDP is a worst-case for CapProbe (and in

Table 1: Destinations used in our experiments
Host Location

BERKELEY University of California, Berkeley
CMU Carnegie Mellon University
MIT Massachusetts Institute of Technology
NTNU National Taiwan Normal University
UA University of Alabama
UCLA University of California, Los Angeles
UCLA-2 University of California, Los Angeles

(including a wireless hop)
UCLA-3 University of California, Los Angeles
UCONN University of Connecticut
UCSD University of California, San Diego
WLSH National Wuling Senior High School, Taiwan
YAHOO Yahoo.com

Table 2: Convergence time and capacity (in Mbps)
estimated over Internet

YAHOO WLSH (1.5Mbps)
66.218.70.49 210.70.26.17

time C time C
1 0’03 97 0’13 1.50
2 0’01 93 0’56 1.53
3 0’03 90 0’13 1.50
4 0’03 99 0’13 1.53
5 0’01 98 0’13 1.50

general, for all packet pair-based techniques), and it is also
not very realistic. Our basis for experimenting with such
cross-traffic is to identify cases in which our technique fails.

For all other combinations of cross-traffic type (TCP, CBR,
LRD) and nature (persistent, non-persistent), CapProbe was
able to estimate the correct capacity. We do not show these
results due to space constraints.

We now show results of measurement experiments. We
evaluated the performance of CapProbe with respect to its
speed and accuracy. CapProbe was implemented using ICMP
PING packets, sent in pairs. This meant that we had to be
careful in choosing our test paths, since PING packets are
blocked by some Internet nodes (firewalls etc). It should be
noted that CapProbe can just as well be implemented as
a UDP-based client-server application, similar to pathrate.
This has the disadvantage that a module needs to be in-
stalled at the destination, similar to pathrate.

A Pentium 4 2.5GHz machine at our university was used
as the source machine, running CapProbe, pathrate and
pathchar. A number of destination machines on the Inter-
net, Abilene and CalREN networks were chosen to provide
different types of paths (the names of these destination ma-
chines are shown in Table 1). Abilene is a high-speed 10Gbps
national backbone connecting a number of universities. Abi-
lene provides a different environment for testing than the
commercial Internet since it is very high-speed. CalREN is
also a high-speed network connecting universities in Califor-
nia. We had knowledge of capacities of all links on certain
paths on Abilene and CalREN.

The path to the UCLA-2 machine involved a wireless hop,
with 802.11b being the wireless technology. In all other
paths (except WLSH where the narrow link capacity was
1.5Mbps), the narrow link was 100 Mbps. Since pathrate
requires the installation of a module at the destination and
we did not have access to all destination machines, results
for pathrate could not be obtained for all test paths.

Table 3: Convergence time and capacity (in Mbps)
estimated over Abilene

MIT CMU UCONN
18.181.0.31 128.2.11.43 137.99.29.54

time C time C time C
1 0’04 95 0’04 99 0’13 98
2 0’07 98 0’04 97 0’13 99
3 0’07 97 0’02 99 0’04 98
4 0’07 96 0’02 98 0’05 93
5 0’03 97 0’04 99 0’25 85

Table 4: Convergence time and capacity (in Mbps)
estimated over CalREN

UCLA UCSD BERKELEY
169.232.56.135 132.239.50.184 169.229.131.109

time C time C time C
1 0’02 99 0’01 97 0’02 99
2 0’02 93 0’02 97 0’01 99
3 0’01 91 0’08 96 0’03 97
4 0’02 97 0’01 97 0’03 98
5 0’01 97 0’05 98 0’05 95

Table 2, 3 and 4 show the speed and accuracy of CapProbe
in 5 runs on various test paths on the Internet, Abilene and
CalREN networks respectively. We found that CapProbe
is able to estimate capacity with a high degree of accuracy
typically within a few seconds. The quick and accurate es-
timation of CapProbe indicates that it may be suitable for
“online” capacity estimation. This can prove useful over
wireless links, in which the changing quality of the link can
cause the capacity to vary frequently.

Table 5 compares the time taken (in minutes and sec-
onds) and the capacity estimated (in Mbps) by CapProbe,
pathchar and pathrate for different test paths. We found
both CapProbe and pathrate to be quite accurate in most
scenarios. On the other hand, pathchar estimates were in-
correct in most scenarios, most likely due to accumulation of
errors as estimation proceeds along the path. Also, pathchar
required a large amount of time to yield capacity estimates.

In order to get a fair comparison with pathrate, we set the
probing rate (in bps) of CapProbe equal to that of pathrate
in these experiments. We found that if we did not make
the rates equal, CapProbe estimated faster than the results
shown in Table 5. We believe that by making the bandwidth
consumed by the probing streams equal, we obtained a fair
comparison between CapProbe and pathrate.

While pathrate typically required on the order of minutes
to yield its estimate, CapProbe was able to typically esti-
mate in a minute or sometimes even in a few seconds. Thus,
CapProbe proved to be similar in accuracy to pathrate, but
was typically able to achieve this in a smaller time. On the
UA path, CapProbe is sometimes inaccurate by around 20%
and pathrate by around 30%. The path to UA is a long and
extremely congested path, and as a result, obtaining samples
not affected by queuing is difficult. This caused CapProbe
to produce slightly inaccurate estimates in a few runs.

8. RELATED WORK
Previous work on estimating the capacity of a path has

mostly been based on using dispersions of packet pairs or
trains. In [3], Carter proposed bprobe, in which filtering
methods are applied on packet pair measurements, consist-

Table 5: Comparison of convergence time and capac-
ity (in Mbps) of CapProbe, pathrate and pathchar

UCLA-2 UCLA-3 UA NTNU
131.179.33.171 131.179.136.151 130.160.47.35 140.122.77.6

time C time C time C time C
CapProbe 0’03 5.5 0’01 96 0’02 98 0’07 97

0’03 5.6 0’01 97 0’04 79 0’07 97
0’03 5.5 0’02 97 0’17 83 0’22 97
0’07 5.6 0’01 98 0’09 98 0’04 99
0’03 5.6 0’02 99 0’09 95 0’04 96

pathrate 6’10 5.6 0’16 98 5’19 86 0’29 97
6’14 5.4 0’16 98 5’20 88 0’25 97
6’5 5.7 0’16 98 5’18 133 0’25 97
6’14 6.8 0’16 98 5’19 88 0’26 97
6’20 5.8 0’16 98 5’19 132 0’25 97

pathchar 21’12 4.0 22’49 18 3 hr 34 3 hr 34
21’21 4.0 22’53 18 3 hr 31 3 hr 35
21’45 4.0 22’48 18 3 hr 32 3 hr 34
20’43 3.9 27’41 18 3 hr 34 3 hr 35
21.18 4.0 29’47 18 3 hr 30 3 hr 35

ing of different packet sizes. In [11], Lai used packet pair
measurements, but filtered them through a kernel density
estimator [15]. The kernel density algorithm is known to be
statistically valid and is relatively simple and fast to com-
pute. The underlying assumption of all these techniques is
that the distribution of measurements obtained from packet
pair samples is unimodal, i.e., the sample with the maximum
frequency of occurrence corresponds to the capacity.

Paxson showed in [14] that this distribution can be multi-
modal. He identified multi-channel links as a failure case of
packet pairs and presented the Packet Bunch Modes (PBM)
technique to overcome this limitation. The PBM method-
ology consists of sending packet trains of different lengths
in response to a distribution with multiple modes, treat-
ing multiple modes as corresponding to multi-channel links.
Dovrolis [4] elaborated further on the occurrence of multiple
modes. They showed that the strongest mode in the mul-
timodal distribution may correspond to the capacity, or to
an under- or to an over-estimate of the capacity. Under-
estimation occurs when the network is heavily congested,
while over-estimation occurs, to various degrees, when the
narrow link is followed by links of higher capacity, referred
to as Post-Narrow Links. They also observed that a packet
train of N packets is most useful for estimating capacity
when N = 2, corresponding to a packet pair, since interfer-
ence from cross-traffic is likely to increase as N increases.
Finally, they presented a capacity estimation methodology,
which first sends packet pairs. If this yields a multimodal
distribution, then probing with packet trains with an in-
creasing value of N is initiated. For some value of N , the
distribution becomes unimodal, and the capacity is selected
as the next highest mode after this mode in the multimodal
distribution that was obtained from packet pairs.

A different technique, not based on dispersion of packet
pairs, but rather on the variation of the round-trip delay as
the packet size increases, was used by Jacobson in pathchar [8].
This technique, based on the generation of ICMP replies
from routers, is known to have scalability problems. Pathchar
tries to estimate the capacity of a link by sending sets of
packets (not packet pairs) to a link, with each set having a
different packet size. It assumes the minimum delay in each
set to be the no-queuing delay for the particular packet size.
The minimum delays for different packet sizes yield a set of

linear equations that are solved to obtain the bandwidth of
the link. This procedure is repeated for each link on the
path and the minimum among the link bandwidths is cho-
sen as the path capacity. Pathchar is known to consume
a significant amount of bandwidth [11]. Also, we tested
pathchar and found that its estimation accuracy fell as the
path length was increased, mainly due to accumulation of
estimation errors. Clink [5] differs from pathchar in the
manner it generates its interval capacity estimates. Pchar
is based on a similar concept as pathchar and uses regres-
sion to determine the slope of the minimum RTT versus the
probing packet size. The key difference between pathchar
and CapProbe is that whereas pathchar uses packets delays
to estimate capacity, CapProbe uses packet delays only as
an indicator of which sample’s dispersion to choose for esti-
mating capacity. In [2], the authors study another technique
based on probing with variable packet sizes.

Packet tailgating is another technique proposed by Lai [12].
This technique is divided into two phases: the Sigma phase,
which measures the characteristics of the entire path, and
the Tailgating phase, which measures the characteristics of
each link individually.

9. CONCLUSIONS
This paper presented and studied a new capacity estima-

tion technique, called CapProbe. CapProbe relies on a novel
scheme that uses packet delays to filter out packet pairs with
distorted dispersion. Simulations showed that CapProbe
is able to estimate capacity correctly except when cross-
traffic is both intensive and non-reactive (like UDP). We also
compared CapProbe, using measurements, with two well-
known capacity estimation methods, pathchar and pathrate.
We found that the accuracy of CapProbe is similar to that
of pathrate. Pathchar was found to be less accurate. In
terms of speed, CapProbe out-performed both pathchar and
pathrate.

We are hopeful that new and emerging applications can
make use of capacity estimates and this is one direction of
our future work. Another direction for the future is to build
and study more sophisticated analytical models to gain fur-
ther insight on the convergence speed of CapProbe in differ-
ent network conditions.

10. ACKNOWLEDGMENTS
We are grateful to the following people for their help

in carrying out CapProbe measurements: Jun-Hong Cui
(University of Connecticut), Xiaoyan Hong (The Univer-
sity of Alabama), Yi-Wen Jiu (National Wuling Senior High
School, Taiwan) and Che-Chih Liu (National Taiwan Nor-
mal University). We also want to thank the anonymous
reviewers for their valuable comments and suggestions.

11. REFERENCES
[1] Network simulator ns-2. http://www.isi.edu/nsnam/ns.
[2] J. C. Bolot. Characterizing end-to-end packet delay and

loss in the internet. In Proceedings of ACM SIGCOMM,
pages 289–298, September 1993.

[3] R. Carter and M. Crovella. Measuring bottleneck link
speed in packet-switched networks. Performance
Evaluation, 27(8):297–318, October 1996.

[4] C. Dovrolis, P. Ramanathan, and D. Moore. Packet
dispersion techniques and capacity estimation. submitted to
IEEE/ACM Transactions of Networking.

[5] A. B. Downey. Using pathchar to estimate internet link
characteristics. In Proceedings of ACM SIGCOMM, pages
241–250, September 1999.

[6] M. Goutelle and P. Vicat-Blanc/Primet. Study of a
non-intrusive method for measuring the end-to-end
capacity and useful bandwidth of a path. In Proceedings of
ICC, June 2004.

[7] N. Hu and P. Steenkiste. Evaluation and characterization of
available bandwidth techniques. IEEE JSAC Special Issue
in Internet and WWW Measurement, Mapping, and
Modeling, 21(6):879–894, August 2003.

[8] V. Jacobson. Pathchar: A tool to infer characteristics of
internet paths. ftp://ftp.ee.lbl.gov/pathchar/.

[9] S. Keshav. A control-theoretic approach to flow control. In
Proceedings of ACM SIGCOMM, pages 3–15, September
1991.

[10] L. Kleinrock. Queueing Systems, Volume I: Theory. Wiley,
1975.

[11] K. Lai and M. Baker. Measuring bandwidth. In Proceedings
of IEEE INFOCOM, pages 235–245, March 1999.

[12] K. Lai and M. Baker. Measuring link bandwidth using a
deterministic model of packet delay. In Proceedings of ACM
SIGCOMM, pages 283–294, August 2000.

[13] S. McCreary and K. Claffy. Trends in Wide Area IP Traffic
Patterns. Technical Report, CAIDA, February 2000.

[14] V. Paxson. Measurements and Dynamics of End-to-End
Internet Dynamics. Ph.D. Thesis, Computer Science
Division, Univ. Calif. Berkeley, April 1997.

[15] D. Scott. Multivariate Density Estimation: Theory,
Practice and Visualization. Addison Wesley, 1992.

[16] M. S. Taqqu, W. Willinger, and R. Sherman. Proof of a
fundamental result in self-similar traffic modeling.
ACM/SIGCOMM Computer Communications Review,
27(2):5–23, April 1997.

APPENDIX
To calculate residual lifetime when renewal process is Pareto dis-
tribution, we define the following random variables: X is the life-
time of a typical interval with Pareto renewal processes, and Y is
the residual lifetime of the selected interval when the first packet
in a packet pair probe arrives. Let the residual life have a distri-

bution F̂ (x) = P [Y ≤ x] with density f̂(x) =
dF̂ (x)

dx
, and let the

typical lifetime X have a pdf f(x) and cumulative distribution

function (CDF) F (x) where F (x) = P [X ≤ x] and f(x) =
dF (x)

dx
.

Based on the renewal theory [10], given that x ≥ k (according
to the definition of Pareto distribution), we obtain

f̂(y) =

{∫∞
x=y

f(x)
m1

dx, if y ≥ k,∫∞
x=k

f(x)
m1

dx, if y < k.

where m1 is the mean time between renewals, i.e., mean time
of the Pareto distribution t̄. Therefore, by integrating the right-
hand side of the equations, we obtain the pdf of the residual
lifetime distribution:

f̂(y) =

{
1−F (y)

m1
= α−1

αk
(k

y
)α, if y ≥ k,

1−F (k)
m1

= 1
m1

= α−1
αk

, if y < k.

Finally, we can compute the complementary cumulative distri-
bution function (CCDF) P [Y ≥ t] as follows, given that 1 < α ≤
2:

P [Y ≥ t] =

{∫∞
t f̂(y)dy = 1

α
(k

t
)α−1, if t ≥ k,

1− ∫ t
0 f̂(y)dy = 1− t

m1
= 1− (α−1)t

αk
, if t < k.

