
Realizing Bullet Time Effect in Multiplayer Games with
Local Perception Filters

Jouni Smed
∗

Turku Centre for Computer
Science (TUCS) and

Department of Information
Technology, University of

Turku, Finland

jouni.smed@cs.utu.fi

Henrik Niinisalo
Department of Information
Technology, University of

Turku, Finland

Harri Hakonen
Department of Information
Technology, University of

Turku, Finland

harri.hakonen@cs.utu.fi

ABSTRACT
Local perception filters exploit the limitations of human per-
ception to reduce the effects of network latency in multi-
player computer games. Because they allow temporal dis-
tortions in the rendered view, they can be modified to realize
bullet time effect, where a player can get more reaction time
by slowing down the surrounding game world. In this paper,
we examine the concepts behind local perception filters and
extend them to cover artificially increased delays. The pre-
sented methods are implemented in a testbench program,
which is used to study the usability and limitations of the
approach.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distrib-
uted Systems—Distributed Applications; H.5.3 [Information
Interfaces and Presentation]: Group and Organization
Interfaces—Synchronous Interaction; K.8.0 [Personal Com-
puting]: General—Games

General Terms
Algorithms

Keywords
Computer games, networking, multiplayer, latency, bullet
time, virtual environments

1. INTRODUCTION
“Bullet time” is a visual effect which combines slow mo-

tion with dynamic camera movement. Bullet time effect was

∗Corresponding author. Address: Lemminkäisenkatu 14 A,
FI-20520, Turku, Finland. Phone: +358-2-3338673.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCOMM’04 Workshops, Aug. 30+Sept. 3, 2004, Portland, Oregon, USA.
Copyright 2004 ACM 1-58113-942-X/04/0008 ...$5.00.

introduced in the film The Matrix [9], and it soon found its
way into computer games like Max Payne [3]. In computer
games, bullet time allows the player to slow down the sur-
rounding game world thus enabling to the player to have
more time to make decisions.

Whereas the bullet time effect is quite easy to implement
in a single player game, simply by slowing down the render-
ing, in multiplayer games the bullet time effect is not used—
or it is implemented as speeding up the player rather than
slowing down the environment. For instance, force speed in
Jedi Knight II: Jedi Outcast [2] implements the bullet time
effect differently in the single player mode than in the mul-
tiplayer mode. The reason for this is obvious: If one player
could slow down the time of its surroundings, it would be
awkward for the other players within the influence area be-
cause, rather than enhancing the game play of the player
using the bullet time, it would only hinder the game play of
the other human players.

In this paper, we propose a method realizing the bullet
time effect in a multiplayer game. It is based on the idea of
local perception filters introduced in [5], which is a method
used to hide communication delays in networked virtual en-
vironments. It exploits the human perceptual limitations
by rendering entities at slightly out-of-date locations based
on the underlying communication delays. The idea is to
make these temporal distortions of the game world as un-
noticeable as possible. However, it can be accommodated
to include also artificial temporal distortions caused by the
bullet time effect, as we shall see in this paper.

We begin the paper with an introduction to local percep-
tion filters in Section 2. For a broader review of the prob-
lems in networked computer games, see [7, 8]. We discuss
the problems that have to be solved in the implementation
and general limitations of the approach. Next, we introduce
how the local perception filter approach can be extended to
include bullet time effect in Section 3. Section 4 describes
the MMD system, which is used as a testbench to try out
and improve the described ideas. Final remarks appear in
Section 5.

2. LOCAL PERCEPTION FILTERS
The entities of a game world can be separated into two

classes:

• Active entities are indeterministic entities (e.g., con-

trolled by human players) whose behaviour cannot be
predicted.

• Passive entities are deterministic entities, whose be-
haviour follow, for example, the laws of physics (e.g.,
projectiles) or which are otherwise predictable (e.g.,
buildings).

Interaction means, theoretically speaking, that the interact-
ing entities must communicate with each other to resolve
the outcome. If the communication delay between entities
is negligible (e.g., they reside in the same computer), the
interaction seems credible. On the other hand, networking
incurs communication delays which can hinder the interac-
tion between the active entities.

Because in computer games the active entities usually cor-
respond to the avatars of the players, we shall henceforth re-
fer to active entities as players and passive entities simply as
entities. Based on the communication delay, we divide the
players to local players (e.g., sharing the same computer)
and remote players (e.g., players connected by a network).

Local perception filters address this problem of delays by
discerning the actual situation from the rendered situation.
The rendered situation, which is perceived by the player,
need not to coincide with the current actual situation but
it can comprise some out-of-date information. The amount
of this temporal distortion is easy to determine for active
entities: Local players are rendered using up-to-date state
information, whilst a remote player with a communication
delay of d seconds is rendered using the known, d seconds
old state information. In this sense, local perception filters
differ from dead reckoning, where the communication delay
is compensated by predicting the current state of a remote
player from the out-of-date information.

The temporal distortion of passive entities can change dy-
namically. The nearer an entity is to a local player, the closer
it has be to rendered to its current state, because it is pos-
sible that the player is going to interact with it. Conversely,
an entity nearing on a remote player must be rendered closer
to that remote player’s time, because if there is an interac-
tion between the remote player and the entity, the outcome
is rendered after the communication delay. In other words,
the rendered remote interactions, albeit occurring in real-
time, have happened in the past, and only when the local
player itself participates in the interaction, it must happen
in the present time.

Figure 1 gives an example, where the player controlling
the white ship shoots a bullet (i.e., a passive entity) towards
the grey ship controlled by a remote player. The players’
views are not entirely consistent with each other: In the
beginning the white ship renders the bullet to the actual
position but as it closes on the grey ship it begins to lack
behind the actual position. Conversely, when the grey ship
first learns about the bullet, it has already travelled some
distance. For example, let us assume that the communica-
tion delay between the ships is 0.5 seconds and the bullet
travels in 2.0 seconds from the white ship to the grey ship.
When the white ship fires, it sees the bullet immediately
but after that the rendered bullet starts to drag behind the
actual position. After 2.0 seconds the bullet has arrived to
the grey ship, but it is rendered like it has travelled only 1.5
seconds. It takes 0.5 seconds for the grey ship’s reaction to
convey to the white ship, and once that message arrives, af-
ter 2.5 seconds, the bullet is rendered near the grey ship and

Figure 1: An example of local perception filters with
two stationary players (white and grey ship) and
one moving entity (a bullet shot by the white ship).
On the left side, from top to bottom, are the ren-
dered views from the white ship’s perspective; on
the right side are the corresponding views from the
grey ship’s perspective. Dashed ovals indicate the
actual position of the bullet and black rectangles its
rendered position. As the bullet closes on the grey
ship, the white ship perceives it to slow down, whilst
the grey ship perceives it to gain speed.

reaction occurs at an appropriate moment. From the grey
ship’s perspective the chain of events is different: When it
learns about the bullet, it has already travelled 0.5 seconds,
but it is rendered coming from the white ship. The rendered
bullet must now catch up the actual bullet so that at the
moment of 2.0 seconds both the rendered and actual bullet
arrive to the grey ship, which can then react and send the
reaction to the white ship.

Each player has its own perception of the game world,
where all entities, in addition to spatial co-ordinates (x, y, z),
are associated with a time delay (t), thus forming a 31/2-di-
mensional co-ordinate system. The local player is at the
current time t = 0, and remote players are assigned t val-
ues according to their communication delays. Once we have
assigned these values, we can define a causal surface [4] or
a temporal contour [6] over the game world. The temporal
contour defines suitable t values for each spatial point. Fig-
ure 2 illustrates one possible temporal contour for the white
ship of the previous example. When the bullet leaves the
white ship, t = 0, but the t value increases as the it closes
on the grey ship, until they both have the same t value.

The changes in the movement of an entity caused by the
temporal contour should be minimal and smooth. More-
over, all interactions between players and entities should

x

t

y

Figure 2: The 21/2-dimensional temporal contour
from the white ship’s perspective. The bullet trav-
els “uphill” the contour until it reaches the t value
of the grey ship.

appear to be realistic and consistent (e.g., preserve causal-
ity of events). The requirements for temporal contours, as
outlined in [5], can be summarized into three rules:

1. Player should be able to interact in real-time with the
nearby entities.

2. Player should be able to view remote interactions in
real-time, although they can be out-of-date.

3. Temporal distortions in the player’s perception should
be as unnoticeable as possible.

The most important limitation of local perception filters,
which follows from the first rule, is that a player cannot in-
teract directly with a remote player. The players can engage
into an exchange of passive entities (e.g., bullets, arrows,
missiles or insults) but they cannot get into a mêlée with
each other.

Another problem is the computational requirements, be-
cause all players have their own temporal contours, which
must be updated dynamically whenever a remote player’s
position or communication delay changes. Ideally, the tem-
poral contour should be smooth so that the changes remain
unnoticeable. Although this seems to imply that the tempo-
ral contours must minimize the overall change, as the ones
defined in [5], we have opted for linear functions because
they are much more simple, easier to compute, and they are
still reasonably unnoticeable.

In the following subsections we study first how to define
linear temporal contours in the case of two players, and then
extend the discussion to cover multiple players. After that,
we point out some problems and limitations of local percep-
tion filters that should be considered in the implementation.

2.1 Two Players
Let us first look at a case where we have only two play-

ers, p and r, and one entity e. The players and the entity
have a spatial location, and the players are associated with
a communication delay, which is due to the network latency
and cannot be reduced. If i and j are players or entities, let
δ(i, j) denote the spatial distance between them and d(i, j)
the delay from the perspective of i. The communication de-
lay between players does not have to be the same in both
directions but we can allow d(i, j) �= d(j, i).

In the case of two players, the delay function d for the
entity e must have the following properties

d(p, e) =

{
0, if δ(p, e) = 0,
d(p, r), if δ(r, e) = 0.

(1)

p

p, r)d

(p, r)δ

(r, p)d

t

xrp

t

xr

(

Figure 4: Player p shoots player r in a one-
dimensional world. Above the temporal contour
from the perspective of player p, and below from
the perspective of player r. The corresponding val-
ues in t-axis illustrate the delay (i.e., the temporal
difference) between the actual and rendered position
at each actual spatial point in x-axis.

Simply put, if e and p are at the same position, the delay to
p is zero, and if e and r are at the same position, the delay
from p is the same as the communication delay from p to r.

The rest of the function can be defined, for example, lin-
early as

d(p, e) = d(p, r) · max

{
1 − δ(r, e)

δ(p, r)
, 0

}
, (2)

which is illustrated in Figure 3. The delay function defines
now a symmetrical temporal contour around r, which the
entities must follow when they are rendered. This is not the
only possibility, and the delay function can even be asym-
metric (i.e., the slope does not have to be the same to all
directions).

Let us take an example, which is illustrated in Figure 4,
where player p shoots a bullet e towards player r. If we look
at the situation from perspective of player p, initially the
distance to the bullet δ(p, e) = 0 and the delay d(p, e) = 0.
The delay increases as the bullet closes on r, until d(p, e) =
d(p, r) when δ(r, e) = 0. Once the bullet has passed r, the
delay reduces back to zero. Player p perceives the temporal
contour so that the bullet moves slower when it is climbing
“uphill” and faster when it is going “downhill”. From the
perspective of player r, the bullet has initially delay d(r, e) =
d(r, p), which reduces to d(r, e) = 0 when δ(r, e) = 0. In
other words, player r perceives the bullet moving faster than
its actual speed until it has passed the player.

If we define the temporal contour observing the constraints
of Equation 1, we may notice a slight visual flaw in the
rendered outcome. Assume player p shoots a bullet e to-
wards remote player r. The bullet slows down, and when
δ(r, e) = 0, the delay function has reached its maximum and

(b)

p r
x

t

e
0

(a)

d (p, e)

d (p, r)

(r, e)δ

(p, r)δ

t

p

r

y

x

e

d (p, e)

d (p, r)

(r, e)δ(p, r)δ

Figure 3: Examples of the linear delay function of Equation 2 defining the temporal contour in (a) one-
dimensional game world and (b) two-dimensional game world.

d(p, e) = d(p, r). However, when the actual bullet reaches
r, the rendered bullet of p is still short of reaching r (see
the bottom left frame of Figure 1). Because the tempo-
ral contour is already at its peak value, the bullet begins
to speed up before it is rendered at r. This can look dis-
ruptive, because the change happens before the bullet is
rendered to interact with the remote player. Intuitively, ac-
celeration should occur only after the bullet has passed the
remote player. From the perspective of player r, the render-
ing has a similar problem: Once r learns about the bullet,
its rendered position is not next to p but some way forward
along the trajectory. Simply put, the problem is that the
delay function is defined using actual positions, whereas it
should observe also the movement of the entity during the
communication delay. This means that each individual en-
tity requires a slight refinement of the temporal contour to
reduce these perceptual disruptions.

To solve the problem, let us first introduce function δe(t),
which represents the distance that the entity e travels in
the time t. Obviously, the function is based on the velocity
and acceleration information, but the given generalization
suffices for our current use. Let us now define a shadow r′

of player r that has the following property

δ(r, r′) = δe(d(p, r)). (3)

The shadow r′ represents the position where the entity e
actually resides, when player p is rendering it at the position
of remote player r. Now, we can rewrite Equation 1 as

d(p, e) =

{
0, if δ(p, e) = 0,
d(p, r), if δ(r′, e) = 0.

(4)

Simply put, this means that we push the peak of temporal
contour forward the distance of δe(d(p, r)) to r′, which is
illustrated in Figure 5. The reason why we want to use
the actual spatial positions is that they, unlike the rendered
positions, are consistent among all players.

2.2 Multiple Players
When we have multiple remote players, each of them has

their own delay functions, and to get the temporal contour
we must aggregate them. To realize the aggregation we can
use the following approaches (see Figure 6):

1. Try to minimize the number of entities that are not
in the local time (i.e., whose delay is not zero). This
means that once an entity has passed a remote player,

p’

p, r)d

(p, r)δ

(r, p)d

δ (e)d (p, r)

δ (e)d (r, p)

t

xp r’r

t

xp r

(

Figure 5: Temporal contours are corrected by the
distance the entity travels in the communication de-
lay. Above, the corrected temporal contour of player
p, where the peak is pushed forward to r′. Below,
the corrected temporal contour of player r, where
the peak is pushed forward to p′.

its delay returns back to zero. This approach aims at
maintaining the situation as close to the actual situa-
tion as possible, and it suits best when there is a lot of
interaction between the entities. The drawback is that
an entity may bounce back and forth between the local
and remote times, which can make its movements look
jerky.

2. Try to minimize the number of delay changes. Once
an entity has reached some delay level, it remains un-
changed unless it begins to approach a new remote
player. This helps to reduce bouncing between differ-
ent times, which is prominent especially if there are
several remote players along the path of the entity.

t

p, r)d

(p, q)d

p r qp r q

x x

(a) (b)

t

(

Figure 6: Two approaches to aggregate the tempo-
ral contour of player p, when there are two remote
players r and q. (a) Minimize the number of entities
that are not in local time. (b) Minimize the number
of delay changes.

x

y

t

Figure 7: Two remote players with linear delay
functions are aggregated to form the temporal con-
tour. If the local player, who resides in the origin,
launches an entity, it must follow the temporal con-
tour.

The drawback is the that rendered view, in its en-
tirety, does not remain as close to the actual situation
as in the first approach.

Once we have formed the temporal contour, it is used
similarly as in the case of two players (see Figure 7).

2.3 Problems and Limitations
The main limitation of local perception filters is that the

players cannot interact directly with each other but all in-
teraction must happen using passive entities. In fact, the
closer the players get to each other the more noticeable
the temporal distortion becomes. Finally, when they reach
a critical proximity, even interaction using passive entities
becomes impossible (see Figure 8). If we have players p
and r and entity e, the critical proximity is exceeded when
δ(p, r) < δe(max{d(p, r), d(r, p)}), because now it is possible
that a player learns about e too late.

Because remote players define the temporal contour, any
sudden changes in their position or existence can cause dras-
tic effects in the rendered view. For example, if a nearby
remote player leaves the game world, it no longer affects
the temporal contour and some entities may suddenly jump
forward in time to match the updated temporal contour.
Moreover, remote players can distort the rendered view just
by being near the local player. Figure 9 illustrate a sit-
uation where player r has a high communication delay in
comparison to players q and s. Now, if player r moves near
player q, its delay function dominates the temporal contour

x

)(p, q

d)(p, r
d)(p, s

d)(r, s
d)(r, q

d)(r, p

p sq r

t

x

p sq r

t

d

Figure 9: Four players have different communication
delays. Above, the temporal contour of player p is
dominated by remote player r, which alters signifi-
cantly the temporal contour around remote players
q and s. Below, the temporal contour of player r.

of player p in that area, and the temporal distortion around
q increases.

The underlying assumption behind local perception filters
is that we know the exact communication delays between
the players. In reality, latency and the amount of traffic
in a network tend to vary over time, which means that the
height of the peaks of the temporal contour must reflect
these changes. If this jitter becomes too high, the entities
begin bounce back and forth in time instead of smooth tem-
poral transitions. Naturally, we can damp this effect by
changing temporal contour slowly over time.

3. ADDING BULLET TIME TO THE
DELAYS

The idea of bullet time effect is that the player using bullet
time has more time to react to the events of the surrounding
game world. In other words, the delay between the bullet-
timed player and the other players increases. Since local
perception filters provide a way to realize this, it seems an
obvious way to implement bullet time effect in a multiplayer
game: In addition to the real-world communication delays,
we have artificial, player-initiated delays—the bullet time—
which are then used to form the temporal contours. The
outcome is that entities approaching a bullet-timed player
slow down and entities coming from a bullet-timed player
speed up. Obviously, the game design should prevent the
players from overusing bullet times by making it a limited
resource which can be used only for a short period. Also, by
incorporating the temporal distortions as an integral part of
the game could lead to some interesting designs.

Let us denote the bullet time of player p with b(p). As in
the previous section, assume we have two players, p and r,
and a bullet e shot by player p. Figure 10 illustrates the play-
ers’ temporal contours when player p is using bullet time.
From the perspective of player p, when the bullet reaches

(c)

t

x

p r’r

t

x

p r r’

t

x

p r r’

t

x

p rp’

t

x

p r
p’

t

x

p r p’

(a) (b)

Figure 8: Critical proximity in temporal contours when player p shoots player r. Above, the perspective of
player p; below, the perspective of player r. (a) The players have not reached the critical proximity. Player
p sees the bullet moving slowly towards r, whilst r sees the bullet arriving fast. (b) The players have reached
the critical proximity. Player r learns about the bullet exactly the same time as it passes r. Conversely, the
temporal distortion of player p has not increased much. (c) The players have exceeded the critical proximity.
Player r learns about the bullet only when it has already passed r, whilst the temporal distortion of player p
still remains reasonable.

r the delay is d(p, r) − b(p). As before, the delay function
represents the temporal difference between the actual entity
and rendered entity. However, whereas normally the delay
values are positive (i.e., the actual position is ahead of the
rendered position), bullet time can lead to negative delay
values (i.e., the rendered position is ahead of the actual po-
sition). This becomes more obvious, when we consider the
same situation from the perspective of player r. When the
bullet reaches player r, the delay is −b(p) because the bul-
let time, in effect, takes away time from player r. Naturally,
collision detection and other reactions must be based on this
rendered entity rather than the actual entity, which is still
on the way to the target.

Like normal temporal contours, bullet-timed temporal con-
tours also require refining to avoid visual disruptions. The
bullet time shadow r′′ of player r corrects the temporal con-
tour based on the movement of e: For player p, r′′ must
have the property

δ(r, r′′) = δe(d(p, r) − b(p)), (5)

and for player r, r′′ must have the property

δ(r, r′′) = δe(b(p)). (6)

In Figure 11 player r is using bullet time whilst being shot
by player p. In this case, the bullet time b(r) is added to
the normal communication delay in the temporal contour of
player p, which means that the delay is d(p, r) + b(r) when
the bullet reaches r. Conversely, player r has the delay b(r)
when the bullet reaches it. Again, to refine the temporal
contours, we must calculate the bullet time shadow r′′. For
player p, r′′ must have the property

δ(r, r′′) = δe(d(p, r) + b(p)), (7)

and for player r, r′′ must have the property

δ(r, r′′) = δe(b(r)). (8)

r"

()p

b ()p

(p, r)d b ()pδ (e)_

(p, r)d

d (r, p)

b ()p)δ (e

t

x

p p’

rp

t

xr’

r" r
b

Figure 10: Player p shoots player r, and player p is
using bullet time. Above, the temporal contour of
player p; below, the temporal contour of player r.

r"

p, r)d

b ()r

b ()r

(p, r)δ (e)+ b ()rd

d (r, p)

b (r)δ (e)

t

x

p p’

p x

t

r r’

r r"

(

Figure 11: Player p shoots player r, and player r is
using bullet time. Above, the temporal contour of
player p; below, the temporal contour of player r.

Bullet-timed temporal contours can be generalized to mul-
tiple players the same way as normal temporal contours.
However, bullet time can lead to problematic situations.
Figure 12 illustrates such a case, where p shoots at r and q,
when player r is using bullet time. Let us consider what hap-
pens when the bullet reaches shadow q′. At that moment
player p should see the bullet rendered at the position of
player q. However, before that event the bullet should have
already passed player r—but that will happen only when
the bullet reaches the bullet time shadow r′′. This breaks
the causality of events. A simple solution is to increase the
delay around q, and thus give player q unearned bullet time,
so that the causality is preserved.

Alternatively, we can calculate points along the entity’s
path where it is closest to each player. For each point, we
calculate a delay interval which depends on the distance
from the path. If the player is near to the path (and in-
teraction is quite likely), the delay interval is small, and for
faraway players the interval is wider. Now, instead of fol-
lowing the temporal contour exactly, the delay of the entity
must remain within the intervals, which allows to preserve
causality more fairly [1].

4. EXPERIMENTAL OBSERVATIONS
MaxMaze Demonstrator (MMD) is a testbench system for

local perception filters1 [1]. It uses linear delay functions and
supports scenarios which have 2–3 players, which can move,
shoot and use bullet time. MMD allows to analyse the sit-
uation frame-to-frame from the perspective of any player or
from a view which combines all perspectives (see Figure 13).
The information is available also in numerical format, which
can viewed in the event log.

The theoretical results presented in the previous sections

1The MMD system is publicly available from the web page
http://staff.cs.utu.fi/staff/jouni.smed/mmd/.

p’

b)(r+(p, r)

(p, q)d

rp r"

x

q q’

t

d (r, p)
b ()r

d (r, q)

r

t

p

x

q q’ r"

d

Figure 12: Player p shoots at r and q, and player r
is using bullet time. Above, the temporal contour
of player p; below, the temporal contour of player r.

are mainly due to our experiments with MMD. In most cases
anomalous behaviour in the testbench has revealed prob-
lems that the earlier, mostly theoretical work has not recog-
nized. For example, the need to refine the temporal contour
using the players’ shadows became imminent when we ob-
served frequent visual disruptions. Moreover, to work out
the causal problems of multiple players using bullet time
would have taken much longer without a tool where the so-
lution methods could be analysed based on visual feedback.
To summarize, because the local perception filter approach
is about visual perceptions, it must be evaluated also visu-
ally.

5. CONCLUDING REMARKS
Bullet time effect can be realized in multiplayer computer

games by using local perception filters. In this paper, we
described the theory behind local perception filters as well
as extended the previous work by introducing refinements to
the temporal contour. Bullet time alters the temporal con-
tour by adding artificial, player-initiated delay to the normal
communication delay. The results presented in this paper
are inspired and studied by using a testbench program.

This paper is likely to raise more questions than give an-
swers. Future work on extending the ideas to non-linear
temporal contours is still required. Moreover, an evaluation
on the subjective difference between different temporal con-
tours would justify our claim on the usability of linear delay
functions. And of course, we would like to see—and play!—
multiplayer computer games utilizing the ideas presented in
this paper.

6. ACKNOWLEDGEMENTS
The authors wish to express their gratitude to the late

Dr Timo Kaukoranta for his initial input, inspiration, and
insights.

7. REFERENCES
[1] H. Niinisalo. MaxMaze Demonstrator Documentation.

Department of Information Technology, University of
Turku, 2003.

Figure 13: Screenshot of the MMD system. The player at the bottom has shot a bullet, and the view is from
its perspective. The player at the middle has activated the bullet time, and the bullet is about to pass it.
However, the actual bullet is well past the middle player and heading towards the player at the top.

[2] Raven Software. Jedi Knight II: Jedi Outcast.
LucasArts, 2002.

[3] Remedy Entertainment. Max Payne. Gathering of
Developers, 2001.

[4] M. D. Ryan and P. M. Sharkey. The causal surface and
its effect on distribution transparency in a distributed
virtual environment. In Proceedings of IEEE
International Conference on Systems, Man, and
Cybernetics, volume 6, pages 75–80, Tokyo, Japan, Oct.
1999.

[5] P. M. Sharkey, M. D. Ryan, and D. J. Roberts. A local
perception filter for distributed virtual environments.
In Proceedings of IEEE Virtual Reality Annual
International Symposium, pages 242–9, Atlanta, GA,
Mar. 1998.

[6] S. Singhal and M. Zyda. Networked Virtual
Environments: Design and Implementation. Addison
Wesley, Reading, MA, 1999.

[7] J. Smed, T. Kaukoranta, and H. Hakonen. Aspects of
networking in multiplayer computer games. The
Electronic Library, 20(2):87–97, 2002.

[8] J. Smed, T. Kaukoranta, and H. Hakonen. Networking
and multiplayer computer games—the story so far.
International Journal of Intelligent Games &
Simulation, 2(2):101–10, 2003. Available at
〈http://www.scit.wlv.ac.uk/∼cm1822/ijigs22.htm〉.

[9] A. Wachowski and L. Wachowski. The Matrix. Warner
Bros., 1999.

